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Abstract

A positive integer n is a b-adic palindrome if the representation of n in base b reads
the same backward as forward. Let sb be the reciprocal sum of all b-adic palindromes.
In this article, we obtain upper and lower bounds, and an asymptotic formula for sb.
We also show that the sequence (sb)b≥2 is strictly increasing and log-concave.

1 Introduction

Let n ≥ 1 and b ≥ 2 be integers. We call n a palindrome in base b (or b-adic palindrome) if
the b-adic expansion of n = (akak−1 · · · a0)b with ak 6= 0 has the symmetric property ak−i = ai
for 0 ≤ i ≤

⌊

k
2

⌋

. As usual, if we write a number without specifying the base, then it is always
in base 10. So, for example, 9 = (1001)2 = (100)3 is a palindrome in bases 2 and 10 but not
in base 3.

In recent years, there has been an increasing interest in the importance of palindromes
in mathematics [1, 2, 3, 13, 17, 25], theoretical computer science [4, 9, 12], and theoretical
physics [11, 14]. There are also some discussions on the reciprocal sum of palindromes on
the internet but as far as we are aware, our observation has not appeared in the literature.
Throughout this article, we let b ≥ 2, sb the reciprocal sum of all b-adic palindromes, and sb,k
the reciprocal sum of all b-adic palindromes which have k digits in their b-adic expansions.

1Prapanpong Pongsriiam is the corresponding author.
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The set of all b-adic palindromes is infinite but quite sparse, so it is not difficult to see that
sb converges. In fact, Shallit proposed the convergence of sb as a problem in the Fibonacci

Quarterly in 1980 [26, 27].
In this article, we obtain upper and lower bounds for sb, which enable us to show that

sb+1 > sb for all b ≥ 2 and s2b − sb−1sb+1 > 0 for all b ≥ 3. That is, the sequence (sb)b≥2

is strictly increasing and log-concave. Furthermore, we give an asymptotic formula for sb of
the form sb = g(b) +O(h(b)) where the implied constant can be taken to be 1 and the order
of magnitude of h(b) is log b

b3
as b → ∞. Our result sb+1 > sb for all b ≥ 2 also implies that

if b1 > b2 ≥ 2 and if we use the logarithmic measure, then we can say that the palindromes
in base b1 occur more often than those in base b2. On the other hand, if we use the usual
counting measure, then we obtain from Pongsriiam and Subwattanachai’s exact formula [22]
that the number of palindromes in different bases which are less than or equal to N are not
generally comparable. It seems that there are races between palindromes in different bases
which may be similar to races between primes in different residue classes. We will get back
to this problem in the near future.

The reciprocal sum of an integer sequence is also of general interest in mathematics and
theoretical physics as proposed by Bayless and Klyve [8], and by Roggero, Nardelli, and Di
Noto [24]. See also the work of Nguyen and Pomerance [19] on the reciprocal sum of the
amicable numbers, the preprint of Kinlaw, Kobayashi, and Pomerance [15] on the reciprocal
sum of the positive integers n satisfying ϕ(n) = ϕ(n + 1), and the article by Lichtman [16]
on the reciprocal sum of primitive nondeficient numbers. In addition, Banks [5], Cilleruelo,
Luca, and Baxter [10], and Rajasekaran, Shallit, and Smith [23] have recently investigated
some additive properties of palindromes while Banks, Hart, and Sakata [6] and Banks and
Shparlinski [7] show some of their multiplicative properties. For more information concerning
palindromes, we refer the reader to the entry A002113 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [28].

2 Results

Throughout this section, a, c, m, n, k, ℓ denote positive integers, and x, y, z denote positive
real numbers. Furthermore,

• ⌊x⌋ is the greatest integer less than or equal to x;

• ⌈x⌉ is the least integer greater than or equal to x;

• log x is the natural logarithm of x;

• xb =
∑b−1

m=1
1
m
;

• yb =
∑b2−1

m=b
1
m
; and

• zb =
∑b2

m=b+1
1
m
.
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Note that xb = sb,1 and xb/(b+ 1) = sb,2 and that

zb − yb =
1

b2
−

1

b
=

1− b

b2
.

Theorem 1. We have

yb
b
−

xb

b3
≤ sb,3 ≤

yb
b

and
zb

b⌊
k

2
⌋
≤ sb,k ≤

yb

b⌊
k

2
⌋

for every k ≥ 4.

Proof. We first consider the case k = 3. The b-adic palindromes which have 3 digits are of
the form (aca)b where 1 ≤ a ≤ b− 1 and 0 ≤ c ≤ b− 1. Since

∣

∣

∣

∣

1

(aca)b
−

1

(ac0)b

∣

∣

∣

∣

=

∣

∣

∣

∣

−a

(ab2 + cb+ a)(ab2 + cb)

∣

∣

∣

∣

≤
a

(ab2)2
=

1

ab4
,

we obtain
1

(ac0)b
−

1

ab4
≤

1

(aca)b
≤

1

(ac0)b
. (1)

Observe that

∑

1≤a≤b−1
0≤c≤b−1

1

(ac0)b
=

1

b

∑

1≤a≤b−1
0≤c≤b−1

1

ab+ c
=

yb
b

and
∑

1≤a≤b−1
0≤c≤b−1

1

ab4
=

xb

b3
.

So by summing (1) over all a = 1, 2, . . . , b−1 and c = 0, 1, . . . , b−1, we obtain the inequality
yb
b
− xb

b3
≤ sb,3 ≤

yb
b
. For k = 4, 1 ≤ a ≤ b− 1, and 0 ≤ c ≤ b− 1, we have

1

b2(ab+ c+ 1)
=

1

(ac00)b + b2
≤

1

(acca)b
≤

1

(ac00)b
=

1

b2(ab+ c)
.

Summing over all a = 1, 2, . . . , b− 1 and c = 0, 1, . . . , b− 1 leads to

zb
b2

=
1

b2

∑

1≤a≤b−1
0≤c≤b−1

1

ab+ c+ 1
≤ sb,4 ≤

1

b2

∑

1≤a≤b−1
0≤c≤b−1

1

ab+ c
=

yb
b2
.

Let k ≥ 5. The b-adic palindromes which have k digits are of the form (aa1a2 · · · ak−2a)b
where 1 ≤ a ≤ b − 1, 0 ≤ ai ≤ b − 1 for all i ∈ {1, 2, . . . , k − 2} with the usual symmetric
property on ai. We fix a and a1 and count the number of palindromes in this form. There
are b choices for a2 ∈ {0, 1, 2, . . . , b−1} and so there is only 1 choice for ak−3 = a2. Similarly,
there are b choices for a3 and 1 choice for ak−4. By continuing this counting, we see that the

number of palindromes in this form (when a and a1 are already chosen) is equal to b⌈
k−4

2
⌉.

Therefore the reciprocal sum of such palindromes satisfies

∑

a2,...,ak−3

1

(aa1a2 · · · ak−2a)b
≤

b⌈
k−4

2
⌉

(aa10 · · · 0a1a)b
≤

b⌈
k−4

2
⌉

bk−2(ab+ a1)
=

1

b⌊
k

2
⌋(ab+ a1)

,
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where a2, . . . , ak−3 run over all integers 0, 1, 2, . . . , b − 1 with the symmetric condition of
palindromes. Hence

sb,k =
∑

1≤a≤b−1
0≤a1≤b−1

∑

a2,...,ak−3

1

(aa1a2 · · · ak−2a)b
≤

∑

1≤a≤b−1
0≤a1≤b−1

1

b⌊
k

2
⌋(ab+ a1)

=
yb

b⌊
k

2
⌋
.

Similarly, if a and a1 are fixed, then

∑

a2,...,ak−3

1

(aa1a2 · · · ak−2a)b
≥

b⌈
k−4

2
⌉

abk−1 + a1bk−2 + bk−2
=

1

b⌊
k

2
⌋(ab+ a1 + 1)

.

Summing the above over all a = 1, 2, . . . , b− 1 and a1 = 0, 1, . . . , b− 1, we obtain the desired
lower bound for sb,k. This completes the proof.

Theorem 2. For every b, ℓ ≥ 2, we have

(

b+ 2

b+ 1

)

xb +
2ℓ−1
∑

k=3

sb,k +
2zb

(b− 1)bℓ−1
≤ sb ≤

(

b+ 2

b+ 1

)

xb +
2ℓ−1
∑

k=3

sb,k +
2yb

(b− 1)bℓ−1
.

In particular,

(

b+ 2

b+ 1

)

xb +
yb
b
−

xb

b3
+

2zb
b(b− 1)

≤ sb ≤

(

b+ 2

b+ 1

)

xb +

(

1

b
+

2

b(b− 1)

)

yb. (2)

Proof. For simplicity, we write x, y, z instead of xb, yb, zb, respectively. We consider sb,k for
each k as follows. Obviously sb,1 = 1 + 1

2
+ · · ·+ 1

b−1
= x. For k = 2, sb,k is

b−1
∑

a=1

1

(aa)b
=

b−1
∑

a=1

1

a(b+ 1)
=

x

b+ 1
.

By writing sb = x+ x
b+1

+
∑2ℓ−1

k=3 sb,k +
∑∞

k=2ℓ sb,k and applying Theorem 1, we obtain

sb ≤
b+ 2

b+ 1
x+

2ℓ−1
∑

k=3

sb,k +
∞
∑

k=2ℓ

y

b⌊
k

2
⌋
=

b+ 2

b+ 1
x+

2ℓ−1
∑

k=3

sb,k +
2y

(b− 1)bℓ−1
.

Similarly,

sb ≥
b+ 2

b+ 1
x+

2ℓ−1
∑

k=3

sb,k +
∞
∑

k=2ℓ

z

b⌊
k

2
⌋
=

(

b+ 2

b+ 1

)

x+
2ℓ−1
∑

k=3

sb,k +
2z

(b− 1)bℓ−1
.

This proves the first part of this theorem. The second part follows from Theorem 1 and the
substitution ℓ = 2 in the first part.
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Theorem 3. The sequence (sb)b≥2 is strictly increasing.

Proof. We first verify that sb+1 > sb for 2 ≤ b ≤ 16. Myers gives the decimal expansion of s2
in the entry A244162 in the OEIS [28]. Myers also describe the algorithm in his calculation,
which can be found in the web page [18]. So we know that s2 < 2.3787957. Alternatively,
substituting ℓ = 3 and b = 2, 3 in Theorem 2 and running the computation in a computer,
we obtain 2.32137259 ≤ s2 ≤ 2.44637260 and 2.60503980 ≤ s3 ≤ 2.62973117, which implies
that s2 < s3. Similarly, we apply (2) to obtain upper and lower bounds for sb and we see
that sb < sb+1 for 3 ≤ b ≤ 16. So we assume throughout that b ≥ 16. We first observe that

yb = zb +
1

b
−

1

b2
and

yb
b
−

zb
b
=

b− 1

b3
≥

xb

b3
.

Therefore yb
b
− xb

b3
≥ zb

b
for all b ≥ 2. So the term yb

b
− xb

b3
in (2) can be replaced by zb

b
.

Therefore we obtain by (2) that sb+1 − sb is larger than
(

b+ 3

b+ 2

)

xb+1 −

(

b+ 2

b+ 1

)

xb +

(

1

b+ 1
+

2

(b+ 1)b

)

zb+1 −

(

1

b
+

2

b(b− 1)

)

yb. (3)

In addition, zb+1 − zb is equal to

−
1

b+ 1
+

b2+2b+1
∑

m=b2+1

1

m
≥ −

1

b+ 1
+

2b+ 1

b2 + 2b+ 1
=

b

(b+ 1)2
> 0.

Since xb+1 = xb +
1
b
and zb+1 > zb = yb −

1
b
+ 1

b2
, we obtain from (3) that sb+1 − sb is larger

than or equal to
(

b+ 3

b+ 2

)(

1

b

)

+ xb

(

b+ 3

b+ 2
−

b+ 2

b+ 1

)

+ yb

(

1

b+ 1
+

2

b(b+ 1)
−

1

b
−

2

b(b− 1)

)

+

(

1

b2
−

1

b

)(

1

b+ 1
+

2

b(b+ 1)

)

=
1

b
+

1

b(b+ 2)
−

xb

(b+ 1)(b+ 2)
−

(b+ 3)yb
b(b− 1)(b+ 1)

−
(b− 1)(b+ 2)

b3(b+ 1)
.

Recall that if a and b are integers, a < b, and f is monotone on [a, b], then

min{f(a), f(b)} ≤

b
∑

n=a

f(n)−

∫ b

a

f(t)dt ≤ max{f(a), f(b)}. (4)

From (4), we obtain

xb =
b−1
∑

m=1

1

m
≤ 1 + log(b− 1) ≤

3

2
log b,

yb = −
1

b− 1
+

b2−1
∑

m=b−1

1

m
≤ log(b+ 1) ≤

5

4
log b.
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In addition, it is straightforward to verify that

1

b(b+ 2)
−

(b− 1)(b+ 2)

b3(b+ 1)
> −

1

b2
.

Therefore sb+1 − sb is larger than

1

b
−

3 log b

2(b+ 1)(b+ 2)
−

5(b+ 3) log b

4b(b− 1)(b+ 1)
−

1

b2
>

1

b
−

3 log b

2b2
−

3 log b

2b2
−

1

b2
=

1

b
−

1

b2
−

3 log b

b2
.

(5)

Observe that the function x 7→ log x
x

is decreasing on [3,∞). Since b ≥ 16, we obtain

3 log b

b
≤

3 log 16

16
<

7

10
and

1

b
<

1

10
.

Hence we obtain from (5) that

sb+1 − sb >
1

b
−

1

b2
−

3 log b

b2
>

1

b
−

1

10b
−

7

10b
=

1

5b
> 0.

This completes the proof.

Recall that if we write f(b) = g(b) +O∗(h(b)), then it means that f(b) = g(b) +O(h(b))
and the implied constant can be taken to be 1. In addition, f(b) = g(b) + Ω+(h(b)) means

lim supb→∞

f(b)−g(b)
h(b)

> 0. From this point on, we use (4) without further reference.

Theorem 4. Uniformly for b ≥ 2,

sb =

(

b+ 2

b+ 1

)

xb +

(

1

b
+

2

b2

)

yb +O∗

(

5 log b

b3

)

.

This estimate is sharp in the sense that O∗
(

5 log b
b3

)

can be replaced by Ω+

(

log b
b3

)

.

Proof. Let g(b) =
(

b+2
b+1

)

xb +
(

1
b
+ 2

b2

)

yb be the main term above. Since yb ≤ log(b + 1), we
obtain by (2) that

sb − g(b) ≤
2yb

b2(b− 1)
≤

2 log(b+ 1)

b2(b− 1)
.

If b = 2, then it is easy to check that 2yb
b2(b−1)

= 5
12

< 5 log b
b3

. If b ≥ 3, then we assert that
2 log(b+1)
b2(b−1)

≤ 5 log b
b3

. To verify this assertion, we observe that it is equivalent to
(

5
2
log b

) (

b−1
b

)

≥

log(b+ 1). Since b ≥ 3, we obtain

(

5

2
log b

)(

b− 1

b

)

≥
5

3
log b ≥ log 2 + log b = log(2b) ≥ log(b+ 1), as desired.

6



So in any case,

sb − g(b) ≤
5 log b

b3
. (6)

We also obtain by (2) that sb − g(b) is larger than or equal to

2zb
b(b− 1)

−
2yb
b2

−
xb

b3
=

2zb
b(b− 1)

−
2
(

zb +
1
b
− 1

b2

)

b2
−

xb

b3
=

2zb
b2(b− 1)

−
xb

b3
−

2

b3
+

2

b4
. (7)

We have

xb =
b−1
∑

m=1

1

m
≤ 1 + log(b− 1) ≤ 2 log b, (8)

zb =
b2
∑

m=b

1

m
−

1

b
≥

∫ b2

b

1

t
dt+

1

b2
−

1

b
≥ log b−

1

b
≥

log b

4
. (9)

Therefore (7) implies that

sb − g(b) ≥
log b

2b2(b− 1)
−

2 log b

b3
−

2

b3
≥

log b

2b3
−

2 log b

b3
−

3 log b

b3
> −

5 log b

b3
. (10)

By (6) and (10), we obtain |sb − g(b)| ≤ 5 log b
b3

. This proves the first part of this theorem.
For the Ω+ result, we only need to observe that as b → ∞, (7) and the inequalities xb ≤
1 + log(b− 1) and zb ≥ log b− 1

b
given in (8) and (9) imply that

sb − g(b) ≥
2
(

log b− 1
b

)

b2(b− 1)
−

1 + log(b− 1)

b3
−

2

b3
+

2

b4
>

3 log b

2b2(b− 1)
−

11 log b

10b3
−

2

b3
+

2

b4
,

so

lim sup
b→∞

sb − g(b)
(

log b
b3

) ≥
3

2
−

11

10
> 0.

This completes the proof.

Recall that by applying Euler-Maclaurin summation formula, we get

∑

m≤n

1

m
= log n+ γ +

1

2n
−

1

12n2
+

θn
60n4

, (11)

where γ is Euler’s constant and θn ∈ [0, 1]. The calculation of (11) can be found in Tenen-
baum [30, p. 6]. From this, we obtain another form of Theorem 4 as follows.

Theorem 5. Uniformly for b ≥ 2,

sb = log b+ γ+

(

1

b
+

1

b+ 1

)

log b+
γ

b+ 1
−

1

2b
+

2 log b

b2
−

1

12b(b+ 1)
+O∗

(

6 log b

b3

)

. (12)

This estimate is sharp in the sense that O∗
(

6 log b
b3

)

is also Ω+

(

log b
b3

)

.
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Proof. By (11), we have

xb =
∑

m≤b

1

m
−

1

b
= log b+ γ −

1

2b
−

1

12b2
+

θb
60b4

,

zb =
∑

m≤b2

1

m
−

∑

m≤b

1

m
=

(

log b2 + γ +
1

2b2
−

1

12b4
+

θb2

60b8

)

−

(

log b+ γ +
1

2b
−

1

12b2
+

θb
60b4

)

= log b−
1

2b
+

7

12b2
−

5 + θb
60b4

+
θb2

60b8
,

yb = zb +
1

b
−

1

b2
= log b+

1

2b
−

5

12b2
−

5 + θb
60b4

+
θb2

60b8
.

Writing b+2
b+1

= 1 + 1
b+1

and substituting xb and yb in Theorem 4, we obtain

sb = h(b) + h1(b) +O∗

(

5 log b

b3

)

(13)

where h(b) is the main term given in (12) and

h1(b) =
11b2 − 3b− 10

12b4(b+ 1)
+

θb
60b4

+
θb

60b4(b+ 1)
+

θb2

60b9
+

θb2

30b10
−

5 + θb
60b5

−
5 + θb
30b6

.

It is not difficult to see that h1(b) ≥ 0 and

h1(b) ≤
11b2

12b4(b+ 1)
+

1

60b4
+

1

60b4(b+ 1)
≤

11 log b

12b3
+

log b

60b3
+

log b

60b3
≤

log b

b3
. (14)

Therefore (13) implies that sb = h(b)+O∗
(

6 log b
b3

)

, which is the same as (12). In addition, by

the first inequality given in (14), we see that h1(b) ≪
1
b3
. Since O∗

(

5 log b
b3

)

in (13) is Ω+

(

log b
b3

)

and h1(b) ≪
1
b3
, h1(b) +O∗

(

5 log b
b3

)

in (13) is Ω+

(

log b
b3

)

. This completes the proof.

Corollary 6. The sequence (sb)b≥2 diverges to +∞ and the sequence (sb−sb−1)b≥3 converges

to zero as b → ∞.

Proof. The first assertion follows immediately from Theorem 5. Recall that log(b − 1) =
log b+O

(

1
b

)

. So we obtain by Theorem 5 that as b → ∞,

0 < sb − sb−1 = log b− log(b− 1) +O

(

log b

b

)

≪
log b

b
,

which implies our assertion.

Recall that a sequence (an)n≥0 is said to be log-concave if a2n − an−1an+1 > 0 for every
n ≥ 1 and is said to be log-convex if a2n − an−1an+1 < 0 for every n ≥ 1. For a survey article
concerning the log-concavity and log-convexity of sequences, we refer the reader to Stanley
[29]. See also Pongsriiam [21] for some combinatorial sequences which are log-concave or
log-convex, and some open problems concerning the log-properties of a certain sequence.
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Theorem 7. The sequence (sb)b≥2 is log-concave.

Proof. For each b = 2, 3, . . . , 15, we use Theorem 2 with ℓ = 4 to get an upper bound Cb

and a lower bound Db for sb. In addition, for each b ≥ 13, let Ub and Lb be the upper and
lower bounds of sb given in (2), respectively. Then

s2b − sb−1sb+1 > D2
b −Cb−1Cb+1 for 3 ≤ b ≤ 14 and s2b − sb−1sb+1 > L2

b −Ub−1Ub+1 for b ≥ 14.

We use MATLAB to check that D2
b − Cb−1Cb+1 > 0 for 3 ≤ b ≤ 14 and L2

b − Ub−1Ub+1 > 0
for 14 ≤ b ≤ 1500. So s2b − sb−1sb+1 > 0 for 3 ≤ b ≤ 1500. So we assume throughout that
b > 1500. Then

Ub−1Ub+1 =
(b+ 1)(b+ 3)

b(b+ 2)
xb−1xb+1 +

b+ 2

(b− 2)(b− 1)(b+ 1)
yb−1yb+1

+
b(b+ 3)

(b− 2)(b− 1)(b+ 2)
xb+1yb−1 +

b+ 2

b2
xb−1yb+1

= A1 + A2 + A3 + A4, say. (15)

Since

zb = yb +
1

b2
−

1

b
, b4 + 2b3 − b− 1 ≥ b4 + 2b3 − 2b− 1 = (b− 1)(b+ 1)3, and

Lb =
b4 + 2b3 − b− 1

b3(b+ 1)
xb +

yb
b
+

2zb
b(b− 1)

,

we obtain

Lb =
b4 + 2b3 − b− 1

b3(b+ 1)
xb +

b+ 1

b(b− 1)
yb −

2

b3
≥

(b− 1)(b+ 1)2

b3
xb +

b+ 1

b(b− 1)
yb −

2

b3
.

Therefore L2
b is larger than or equal to

(b− 1)2(b+ 1)4

b6
x2
b +

(b+ 1)2

b2(b− 1)2
y2b +

4

b6
+

2(b+ 1)3

b4
xbyb −

4(b− 1)(b+ 1)2

b6
xb −

4(b+ 1)

b4(b− 1)
yb

≥
(b− 1)2(b+ 1)4

b6
x2
b +

(b+ 1)2

b2(b− 1)2
y2b +

2(b+ 1)3

b4
xbyb −

4(b− 1)(b+ 1)2

b6
xb −

4(b+ 1)

b4(b− 1)
yb

= B1 + B2 + B3 −B4 −B5, say. (16)

In addition, we see that

yb−1 = yb +
1

b− 1
−

b2−1
∑

m=(b−1)2

1

m
≤ yb +

1

b− 1
−

2b− 1

b2 − 1
≤ yb −

b− 2

b2
,

yb+1 = yb −
1

b
+

b2+2b
∑

m=b2

1

m
≤ yb −

1

b
+

2b+ 1

b2
= yb +

b+ 1

b2
,

xb−1 = xb −
1

b− 1
, and xb+1 = xb +

1

b
.
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From these, we obtain the following inequalities:

A1 =
(b+ 1)(b+ 3)

b(b+ 2)
x2
b −

(b+ 1)(b+ 3)

b2(b− 1)(b+ 2)
xb −

(b+ 1)(b+ 3)

b2(b− 1)(b+ 2)

≤
(b+ 1)(b+ 3)

b(b+ 2)
x2
b −

(b+ 1)(b+ 3)

b2(b− 1)(b+ 2)
xb −

1

b2
,

A2 ≤
b+ 2

(b− 2)(b− 1)(b+ 1)
y2b +

3(b+ 2)

b2(b− 2)(b− 1)(b+ 1)
yb −

b+ 2

b4(b− 1)
,

A3 ≤
b(b+ 3)

(b− 2)(b− 1)(b+ 2)
xbyb +

b+ 3

(b− 2)(b− 1)(b+ 2)
yb −

b+ 3

b(b− 1)(b+ 2)
xb −

b+ 3

b2(b− 1)(b+ 2)

≤
b(b+ 3)

(b− 2)(b− 1)(b+ 2)
xbyb +

b+ 3

(b− 2)(b− 1)(b+ 2)
yb −

b+ 3

b(b− 1)(b+ 2)
xb,

A4 ≤
b+ 2

b2
xbyb −

b+ 2

b2(b− 1)
yb +

(b+ 1)(b+ 2)

b4
xb −

(b+ 1)(b+ 2)

b4(b− 1)

≤
b+ 2

b2
xbyb −

b+ 2

b2(b− 1)
yb +

(b+ 1)(b+ 2)

b4
xb.

Since b > 1500, it is not difficult to verify that

B1 −B4 − A1 ≥ −
(b+ 1)(6b3 + 3b2 − 3b− 2)

b6(b+ 2)
x2
b +

b6 − 5b4 + 8b3 + 16b2 − 4b− 8

b6(b− 1)(b+ 2)
xb +

1

b2

≥ −
7

b3
x2
b +

1

b2
,

B2 −B5 − A2 ≥ −
b2 + 5b+ 2

b2(b− 2)(b− 1)2(b+ 1)
y2b −

7b3 + 6b2 − 12b− 8

b4(b− 2)(b− 1)(b+ 1)
yb +

b+ 2

b4(b− 1)

≥ −
1

b3
y2b −

1

b3
yb,

B3 − A3 − A4 ≥ −
2(b4 + 8b3 + 5b2 − 8b− 4)

b4(b− 2)(b− 1)(b+ 2)
xbyb −

b2 + 4b+ 8

b2(b− 2)(b− 1)(b+ 2)
yb

−
b3 + 3b2 − 4b− 4

b4(b− 1)(b+ 2)
xb

≥ −
4

b3
xbyb −

3

b3
yb −

3

b3
xb.

From (15), (16), and the above inequalities, we obtain

L2
b − Ub−1Ub+1 ≥

1

b2
−

7

b3
x2
b −

1

b3
y2b −

4

b3
xbyb −

4

b3
yb −

3

b3
xb.

Since xb ≤
4
3
log b and yb ≤

5
4
log b,

L2
b − Ub−1Ub+1 ≥

1

b2
−

2977

144

(log b)2

b3
−

9 log b

b3
≥

b− 23(log b)2

b3
.

10



Observe that the function x 7→ x − 23(log x)2 is strictly increasing on [300,∞). Since
b ≥ 1500,

b− 23(log b)2 ≥ 1500− 23(log 1500)2 > 0.

Therefore s2b − sb−1sb+1 ≥ L2
b − Ub−1Ub+1 > 0. Hence (sb)b≥2 is log-concave, as desired.

Remark 8. We have uploaded the numerical data on the computation of sb in the second
author’s ResearchGate account [20] which are freely downloadable by everyone.
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