1

X\, Journal of Integer Sequences, Vol. 22 (2019),

OIS Article19.7.7
92 a0

Two New Identities Involving the Catalan
Numbers and Sign-Reversing Involutions

Jovan Mikié
J.U. SSC “Jovan Cviji¢”
74480 Modrica
Republic of Srpska
jnmikic@gmail.com

Abstract
We give a combinatorial proof of a known sum concerning the product of a binomial
coefficient with two central binomial coefficients. The method of description, involu-
tion, and exception is used. The same combinatorial argument also proves the “—1
shifted version” of this sum. As a consequence, two new binomial coefficient identities
with the Catalan numbers are derived.

Introduction

Let n be a non-negative integer. The Catalan numbers are the famous sequence

c 1 <2n>
n+1\n

In this paper, we derive two new (to our knowledge) binomial coefficient identities with the
Catalan numbers.

Theorem 1. For non-negative integers n, we have

kio(_l)k(z) i (22 _ 2k) - (L;)Qf (1)

S (-1 (2;’) CyCon_iy = C, (27?) . (2)

k=0
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In order to prove Theorem 1, we consider a known combinatorial sum

B n\ [2k\ [2n — 2k 0, if n is odd;
—1)k = 3
Z( )<k)(k‘)(n—k) {(2)2, if n is even. ()

k=0 2

Eq. (3) appears several times in the literature; see, for example, [2, Eq. (6.12), p. 52], [3,
Eq. (6.61), p. 29], and [7, Example 3.6.2, p. 45]. There are two binomial coefficient identities
([3, Eq. (6.10), p. 23; Eq. (7.3), p. 34]) similar to Eq. (3). They are proved combinatorially,
for example, in [8]. See [6] and [5, Conclusions] for the connection between these identities
and Shapiro’s formula [9, Ex. (6.C.18), p. 41] and Segner’s recurrence relation [4, Eq. (5.6),

p. 117] respectively.
We give a proof of Eq. (3) by using the method of “description, involution, and exception”
[1]

By using the same idea, we derive the “—1 shifted version” of Eq. (3). We assert that

i(_w(n)( 2% )(%-%) =57 s odd; "
=0 k) \k—1 n—Fk 0, if n is even.
Clearly, subtracting Eq. (4) from Eq. (3) and by using the well-known relation Cj =

(2:) — (szl), we get Eq. (1). Furthermore, it can be shown that Eq. (2) is a consequence of

Eq. (1).

Throughout the paper, [n] denotes the set {1,2,...,n}, if n is a positive integer; and [0]
denotes the empty set ().

Let A and B be sets. Then |A| denotes the cardinality of the set A, and A\ B denotes
the set difference: {z :z € A, x ¢ B}.

We end this paper with the generalization of Equns. (3) and (4).

2 Definitions

Let n be a fixed non-negative integer.

Definition 2. For A C [n], we define

s 0, if A=0;
" la+nized ifA£0

Obviously, if A C [n], then A" C [2n]\[n].

Definition 3. We define the function ¢ : [2n] — [2n], as follows:

2 — T +n, lf.TE[n]v
¢(x) {x—n, if € [2n]\[n].



Definition 4. Let S C [2n]. The set S is balanced if S = (S N [n]) U (S N [n])". Otherwise,
S is a unbalanced set.

In other words, set S is balanced if Vo (z € S < ¢p(x) € §). Clearly, if set S is balanced,
then |S| must be even.

The union of two balanced sets is a balanced set. Note that the converse does not hold
even if two sets are disjoint. For example, unbalanced sets [n| and [2n]\[n] are disjoint, but
their union is a balanced set [2n].

However, if S; and S, are disjoint sets such that S} U ¢(S5)) and Se U ¢(Ss) are disjoint
sets, then S; U S, is a balanced set if and only if both sets S; and Sy are balanced.

3 Proof of Eq. (3)

Proof. Let n be a fixed non-negative integer. We use the method of description, involution,
and exception, as discussed in [1].

Description:

Let X denote the set
{(A,B,C): AC[n],BC AUA"|A| =|B|,C C [2n]\(AU A"), |A| + |C| = n}.
For integers k, where 0 < k < n, we define the sets X, as follows:
Xy ={(A,B,C) € X : |A| = k}.

Obviously, X = Uj_, Xy and |Xi| = (}) (3F) (*"—2%). We have

k n—k
- 2k\ (2n — 2k -
S0 () () Cnr) = e = el - ot 5)
where
E={(A,B,C)e X :|A|liseven} and O = {(A,B,C) € X : |A] is odd}.
Involution:

Let us define sets D and E, as follows:

D ={(A,B,C) € X : BUC is an unbalanced set} (6)
E={(A,B,C) € X : BUC is balanced set} (7)

Obviously, D and E are disjoint sets and X = D U FE.
Let (A,B,C) € D. We let dg ¢ denote min{z € BUC : ¢(z) ¢ BUC}. The integer
dp,c is well-defined because B U C'is an unbalanced set.
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Let us define the function ¥ : D — D, as follows:

A\{dB,C}, B\{dBjc}, c'u {dB7c}), if ClB7C € BN [n],

A\{dB’C — n}, B\{dByc}, cu {dB,C})a if dB,C € Bn [n]t

AU{dB’C},BU {dB,C}yc\{dB,C})y if dB,C cCn [n],
[n]

(
V(A B,C)) = E
(A U {dB,C - TL}, B U {dB,C}y C\{dB,C}), if dB,C S CnNin t.

The function ¥ is well-defined and an involution on D. Moreover, if (A, B,C') € DNE,
then ¥((A, B,C)) € DN O; and vice versa. Therefore, we may conclude that |[DNE| =
IDNO.

We have

€l =10l =[EnX|-]ONnX]

=|END|+|ENE|-(|OND|+|ONE|]) (X=DUE)
=ENEl-|ONE] (because |€ N D| = |0 N D).
Therefore, we obtain
El - 0| =ENE|l-]0NE]. (9)
From Eqns. (5) and (9), it follows that
- n\ (2k\ (2n — 2k
—1)* =|ENE|—|ONE|. 10
S0 () (3) Chy) =enm-lons (10)

Exception:

Let (A, B,C) € E.

By Eq. (7), the set BU C' is balanced. Sets B and C' are disjoint. Moreover, B U ¢(B)
and C'Up(C) are disjoint sets too. Then it follows that both sets B and C' must be balanced.
Hence integers |B| and |C| are even. Since |A|=|B| (by the definition of X), |A| is even and
(A, B,C) € €. Therefore, E C €£.

Eq. (10) simplifies to
B -m

k=0
We have two cases:
Case (a): n is odd.
Since |B U C| = n, it follows that the set B U C' is unbalanced and E = (). By Eq. (11),

it follows that
- n\ [(2k\ [2n — 2k
—1)k =0
S () () (hoh) =o
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as desired.
Case (b): n is even.

We use the Chu-Vandermonde convolution formula:

£0)(1)-(2)

where a, b, and ¢ are non-negative integers.
Let us count the number of elements of the set E. The set E' is equal to the set

A
{(A,BiUB],C,UCY) : AC [n],|A| even, By C A,|B| = %,C’l C [n\A, |Ch| + |B1| = g}
Obviously, it follows that |E| is equal to

4] n
’{(A, Bl,Cl) A C [TL], |A’ even, Bl C A, ‘Bl‘ = 7,01 C [n]\A, ’Cll + ‘Bl‘ = §}|

Clearly, there is a one-to-one correspondence between (A, By, Cy) and (B; U Cy, By, A\By).
Therefore, |E| is equal to

n
{(B2: Bi, A1) = By C [n): [Be| = 5, Bi € By, v © [n\By, [Au] = | Bu}]. (13)

Let k = |B;|. By Eq. (13), it follows that

(by Eq. (12)).

)3
(OO
)

We obtain

By Eq. (11), it follows that

i(_w(n) <2k> (Zn - Qk) _ (2)27
— k)\ k n—k o
as desired. This completes the proof of Eq. (3). O
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4 Proof of Eq. (4)

Proof. The proof of Eq. (4) is similar to the proof of Eq. (3).
Description:

Let X denote the set
{(A,B,0C): AC[n],BC AUA"|B|=|A|—1,C C [2n]\(AU A", |A| +|C| = n}.
For integers k, where 0 < k < n, we define the following sets X, as follows:
Xe={(A,B,C) € X : |A| =k}.

Obviously, X = Uy_, Xy and [X5| = (7) (%) (*"~2%). We have

k—1 n
—~ k(PN [ 2k (20 =2K\ N kv el i,
S0 () () Ch k) = e = el o (1)
where
E={(A,B,C)e X :|Aliseven} and O ={(A4,B,C) € X : |A| is odd}.
Involution:

Same as in Eq. (3). Let D, E, and ¥ be same as in Eqns. (6),(7), and (8) respectively.
It is readily verified that the function ¥ is well-defined and an involution on D. Hence the

equation
g n\ ([ 2k \ (2n -2k
Z(—n’f(k)(k_l)(n_k):|ng|—|(9mE| (15)
k=0

holds.

Exception:

Let (A, B,C) € E. By Eq. (7), the set BU C' is balanced. As before, both sets B and
C must be balanced. Thus, integers |B| and |C| are even. Since |A|=|B| + 1 (by the new
definition of X), |A| is odd and (A, B,C) € O. Therefore, E C O. Eq. (15) simplifies to

S () () (o) = im

We have two cases:

Case (a): n is even.



Since |[BUC| =n—1, |BUC| is odd. It follows that the set B U C' is unbalanced and
E =10. By Eq. (16), it follows that

& 2k 1\ [2n — 2k
_E(" =
2.1 WD) =0

as desired.
Case (b): n is odd.

Again, we use Eq. (12). Let us count the number of elements of the set FE.
The set E' is equal to the set

{(A, Bl U Bi,cl U O{) :

Al—1 n—1
AC |4 odd. B € A 18| = AL 6 cpajoy +181 = ",

Obviously, |E| is equal to

Al -1 —1
04, B1,C1) A C 4] 0dd, B © A, 11| = BE2L 0 e panva el + 11 = 2501

Clearly, there is one-to-one correspondence between (A, By, C1) and (B; U Cy, By, A\ By).
Therefore, |E| is equal to

n—1
{(B2, B1, A1) : By C [n],|Bs| = 5 Bic By, Ay C [n|\Ba, |Ai| = |By| + 1} (17)

Let k = |By|. By Eq. (17), it follows that
= 1 +1
El = 2 2
= () 2 (7))
2 ntl
( ) ( ) ( n_42_ k) (by symmetry)
:o 2

( (by Eq. (12)).

Thus we have shown

v ‘

s >
1l
= o

o

w|| 3 “|L 3

By Eq. (16), it follows that

- 2 2n — 2 ?

Z(—l)k n k n k _ " 7
k)\k—1 n—k L

k=0

as desired. This completes the proof of Eq. (4).
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5 Proof of Theorem 1

Proof. Eq. (1) directly follows from Eqns. (3),(4), and from the relation [4, p. 106] Cy =
2k 2k
(k) - (kq)'

Let us prove Eq. (2). By Eq. (1), it follows that
2n 2
2n dn — 2k 2n
—1)* = .
o ()e(nd) = ()
k=0
Changing k to 2n — k, we obtain that
2n 2n
2n dn — 2k 2n 2k
—1)* C = —1)* Cop .
2 ()a (5 k) - peor (e (i)

Now we use a lesser known identity on the Catalan numbers:

4n — 2k 2k
Ck< 27; B k) + ( e )an_k = 2(71 —+ 1>Ckc2n—k‘ (18)

Eq. (18) is a special case [5, p. 8] of the following identity:

2n — 2k 2k

n—=k k
We have
2 n An = 2K\ = n 2k 2n\ 2
-1 k - -1 k B —
S ()en ) e (Ve (5) =)
k=0 k=0
o 2n on) 2
2 1 —1)F CiCapn_j, =2 by Eq. (18
e (Y )acas=2(7) ovee s
2n 2
2n 1 2n
—1)k p=— .
(e ()
k=0
The last equation above proves Eq. (2). This completes the proof of Theorem 1. O

6 Conclusion

Let n, a, f be non-negative integers. By using the same idea from proofs of Eqns. (3) and
(4), we can conclude that

zn: e 2k 2n =2k \ |0, if n and o + 8 are of opposite parity; 19
k:o( ) k)\k—a)\n—k—-p8) (_1>a(n7276)(n72+,@), otherwise. (19)
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