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Abstract

Let b a numeration base. A b-additive Ramanujan-Hardy number N is an integer
for which there exists at least one integer M , called the additive multiplier, such
that the product of M and the sum of base-b digits of N , added to the reversal of
the product, gives N . We show that for any b there exist infinitely many b-additive
Ramanujan-Hardy numbers and infinitely many additive multipliers. A b-multiplicative
Ramanujan-Hardy number N is an integer for which there exists at least an integer M ,
called the multiplicative multiplier, such that the product of M and the sum of base-b
digits of N , multiplied by the reversal of the product, gives N . We show that for b ≡ 4
(mod 6), and for b = 2, there exist infinitely many b-multiplicative Ramanujan-Hardy
numbers and infinitely many multiplicative multipliers. If b even, b ≡ 0 (mod 3) or
b ≡ 2 (mod 3), we show there exist infinitely many numeration bases for which there
exist infinitely many b-multiplicative Ramanujan-Hardy numbers and infinitely many
multiplicative multipliers.

These results completely answer two questions and partially answer two other ques-
tions asked in a previous paper of the author.

1 Introduction

Let b ≥ 2 be a numeration base. In Niţică [6], motivated by some properties of the taxicab
number, 1729, we introduce the classes of b-additive Ramanujan-Hardy (or b-ARH) numbers
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and b-multiplicative Ramanujan-Hardy (or b-MRH) numbers. The first class consists of
numbers N for which there exists at least an integer M , called the additive multiplier, such
that the product ofM and the sum of base-b digits of N , added to the reversal of the product,
gives N . The second class consists of numbers N for which there exists at least an integer
M , called the multiplicative multiplier, such that the product of M and the sum of base-b
digits of N , multiplied by the reversal of the product, gives N .

It is asked [6, Question 6] if the set of b-ARH numbers is infinite and it is asked [6,
Question 8] if the set of additive multipliers is infinite. It is shown [6, Theorems 12 and
15] that the answer is positive if b is even. The case b odd is left open. It is asked [6,
Question 7] if the set of b-MRH numbers is infinite and it is asked [6, Question 9] if the set of
multiplicative multipliers is infinite. It is shown [6, Theorem 30] that the answer is positive
if b is odd. The case b even is left open.

We recall that Niven (or Harshad) numbers are numbers divisible by the sum of their
decimal digits. Niven numbers have been extensively studied. See, for instance, Cai [1],
Cooper and Kennedy [2], De Koninck and Doyon [3], and Grundman [4]. Of interest are
also b-Niven numbers, which are numbers divisible by the sum of their base-b digits. See,
for example, Fredricksen, Ionaşcu, Luca, and Stănică [5]. A b-MRH-number is a b-Niven
number. High degree b-Niven numbers are introduced in [7].

The goal of this paper is to show that, for any numeration base, there exist infinitely
many b-ARH numbers and infinitely many distinct additive multipliers. We also show that,
for b ≡ 4 (mod 6), and for b = 2, there exist infinitely many b-MRH numbers, and infinitely
many distinct multiplicative multipliers. If b even, b ≡ 0 (mod 3) or b ≡ 2 (mod 3), we
show there are infinitely many numeration bases for which there exist infinitely many b-
multiplicative Ramanujan-Hardy numbers and infinitely many multiplicative multipliers.
These results completely answer the first two questions from [6] revisited above, and partially
answer the other two. We observe that a trivial example of infinitely many b-MRH numbers
is given by the powers of 10. Our examples have at least two digits different from zero.
Finding infinitely many b-MRH numbers with all digits different from zero remains an open
question.

Our results about b-ARH numbers also give solutions to the Diophantine equationN ·M =
reversal(N ·M). Motivated by this link, we show that the Diophantine equation has solution
for all integers N not divisible by the numeration base b. We do not know how to answer
the following related question:

Question 1. Does there exist, for any integer N , an integer M such that N ·M is a b-ARH
number (or a b-MRH number, or a b-Niven number)?

Our final result shows that for any string of digits I there exist infinitely many b-Niven
numbers that contain I in their base-b representation. We do not know a similar result for
the classes of b-ARH and b-MRH numbers.
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2 Statements of the main results

Let sb(N) denote the sum of base-b digits of integer N . If x is a string of digits, let (x)∧k

denote the base-10 integer obtained by repeating x k-times. Let [x]b denote the value of the
string x in base b.If N is an integer, let NR denote the reversal of N , that is, the number
obtained from N writing its digits in reverse order. The operation of taking the reversal is
dependent on the base. In the definition of a b-ARH-number/b-MRH number N we take the
reversal of the base-b representation of sb(N)M .

Theorem 2. Let α ≥ 1 integer, b ≥ α+1 integer, and k = (1+α)ℓ, ℓ ≥ 0. Assume b ≡ 2+α
(mod 2 + 2α). Define

Nk = [(1α)∧k]b.

Then there exists M ≥ 0 integer such that

sb(Nk) ·M = (sb(Nk) ·M)R =
Nk

2
.

In particular, the numbers Nk, k ≥ 1, are b-ARH numbers and b-Niven numbers.

The proof of Theorem 2 is done in Section 3.

Remark 3. The particular case b = 10, α = 2, of Theorem 2, which gives Nk = (12)3
ℓ

, is
covered by [6, Example 10]. Theorem 2 does not give any information if b = 2.

The following proposition gives positive answers to [6, Questions 5 and 6].

Proposition 4. For any b ≥ 2, there exist infinitely many b-ARH numbers and infinitely
many additive multipliers. The b-ARH numbers are also b-Niven numbers.

The proof of Proposition 4 is done in Section 4.

Remark 5. Note that [6, Theorems 12 and 15] show, for all even bases, infinitely many b-
ARH numbers that are not b-Niven numbers. The case of odd base is open. The question
of finding infinitely many b-Niven numbers that are not b-ARH numbers is also open. It is
shown in [6, Theorem 28] that for any base there exist infinitely many numbers that are not
b-ARH numbers.

The result in Theorem 2 gives many base-10 solutions for the equation:

N ·M = (N ·M)R. (1)

One can try to solve the equation (1) ,where (N ·M)R is the reversal of N ·M written
in base b, for any numeration base b.

Observe that if N is divisible by b, then (N ·M)R has less digits then N ·M , therefore
N is not a solution of (1). Note also that if N = NR and N has k digits then (1) always has
an infinite set of solutions with

M = [(1(0)∧ℓ)∧p1]b, ℓ ≥ k − 1, p ≥ 0.

Consequently, if (N0,M0) is a solution of (1), then (1) has infinite sets of solutions of types
(N0,M) and (N,M0).
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Theorem 6. Let b ≥ 2 and N ≥ 1 integer such that b 6 |N . Then N is a solution of (1).

The proof of Theorem 6 is done in Section 5. For base 10, a proof belonging to David
Radcliffe can be found at [8]. We learned about this reference from J. Shallit. We generalize
the proof for an arbitrary numeration base. After our paper was written, we learned from
J. Shallit [9] that he also has a proof of Theorem 6.

A b-numeric palindrome is a base-b integer N such that N = NR.

Corollary 7. All integers, not divisible by b, are factors of b-numeric palindromes.

Definition 8. The multiplicity of a multiplicative multiplier M is the number of (N,M)
solutions of (1).

It was observed above that for any solution (N,M) of (1), M has infinite multiplicity.
The following theorem shows infinitely many solutions of (1) independent of above.

Theorem 9. Let b ≥ 2 a numeration base. Then, for all k ≥ 0, we have

[1(b− 1)]b · [(b− 1)∧k]b = [1(b− 2)(b− 1)∧k−2(b− 2)1]b.

The proof of Theorem 9 is done in Section 6.
Our next results show, for b even, more examples of infinite sets of of b-ARH.

Theorem 10. Let b ≥ 2 even. Let a ∈ {1, 2, . . . , b− 1} and let k ≥ 0 be an integer.
(a) Let

Nk = [a(0)∧ka]b.

Then Nk is a b-ARH number, but not a b-Niven number.

(b) Let

Nk = [
(

1(0)∧k
)∧b

0
(

(0)∧k1
)∧b

]b.

Then Nk is a b-ARH number, but not a b-Niven number.

(c) Let

Nk = [
(

(0)∧k1
)∧b

0
(

1(0)∧k
)∧b

]b.

Then Nk is a b-ARH number and a b-Niven number.

The proof of Theorem 10 is done in Section 7.
The following theorem gives partial answers to [6, Questions 7 and 8].

Theorem 11.

(a) Let b ≡ 4 (mod 6). Let k ≥ 1 integer such that k ≡ 1 (mod 3). Define

αk = [1(0)∧k(b− 2)]b.
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Then Nk = αk · (αk)
R is a b-MRH number.

(b) Let b = 2 and let k ≥ 1 be an even integer. Define

αk = [1(0)∧k1]2.

Then Nk = αk · (αk)
R is a b-MRH number.

In particular, for any numeration base b, b ≡ 4 (mod 6), and for b = 2, there exist
infinitely many b-MRH numbers and infinitely many multipliers.

The proof of Theorem 11 is done in Section 8.
Our next result lists several infinite sequences of 10-MRH-numbers.

Proposition 12. Assume k ≥ 1 integer and define Nk = αk · (αk)
R, where αk is one of the

following numbers:

• [1(0)∧k8]10, k ≡ 1 (mod 3),

• [7(0)∧k2]10,

• [5(0)∧k4]10,

• [4(0)∧k5]10

Then Nk is a 10-MRH number.

The first item in Proposition 12 follows as a corollary of Theorem 11. The other items
can be proved using the same approach as in the proof of Theorem 11.

If b even, b ≡ 0 (mod 3) or b ≡ 2 (mod 3), the next theorem shows there are infinitely
many numeration bases for which there exist infinitely many b-MRH numbers and infinitely
many multipliers.

Theorem 13.

(a) Let b ≥ 18, b = 6a, and a ≡ 1 (mod 25). Let αk = [1(0)∧k4]b with k ≡ 4 (mod 5). Then
Nk = αk · α

R
k is a b-MRH number. The corresponding multipliers are distinct.

(b) Let b ≥ 18, b = 8a, a ≡ 1 (mod 25), and a ≡ 1 (mod 3). Let αk = [1(0)∧k4]b with
k ≡ 4 (mod 20). Then Nk = αk ·α

R
k is a b-MRH number. The corresponding multipliers are

distinct.

The proof of Theorem 13 is done in section 9.

Theorem 14. For any base b and for any string of base b digits I there exist infinitely many
b-Niven numbers that contain the string I in their base-b representation.

Proof. Let I be a string of base-b digits. There exist infinitely many base-b strings J such
that sb([IJ ]b) is a power of b, say bk, k ≥ 1. Then the number NJ = [IJ(0)∧k]b is a b-Niven
number.
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3 Proof of Theorem 2

Proof. The condition b ≡ 2 + α (mod 2 + 2α) implies that b + α is even. The base-b

representation for Nk/2 is Nk/2 =
[

(

0 b+α
2

)

∧k
]

b
. One has that:

sb(Nk) = k · (1 + α) = (1 + α)ℓ+1. (2)

The value of Nk/2 in base 10 is obtained summing a geometric series.

Nk

2
=

b+ α

2
· b2k−2 +

b+ α

2
· b2k−4 + · · ·+

b+ α

2
· b2 +

b+ α

2
=

b+ α

2
·
b2k − 1

b2 − 1

=
b+ α

2
·
b2(1+α)ℓ − 1

b2 − 1
. (3)

Note that Nk/2 = (Nk/2)
R. We finish the proof of the theorem if we show that:

(1 + α)ℓ+1
∣

∣

∣

b+ α

2
·
b2(1+α)ℓ − 1

b2 − 1
. (4)

We prove (4) by induction on ℓ. For ℓ = 0 equation (4) becomes 1+α
∣

∣

∣

b+α
2
, which is true

because b ≡ 2 + α (mod 2 + 2α).
Now we assume that (4) is true for ℓ and show that it is true for ℓ+ 1.

b+ α

2
·
b2(1+α)ℓ+1

− 1

b2 − 1
=

b+ α

2
·

(

b2(1+α)ℓ
)1+α

− 1

b2 − 1

=
b+ α

2
·
b2(1+α)ℓ − 1

b2 − 1

(

Bα + Bα−1 + · · ·+B2 +B + 1
)

,

(5)

where
B = b2(1+α)ℓ . (6)

The congruence b ≡ 2 + α (mod 2 + 2α) implies that

b2 ≡ (2 + α)2 ≡ α2 + 4α + 4 ≡ α2 ≡ 1 (mod 1 + α),

which implies that
bm ≡ 1 (mod 1 + α), m even. (7)

From (6) and (7) follows that Bp ≡ 1 (mod 1 + α), 1 ≤ p ≤ α, so

1 + α|Bα + Bα−1 + · · ·+ B2 + B + 1. (8)

Combining (4) (for ℓ) and (8), and using (5), it follows that (4) is true for ℓ+ 1.
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4 Proof of Proposition 4

Proof. The case b = 2 is covered by [6, Theorem 12]. If b ≥ 3, choose α = b − 2 and apply
Theorem 2. We show that, for a fixed b, the multipliers appearing in the proof of Theorem
2 are all distinct. It follows from (2) and (3) that the multiplier for Nk is given by:

M =
Nk

2

sb(Nk)
=

b+α
2

· b2(1+α)ℓ
−1

b2−1

(1 + α)ℓ+1
. (9)

Note that α = b− 2. After algebraic manipulations, equation (9) becomes

M =
b2(1+α)ℓ − 1

(b− 1)ℓ(b2 − 1)
.

In order to show that the multipliers are distinct it is enough to show that the sequence
of multipliers is strictly increasing as a function of ℓ That is, we need to show that:

b2(1+α)ℓ − 1

(b− 1)ℓ(b2 − 1)
<

b2(1+α)ℓ+1
− 1

(b− 1)ℓ+1(b2 − 1)
. (10)

After algebraic manipulations (10) becomes

(b− 1)(b2(1+α)ℓ − 1) < b2(1+α)ℓ+1

− 1. (11)

After denoting
B = b2(1+α)ℓ = b2(b−1)ℓ ,

right hand side of (11) factors as follows:

b2(1+α)ℓ+1

− 1 = (b2(1+α)ℓ − 1)(Bα + Bα−1 + · · ·+B + 1). (12)

Now (11) follows from (12) and the following inequality:

b− 1 < b2(b−1)ℓ , ℓ ≥ 0, ℓ ≥ 0, b ≥ 3.

5 Proof of Theorem 6

Proof. Let b = pα1
1 pα2

2 · · · pαk

k , αi ≥ 1, pi prime, 1 ≤ i ≤ k. We recall that a base-b integer
N is divisible by pγi if the last γ digits of N form a base-b integer divisible by pγi . Let
N = pβ1

1 pβ2

2 · · · pβk

k w, where gcd(w, b) = 1. Let m = max(β1, β2, · · · , βk). Let L be the base-b

integer equal to pβ1

1 pβ2

2 · · · pβk

k . As b 6 |N , the last digit of L is not 0. Let ℓ be the length of
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L. Consider the base-b palindrome P = [LR(0)∧m−ℓL]b, where LR is the reversal of base-b
representation of L. As P is divisible by pβ1

1 pβ2

2 · · · pβk

k , this is the end of the proof if w = 1.
Assume w > 1. Let φ be Euler’s totient function which counts the positive integers up

to a given integer n that are relatively prime to n. As gcd(w, b) = 1 Euler’s theorem implies
that bφ(w) − 1 ≡ 0 (mod w).

Let r be an multiple of φ(w) which is greater than l +m, the length of P . Let q ≥ 1 a
multiple of bφ(w) − 1. Consider the infinite family of integers given by

Qr,q =
[

1
(

(0)∧r−11
)

∧q]

b
= 1 + br + b2r + · · ·+ bqr

= 1 + br + b2r + · · ·+ bqr + q − q (13)

=
(

br − 1
)

+
(

b2r − 1
)

+
(

b3r − 1
)

+ · · ·+
(

bqr − 1
)

+ q.

All terms in the last part of (13) are divisible by bφ(w)−1, so Qr,q is divisible by bφ(w)−1 and
by w. We finish the proof observing that P ·Qr,q is a base-b palindrome divisible by N .

6 Proof of Theorem 9

Proof. Observe that:

(b− 1) · (b− 1) = b(b− 2) + 1 = [(b− 2)1]b

(b− 1)bk + (b− 1)bk = bk + (b− 2)bk−1 = [1(b− 2)0∧k]b.
(14)

Using (14) we get

[1(b− 1)]b · [(b− 1)∧k]b = (b+ b− 1) ·

(

k−1
∑

i=0

(b− 1)bi

)

=
k−1
∑

i=0

(

(b− 1)bi+1 + (b(b− 2) + 1) bi
)

=
k
∑

i=1

(b− 1)bi +
k−1
∑

i=0

(b(b− 2) + 1) bi

= (b− 1)bk +
k−1
∑

i=1

(

(b− 1) + b(b− 2) + 1
)

bi + b(b− 2) + 1

= (b− 1)bk +
k−1
∑

i=1

(b− 1)bi+1 + b(b− 2) + 1

= (b− 1)bk + (b− 1)bk +
k−2
∑

i=1

(b− 1)bi+1 + b(b− 2) + 1

8



= bk + (b− 2)bk−1 +
k−2
∑

i=1

(b− 1)bi+1 + b(b− 2) + 1

= [1(b− 2)(b− 1)∧k−2(b− 2)1]b.

7 Proof of Theorem 10

Proof. (a) Note that sb(Nk) = 2a. As b is even, there exists an integer M such that:

2a ·M = [a(0)∧k+1]b.

The following computation shows that Nk is a b-ARH number:

sb(Nk) ·M + (sb(Nk) ·M)R = [a(0)∧k+1]b + [a]b = [a(0)∧ka]b = Nk.

To show that Nk is not b-Niven observe that Nk/a = [1(0)∧k1]b is odd.

(b) Note that sb(Nk) = 2b. As b is even, the multiplier M = [(1(0)∧k)∧b(0)∧kb+b−1]b/2 is an
integer.

The following computation shows that Nk is a b-ARH number:

sb(Nk) ·M + (sb(Nk) ·M)R

= [(1(0)∧k)∧b(0)∧kb+b]b + [((0)∧k1)∧b]b = [(1(0)∧k)∧b0((0)∧k1)∧b]b = Nk.

To show that Nk is not b-Niven observe that Nk is not divisible by b.

(c) The proof is similar to that of b).

8 Proof of Theorem 11

Proof. (a) Using the fact that

(b− 2)2 = b2 − 4b+ 4 = b(b− 4) + 4 = [(b− 4)4]b,

an equivalent base-b representation for Nk is given by

Nk =

{

[(b− 2)(0)∧k−1(b− 4)5(0)∧k(b− 2)]b, if b 6= 4;

[2(0)∧k−111(0)∧k2]4, if b = 4.
(15)

If b 6= 4 one has sb(Nk) = 3(b − 1) and if b = 4 one has s4(Nk) = 6. To finish the proof of
case a) it is enough to show that αk is divisible by sb(Nk).
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If b 6= 4 we get

αk = bk+1 + b− 2 = bk+1 − 1 + b− 1 = (b− 1)
(

bk + bk−1 + · · ·+ b2 + b+ 2
)

and
bk + bk−1 + · · ·+ b2 + b+ 2 ≡ k + 2 ≡ 0 (mod 3).

For the first congruence we used b ≡ 1 (mod 3) and for the second we used k ≡ 1 (mod 3).
If b = 4, then clearly αk is divisible by 2. Moreover

αk = 4k+1 + 2 = (3 + 1)k+1 + 2 ≡ 0 (mod 3),

which shows that αk is divisible by 6.

(b) Now assume that b = 2. Then an equivalent base-2 representation for Nk is given by

Nk = [1(0)∧k−110(0)∧k1]2,

so s2(Nk) = 3. To finish the proof, we use the fact that k is even to show that αk is divisible
by 3:

αk = 2k+1 + 1 = (3− 1)k+1 + 1 ≡ 0 (mod 3).

To prove the last claim in the theorem, we show that the multipliers corresponding to
various values of k are distinct. This follows from the explicit formulas below. All sequences
of multipliers are strictly increasing as functions of k.

If b = 2 the sequence of multipliers is given by Mk =
2k+1+1

3
.

If b = 4 the sequence of multipliers is given by Mk =
4k+1+2

6
.

If b > 4 the sequence of multipliers is given by Mk =
bk+1+b−2
3(b−1)

.

9 Proof of Theorem 13

Proof. (a) The base-b representation for Nk is

Nk = [4(0)∧k−1(17)(0)∧k4]b.

Therefore sb(Nk) = 25. If k = 5ℓ+ 4. one has that:

αk = 6kak + 4 ≡ (65)ℓ64 + 4 ≡ (7776)ℓ · 296 + 4 ≡ 0 (mod 25).

Hence Nk is a b-MRH number with multiplier αk

25
= (6a)k+4

25
.

(b) As above, sb(Nk) = 25. If k = 20ℓ+ 4, one has that:

αk = 8kak + 4 ≡ (820)ℓ84 + 4 ≡ (76)ℓ · 96 + 4 ≡ 0 (mod 25).

Hence Nk is a b-MRH number with multiplier αk

25
= (8a)k+4

25
.
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