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Abstract

We consider the distribution of ascents, descents, peaks, valleys, double ascents, and

double descents over permutations avoiding a set of patterns. Many of these statistics

have already been studied over sets of permutations avoiding a single pattern of length

3. However, the distribution of peaks over 321-avoiding permutations is new, and we

relate it to statistics on Dyck paths. We also obtain new interpretations of a number

of well-known combinatorial sequences by studying these statistics over permutations

avoiding two patterns of length 3.

1 Introduction

Let Sn denote the set of permutations of {1, 2, . . . , n} and let red(w1 · · ·wm) be the word
obtained by replacing the ith smallest digit(s) of w with i. Given π ∈ Sn and ρ ∈ Sm, we
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say that π contains ρ as a pattern if there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such
that πia < πib if and only if ρa < ρb; that is, red(πi1 · · · πim) = ρ. Otherwise π avoids ρ. For
example, the permutation 18274635 ∈ S8 contains the pattern ρ = 4312 using i1 = 2, i2 = 4,
i3 = 5, and i4 = 8 since the entries of πi1πi2πi3πi4 = 8745 are in the same relative order as
4312; i.e., red(8745) = 4312. Let Sn(ρ1, . . . , ρp) be the set of permutations avoiding each of
ρ1, . . . , ρp; Sn(ρ1, . . . , ρp) is called a pattern class and the pattern(s) ρ1, . . . , ρp are called the
basis of the pattern class. Further, let sn(ρ1, . . . , ρp) = |Sn(ρ1, . . . , ρp)|. It is well-known that

sn(ρ) =
(2n

n
)

n+1
(A000108) when ρ ∈ S3, and there are a variety of techniques for determining

sn(ρ1, . . . , ρp), depending on that patterns to be avoided.
Another well-known family of objects enumerated by the Catalan numbers (A000108) is

the set of Dyck paths of semilength n. Here a Dyck path of semilength n is a sequence of
n up-steps (U = 〈1, 1〉) and n down-steps (D = 〈1,−1〉) from (0, 0) to (2n, 0) that never
falls below the x-axis. We let Dn denoted the set of such paths. Further, we let In be
the set of indecomposable Dyck paths of semilength n, where a path is indecomposable if
it only touches the x-axis at (0, 0) and at (2n, 0). Because both Sn(ρ) and Dn have the
same enumeration when ρ ∈ S3, bijections with Dyck paths are a powerful tool to better
understand the structure of these pattern classes.

Some common permutations and constructions require addition notation. To this end,
let Im = 1 · · ·m be the increasing permutation of length m and let Jm = m(m− 1) · · · 1 be
the decreasing permutation of length m. Further, given permutations α ∈ Sa and β ∈ Sb,
let α⊕β ∈ Sa+b denote the direct sum of α and β and let α⊖β ∈ Sa+b denote the skew-sum
of α and β, defined as follows:

α⊕ β =

{
α(i), 1 ≤ i ≤ a;

a+ β(i− a), a+ 1 ≤ i ≤ a+ b.

α⊖ β =

{
α(i) + b, 1 ≤ i ≤ a;

β(i− a), a+ 1 ≤ i ≤ a+ b.

Another thread of research is to consider the distribution of permutation statistics over
Sn. Here, a permutation statistic is a function stat : Sn → Z

+∪{0}. Some common statistics
include ascents (asc), descents (des), double ascents (dasc), double descents (ddes), peaks
(pk), and valleys (vl), which are defined as follows:

asc(π) = |{i|πi < πi+1}| ,

des(π) = |{i|πi > πi+1}| ,

dasc(π) = |{i|πi < πi+1 and πi+1 < πi+2}| ,

ddes(π) = |{i|πi > πi+1 and πi+1 > πi+2}| ,

pk(π) = |{i|πi < πi+1 and πi+1 > πi+2}| ,

vl(π) = |{i|πi > πi+1 and πi+1 < πi+2}| .
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It is well-known that |{π ∈ Sn|asc(π) = k}| = |{π ∈ Sn|des(π) = k}| is given by the Eulerian
numbers (A008292), while the distributions of dasc, ddes, pk, and vl, are newer to the
literature or open.

Combining these two areas, we consider the distribution of permutation statistics over
Sn(ρ1, . . . , ρp). Let

astatn,k (ρ1, . . . , ρp) = |{π ∈ Sn(ρ1, . . . , ρp)|stat(π) = k}| .

Further, for π ∈ Sn, let π
r = πn · · · π1 and πc = (n + 1 − π1) · · · (n + 1 − πn) denote the

reverse and complement of π respectively. By symmetry, we observe the following:

aascn,k(ρ1, . . . , ρp) = adesn,k(ρ
r
1, . . . , ρ

r
p)

= adesn,k(ρ
c
1, . . . , ρ

c
p)

= aascn,k(ρ
rc
1 , . . . , ρ

rc
p ),

adascn,k (ρ1, . . . , ρp) = addesn,k (ρr1, . . . , ρ
r
p)

= addesn,k (ρc1, . . . , ρ
c
p)

= adascn,k (ρrc1 , . . . , ρ
rc
p ),

apkn,k(ρ1, . . . , ρp) = apkn,k(ρ
r
1, . . . , ρ

r
p)

= avln,k(ρ
c
1, . . . , ρ

c
p)

= avln,k(ρ
rc
1 , . . . , ρ

rc
p ).

In this paper, we consider astatn,k (ρ1, . . . , ρp) where p ∈ {1, 2} and where

stat ∈ {asc, des, dasc, ddes, pk, vl} .

A summary our results is given in Table 1. In Section 2, we detail known results for astatn,k (ρ)

where ρ ∈ S3. While there are a number of previous results, apkn,k(321) is new, and we
determine its distribution in Section 3 via a bijection with Dyck paths. In Section 4 we
consider astatn,k (ρ1, ρ2) for ρ1, ρ2 ∈ S3; while these enumerations yield a number of well-known
combinatorial sequences, the particular interpretations in terms of permutation statistics are
new.

2 History

The study of permutation statistics has a rich history, with over 300 possible statistics listed
in the database FindStat [12] as of this writing. However, the distribution of statistics
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B\ st asc des pk vl dasc ddes
231 (known) (known) Thm. 1 Thms. 2 and 3 (known) (known)
321 (known) (known) Thm. 3 Thm. 3 (known) (known)

213,312 Prop. 6 Prop. 6 Prop. 7 Prop. 7 Prop. 8 Pr. 9
132,213 Prop. 10 Prop. 10 Prop. 11 Prop. 11 Prop. 12 Prop. 12
213,231 Prop. 10 Prop. 10 Prop. 11 Prop. 11 Prop. 12 Prop. 12
123,132 Prop. 13 Prop. 14 Prop. 15 Prop. 16 Prop. 17 Prop. 18
132,321 Prop. 21 Prop. 21 Prop. 22 Prop. 23 Prop. 24 Prop. 25

Table 1: Results for distribution of statistics over Sn(B)

over pattern classes, rather than over all permutations, is newer. Robertson, Saracino, and
Zeilberger [9] and Mansour and Robertson [6] studied the distribution of fixed points over
pattern classes whose basis is a subset of S3. Elizalde [4] gave an alternate approach to
the distribution of fixed points using bijections with Dyck paths and also determined the
distribution of excedances over the same pattern classes.

Dokos, Dwyer, Johnson, Sagan, and Selsor [3] defined two pattern sets {ρ1, . . . , ρp} and
{ρ′1, . . . , ρ

′
p} to be st-Wilf equivalent if astn,k(ρ1, . . . , ρp) = astn,k(ρ

′
1, . . . , ρ

′
p) for all n and k and

determined all st-Wilf equivalences for subsets of S3 when st is the number of inversions or
the major index.

Fixed points and excedances are statistics involving a single digit of π at a time, while
inversions and major index involve multiple digits. The statistics we study in this paper
may best be thought of as consecutive patterns in π. In particular, asc(π) is the number of
consecutive 12 patterns in π, des(π) is the number of consecutive 21 patterns in π, dasc(π)
is the number of consecutive 123 patterns in π and ddes(π) is the number of consecutive 321
patterns in π. Meanwhile, pk(π) is the number of consecutive 132 patterns plus the number
of consecutive 231 patterns in π and vl(π) is the number of consecutive 213 patterns plus
the number of consecutive 312 patterns in π. In the following subsections, we review the
history of results involving these statistics over specific pattern classes.

2.1 Ascents and Descents

Studying ascents and descents over Sn(ρ) where ρ ∈ S3 yields one of exactly two sequences:
A001263 (the Narayana numbers) or A091156.

For ρ ∈ {132, 213, 231, 312}, aascn,k(ρ) = adesn,k(ρ) =

(
n−1
k

)(
n

k

)

k + 1
(A001263). This enumeration

follows by a bijection between permutations in Sn(231) with k ascents with Dyck paths of
semilength n with k DU factors, which are known to be enumerated by A001263. For more
details, see Petersen [8].

On the other hand, for ρ ∈ {123, 321} aascn,k(ρ) = adesn,k(ρ) is given by A091156. In 2010,
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Barnabei, Bonetti, and Silimbani [1] showed that

G(q, z) =
∑

n≥0

∑

k≥0

adesn,k(321)q
kzn

satisfies
z(1− z + qz)G2 −G+ 1 = 0.

Their work features a bijection between 321-avoiding permutations of length n and Dyck
paths of semilength n. Tracking descents in the permutations corresponds to tracking both
DU and DDD factors in the corresponding Dyck path. In Section 3, we make use of the same
bijection to study the distribution of peaks over 321-avoiding permutations. As a corollary,
we obtain a simpler way of tracking descents in permutations via the corresponding Dyck
paths.

2.2 Peaks, Valleys, and More

Table 2 shows the distributions of pk, vl, dasc, and ddes over Sn(ρ) for ρ ∈ S3. Notice
that by reversal, understanding the distributions when ρ ∈ {231, 312, 321} determines the
distributions for the remaining patterns. The relationship between the first two rows of the
table follows from the fact that 231rc = 312.

ρ\ st pk vl dasc ddes
231 A091894 A236406 A092107 A092107
312 A236406 A091894 A092107 A092107
321 A236406 A236406 new (none)

Table 2: Distribution of statistics over Sn(ρ) for ρ ∈ S3

In a recent paper, Pan, Qiu, and Remmel [7] investigated the distribution of consecutive
patterns of length 3 over Sn(132) and Sn(123). As seen above, their work directly addresses
the distributions of dasc and ddes. However, pk and vl involve combining the distributions
of two of their statistics at a time. Since the results for dasc and ddes are already studied in
[7], we focus on pk and provide an alternate approach in Section 3. Once we have determined
a
pk
n,k(ρ) for ρ ∈ {231, 312, 321}, by symmetry, we have determined the distributions of pk and

vl over all Sn(ρ) for ρ ∈ S3. In Section 4 we extend this work to pattern classes that avoid
two or more patterns.

3 Peaks

We now wish to determine apkn,k(ρ) for ρ ∈ {231, 312, 321}.
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Theorem 1. For n ≥ 1, k ≥ 0, apkn,k(231) =
2n−2k−1

(
n−1
2k

)(
2k
k

)

k + 1
.

We prove Theorem 1 via a bijection with Dyck paths. The bijection in this proof is given
by Petersen [8] for the purpose of determining adesn,k(ρ) and the eumeration given in Theorem
1 is given by Petersen in A091894 of the On-line Encyclopedia of Integer Sequences. We
include the argument here for completeness.

Proof. Define a bijection φ : Sn(231) → Dn recursively as follows. The empty permu-
tation maps to the empty path and φ(1) = UD. Now, for π ∈ Sn(231) where n ≥ 2,
suppose that πi = n and write π = π1 · · · πi−1nπi+1 · · · πn. Let α = red(π1 · · · πi−1) and
β = red(πi+1 · · · πn). Notice that α or β could be empty. Now φ(π) = φ(α)Uφ(β)D.

Notice that π has a peak involving n exactly when α and β are both non-empty. Since
φ(α) ends in a D and φ(β) begins in a U, by construction, there is a peak in π involving n
exactly when the corresponding U in φ(π) is part of a DUU factor. Recursively, the number
of peaks of π corresponds to the number of DUU factors of φ(π), or, equivalently, to the
number of DDU factors in the reversal of φ(π). The number of paths in Dn with k DDU

factors is given to be
2n−2k−1

(
n−1
2k

)(
2k
k

)

k + 1
in OEIS sequence A091894.

The fact that apkn,k(312) = a
pk
n,k(321) requires another well-known bijection.

Theorem 2. For all n and k, a
pk
n,k(312) = a

pk
n,k(321).

The bijection below is a symmetry of a well-known bijection of Simion and Schmidt [10]
using left-to-right maxima. They used this bijection to to show that sn(312) = sn(321) for
all n, while we use it to show the refinement that apkn,k(312) = a

pk
n,k(321). We say that πi is

a left-to-right maximum of π if πi > πj for j < i. For example the left-to-right maxima of
32658741 are 3, 6, and 8.

Proof. We define a bijection ζ : Sn(312) → Sn(321) that preserves left-to-right maxima.
Consider π ∈ Sn(312). Suppose that the left-to-right maxima of π are ℓ1, . . . , ℓk and

that they are located in positions j1, . . . , jk. We claim that π is the unique 312-avoiding
permutation with left-to-right maxima ℓ1, . . . , ℓk in positions j1, . . . , jk. In particular, we
determine the other entries of π from left to right by placing in position i the largest unused
digit that is smaller than the rightmost left-to-right maxima before position i.

Similarly, there is a unique 321-avoiding permutation with left-to-right maxima ℓ1, . . . , ℓk
in positions j1, . . . , jk. In particular, the digits that are not left-to-right maxima must appear
in increasing order. Let ζ(π) be this permutation.

Notice that any peak of π must involve a left-to-right maxima as its middle entry, and
similarly any peak of ζ(π) must involve a left-to-right maxima as its middle entry. Since ζ
preserves left-to-right maxima both in value and in position, ζ preserves peaks.
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Figure 1: Bijection ψ applied to π = 617238459

Finally, we determine apkn,k(321), which is the central result of this paper. Previously,

Baxter [2] computed data about apkn,k(321) using an enumeration scheme algorithm; how-
ever our generating function is new and our bijective argument ties together a number of
previously-known generating function results.

Theorem 3.

∑

n≥0

∑

k≥0

a
pk
n,k(321)q

kzn = 1 + z

(
−
−1 +

√
−4z2q + 4z2 − 4z + 1

2z(zq − z + 1)

)2

.

We first describe a bijection ψ : Sn(321) → Dn that is due to Krattenthaler [5]. Consider
π ∈ Sn(321) and plot the points (i, πi) for 1 ≤ i ≤ n. Let P = {(p1, πp1), . . . , (pk, πpk)}
be the set of points (i, πi) such that πi is not a left-to-right maxima of π and p1 < p2 <

· · · < pk. Then define a path of E = 〈1, 0〉 steps and N = 〈0, 1〉 steps from (1, 0) to
(n + 1, n) in the following way: use p1 − 1 E steps followed by πp1 N steps to get from
(1, 0) to (p1, πp1). For 1 ≤ i ≤ k − 1, use (pi+1 − pi) E steps followed by (πpi+1

− πpi)
N steps to get from (pi, πpi) to (pi+1, πpi+1

). Finally, take ((n + 1) − pk) E steps followed
by (n − πpk) N steps to get from (pk, πpk) to (n + 1, n). Figure 1 shows this process for
π = 617238459. By construction, this path stays below the line y = x − 1, and we obtain
the Dyck path ψ(π) by replacing all E steps with U and all N steps with D. Therefore,
ψ(617238459) = UDUUDUDUUDUDUUDDDD.

We know that a 321-avoiding permutation can be partitioned into two increasing subse-
quences: namely, the left-to-right maxima, and the remaining digits. Necessarily, the middle
digit of a peak in such a permutation must be a left-to-right maxima, and the final digit
is not. After π1, whenever we have a left-to-right maxima in π, we have a UU factor in
ψ(π). Whenever we have a non-left-to-right maxima in π, we have at least one D in ψ(π).
Therefore, a peak of π ∈ Sn(321) corresponds to a UUD factor in ψ(π), with one exception.
A UUD factor that is followed only by Ds indicates that π ended with a left-to-right maxima.
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To this end, we introduce two statistics on Dyck paths. Let st(d) be the number of UUD
factors in Dyck path d, and let st∗(d) be the number of UUD factors in Dyck path d that
appear before the last U . For example, st(UUUDDDUD) = st∗(UUUDDDUD) = 1, while
st(UUUDDDUUDD) = 2 and st∗(UUUDDDUUDD) = 1. We have just seen that

∑

n≥0

∑

k≥0

a
pk
n,k(321)q

kzn =
∑

n≥0

∑

d∈Dn

qst
∗(d)z|d|.

It remains to study the distribution of st∗ on Dyck paths of semilength n.
We define the following four generating functions, which are weight-enumerators on Dyck

paths. Throughout, st(d) and st∗(d) are as defined above, Dn is the set of all Dyck paths of
semilength n, and In is the set of indecomposable Dyck paths of semilength n.

A :=
∑

n≥0

∑

d∈Dn

qst(d)zn, B :=
∑

n≥0

∑

d∈In

qst(d)zn,

C :=
∑

n≥0

∑

d∈Dn

qst
∗(d)zn, D :=

∑

n≥0

∑

d∈In

qst
∗(d)zn.

Notice that our goal is to find C(q, z). By construction we have C = 1 + AD and
A = 1 + AB. We prove Theorem 3 by first determining A and D.

Lemma 4.

D(q, z) =
∑

n≥0

∑

k≥0

adesn,k(321)q
kzn+1.

Proof. Suppose π ∈ Sn(321). Any descent in π consists of a left-to-right maxima followed by
a non-left-to-right-maxima. Using bijection ψ, defined above, π has a left-to-right maxima
at the beginning of π and also whenever ψ(π) has a UU factor. Similarly, π has a non-left-
to-right maxima whenever it has a UD factor, unless the D is at the end of ψ(π). Together,
we detect a descent in π when ψ(π) begins with a UD factor and whenever ψ(π) has a

UUD factor before the last U . To convert the first case into a UUD factor, let ψ̂(π) be
the Dyck path obtained by adding a U to the beginning and a D to the end of ψ(π). By

construction, ψ̂(π) is an indecomposable Dyck path of semilength n+ 1. Now, each descent

in π corresponds to a UUD factor in ψ̂(π) that appears before the final U, which proves the
lemma.

Next, we consider A(q, z).

Lemma 5.

A(q, z) =
∑

n≥0

∑

k≥0

adesn,k(321)q
kzn.

Proof. By definition, A(q, z) tracks all UUD factors across Dyck paths of semilength n.
We have seen in the proof of Lemma 4 that there is at most one UUD factor in ψ(π) that

does not correspond to a descent of π, namely a UUD factor that is followed only by Ds.
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d with st(d) = 2 and des(ψ−1(d)) = 3

ι(d) with st(ι(d)) = 3 and des(ψ−1(ι(d))) = 2

Figure 2: An example of ι(d)

Similarly, there is at most one descent in π that does not correspond to a UUD factor in ψ(π),
namely a descent at the beginning of π corresponds to ψ(π) beginning with a UD factor. In
other words, given π ∈ Sn(321) with d = ψ(π), either st(d) = des(π), st(d) + 1 = des(π), or
st(d) = des(π) + 1,

We prove the lemma by giving an involution ι on Dn.
If d = ψ(π) with st(d) = des(π), then ι(d) = d.
Now, consider d = ψ(π) with st(d) = k and des(π) = k+1. Since π has one more descent

than st(d), we know that ψ(π) begins with UD and d does not have a UUD factor at the
end. In other words, d = (UD)id′DUDj for some positive i and j where d′ is a sequence of
n − i − 1 Us and n − i − j − 1 Ds that does not begin in UD. Let ι(d) = d′DU(U iDi)Dj.
Now, by construction, ι(d) has k + 1 UUD factors, since a new UUD factor was introduced
at the end, but des(φ−1(ι(d))) = k since there is no longer an initial UD in ι(d).

Finally, consider d = ψ(π) with st(d) = k+1 and des(π) = k. Since d has one more UUD
factor than des(π), we know that d ends with DU iDj for some j ≥ i ≥ 2 and d does not
begin with UD. In other words, d = d′DU iDj where d′ is a sequence of n− i Us and n− j−1
Ds that does not begin in UD. Let ι(d) = (UD)i−1d′DUDj−i. Now, by construction, ι(d)
has k UUD factors, since a UUD factor was removed at the end, but des(φ−1(ι(d))) = k + 1
since there is a new initial UD in ι(d).

By involution ι, we see that UUD factors on Dyck paths are equidistributed with descents
in 321-avoiding permutations.

An example of ι in action is shown in Figure 2.
As a consequence of Lemmas 4 and 5, we see thatD = zA. Therefore, C(q, z) = 1+AD =

1+ zA2. Using Barnabei, Bonetti, and Silimbani’s result for A(q, z) in [1] yields Theorem 3.
Two nice observations follow from this proof. First, Barnabei, Bonetti, and Silimbani

determined A(q, z) by counting the number of DU factors plus the number of DDU factors
in φ(π). We have shown in Lemma 5 that A(q, z) can be determined by counting only the
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Patterns \Statistic asc des

213,312
(
n−1
k

) (
n−1
k

)

132,213
(
n−1
k

) (
n−1
k

)

213,231
(
n−1
k

) (
n−1
k

)

123,132
(
n

2k

) (
n

2(n−k−1)

)

132,321

1, k = n− 1;(
n

2

)
, k = n− 2.

1, k = 0;(
n

2

)
, k = 1.

Table 3: Distribution of asc and des over pattern classes of the form Sn(ρ1, ρ2) with ρ1, ρ2 ∈ S3

number of UUD factors in φ(π). Second, by Lemma 5 and the fact that A = 1 + AB, we
can determine B(q, z). It turns out

B(q, z) = z(1− q) +
∑

n≥0

∑

k≥0

a
pk
n,k(231)q

k+1zn+1,

matching the enumeration in Theorem 1.
Thus, the distributions of both st and st∗ are in bijection with distributions of statistics

over pattern-avoiding permutations whether we consider them over all Dyck paths or only
over indecomposable Dyck paths.

4 Avoiding Two Patterns

We now consider astatn,k (ρ1, ρ2) where stat ∈ {asc, des, dasc, ddes, pk, vl} and ρ1, ρ2 ∈ S3.
Using the symmetries of reverse and complement, there are 6 pairs of patterns to con-
sider: {123, 321}, {213, 312}, {132, 213}, {213, 231}, {123, 132}, and {132, 321}. Simion and
Schmidt [10] determined |Sn(ρ1, ρ2)| for each of these classes. We now use the permutation
structures they determined to find astatn,k (ρ1, ρ2) for our desired statistics. We already know
that |Sn(123, 321)| = 0 for n ≥ 5, so there are 5 non-trivial pairs of permutation patterns
to consider. A summary of the results of this section is given in Tables 3, 4, and 5. Just as
many results for astatn,k (ρ) with ρ ∈ S3 follow from bijections with Dyck paths, many results
in this section follow from bijections with binary sequences.

We consider each pattern pair in turn.

4.1 Statistics on Sn(213, 312)

We first describe the structure of a {213, 312}-avoiding permutation. Let π ∈ Sn(213, 312).
Suppose that πi = n. Then π1 · · · πi−1 must form an increasing subpermutation (otherwise π
has a 213 pattern), and πi+1 · · · πn must form a decreasing subpermutation (otherwise π has
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Patterns \Statistic dasc ddes

213,312

n, k = 0;(
n− 1

k + 1

)
, k ≥ 1.

n, k = 0;(
n− 1

k + 1

)
, k ≥ 1.

132,213 A076791 A076791
213,231 A076791 A076791

123,132 trivial
(
n−2
k

)
+ 2
(
n−3
k

)

132,321

1, k = n− 2;

n, k = n− 3;(
n

2

)
− n, k = n− 4.

trivial

Table 4: Distribution of dasc and ddes over pattern classes of the form Sn(ρ1, ρ2) with
ρ1, ρ2 ∈ S3

Patterns \Statistic pk vl

213,312
2, k = 0;

2n−1 − 2, k = 1.
trivial

132,213
(

n

2k+1

) (
n

2k+1

)

213,231
(

n

2k+1

) (
n

2k+1

)

123,132
(

n

2k+1

)
2 ·
(
n−1
2k

)

132,321

n, k = 0;(
n− 1

2

)
, k = 1.

2, k = 0;(
n

2

)
− 1, k = 1.

Table 5: Distribution of pk and vl over pattern classes of the form Sn(ρ1, ρ2) with ρ1, ρ2 ∈ S3
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a 312 pattern). There are
(
n−1
i−1

)
ways to choose the digits before πi = n, so summing over all

possible values for i, we have that |Sn(213, 312)| =
∑n

i=1

(
n−1
i−1

)
= 2n−1. This structure helps

prove the following propositions.

Proposition 6.

aascn,k(213, 312) = adesn,k(213, 312) =

(
n− 1

k

)
.

Proof. By the structure above, π ∈ Sn(213, 312) has k ascents if and only if πk+1 = n. There
are

(
n−1
k

)
ways to determine the digits before πk+1, which uniquely determines π.

Now, π ∈ Sn has k descents if and only if π has n − k − 1 ascents. There are
(

n−1
n−k−1

)

permutations π ∈ Sn(213, 312) with n − k − 1 ascents, so there are
(

n−1
n−k−1

)
=
(
n−1
k

)
such

permutations with k descents.

Proposition 6 gives a new interpretation of Pascal’s triangle (A007318).

Proposition 7. For n ≥ 1,

adascn,k (213, 312) = addesn,k (213, 312) =

{
n, k = 0;(
n−1
k+1

)
, k ≥ 1.

Proof. Suppose π ∈ Sn(213, 312) has no double ascents. Then either π1 = n or π2 = n. In
other words, the digit π1 determines π, and there are n choices of π1, so we have the first
case.

Otherwise, if k ≥ 1, then π ∈ Sn(213, 312) has k double ascents if and only if πk+2 = n.
There are

(
n−1
k+1

)
ways to determine the digits before πk+2, which uniquely determines π.

Since reversing π is an involution on Sn(213, 312) that sends double ascents to double
descents and vice versa, we get the same enumeration for addesn,k (213, 312).

While the triangle in Proposition 7 is straightforward to compute, it is new to OEIS and
given in A299927.

Proposition 8.

apkn,k(213, 312) =





2, k = 0;

2n−1 − 2, k = 1;

0, otherwise.

Proof. Consider π ∈ Sn(213, 312). By the structure described above, π has at most one peak,
and if there is a peak, it must use n as its middle digit. There are two ways to not have
a peak; namely, the increasing permutation where πn = n and the decreasing permutation
where π1 = n. All other 2n−1 − 2 permutation in Sn(213, 312) have one peak.

Proposition 9.

avln,k(213, 312)

{
2n−1, k = 0;

0, otherwise.
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Proof. A valley is either a 213 pattern or a 312 pattern. By definition every permutation in
Sn(213, 312) has 0 valleys.

4.2 Statistics on Sn(132, 213) and Sn(213, 231)

The pattern classes Sn(132, 213) and Sn(213, 231) provide the one non-trivial instance where
astatn,k (ρ1, ρ2) = astatn,k (ρ

′
1, ρ

′
2) for the statistics of this paper.

We first describe the structure of a {132, 213}-avoiding permutation. Suppose π ∈
Sn(132, 213). Since π avoids 213, all digits before πi = n must be in increasing order.
Since π avoids 132, all digits before πi = n are larger than all digits after n. These obser-
vations imply that if π ∈ Sn(132, 213), then π = Ii1 ⊖ · · · ⊖ Iim for some positive integers
i1, . . . , im. In fact, there is a natural bijection φ132,213 between Sn(132, 213) and binary se-
quences s = s1 · · · sn−1 of length n− 1; namely, if s = φ132,213(π) then si = 1 when πi < πi+1

and si = 0 when πi > πi+1. This bijection implies |Sn(132, 213)| = 2n−1.
Next, we describe the structure of a {213, 231}-avoiding permutation. Suppose π ∈

Sn(213, 231). Then, for all i, either πi = min(πi, πi+1, . . . πn) or πi = max(πi, πi+1, . . . πn).
If not, then πi together with min(πi, πi+1, . . . πn) and max(πi, πi+1, . . . πn) form either a 213
pattern or a 231 pattern. Since there are two choices for each digit of π before the last
digit, |Sn(213, 231)| = 2n−1. In fact, there is a natural bijection φ213,231 from Sn(213, 231)
to the set of binary sequences s = s1 · · · sn−1 of length n − 1; namely, si = 0 when πi =
max(πi, πi+1, . . . πn) and si = 1 when πi = min(πi, πi+1, . . . πn).

Both bijections φ132,213 and φ213,231 help prove the following propositions.

Proposition 10.

aascn,k(132, 213) = adesn,k(132, 213) = aascn,k(213, 231) = adesn,k(213, 231) =

(
n− 1

k

)
.

Proof. By construction π ∈ Sn(132, 213) has an ascent at i if and only if s = φ132,213(π) has
si = 1. Therefore, aascn,k(132, 213) is the number of binary sequences of length n − 1 with

exactly k 1s, which is given by
(
n−1
k

)
. Also, adesn,k(132, 213) is the number of binary sequences

of length n− 1 with exactly k 0s, which is given by
(
n−1
k

)
.

Similarly, π ∈ Sn(213, 231) has an ascent at i if and only if s = φ213,231(π) has si = 1
and π has a descent at i if and only if s = φ213,231(π) has si = 0, so the same enumerations
follow.

Proposition 10 gives a new interpretation of Pascal’s triangle (A007318).

Proposition 11.

adascn,k (132, 213) = addesn,k (132, 213) = adascn,k (213, 231) = addesn,k (213, 231)

and

∑

n≥0

∑

k≥0

addesn,k (132, 213)qkzn =
1− qz

1− z − z2 − qz + qz2
.

13

https://oeis.org/A007318


Proof. By construction π ∈ Sn(132, 213) has a double ascent at i if and only if s = φ132,213(π)
has si = si+1 = 1 and π has a double descent at i if and only if s = φ132,213(π) has
si = si+1 = 0. Similarly, π ∈ Sn(213, 231) has a double ascent at i if and s = φ213,231(π)
has si = si+1 = 1 and a double descent at i if and only if s = φ213,231(π) has si = si+1 = 0.
Therefore adascn,k (132, 213) = addesn,k (132, 213) = adascn,k (213, 231) = addesn,k (213, 231).

While there is not a straightforward closed formula, the number of binary strings with k
00 factors can be determined recursively.

Let a(n, k) be the number of strings of length n with k 00 factors, and then let ai(n, k)
be the number of strings of length n with exactly k 00 factors and that begin with i 0s. By
definition

addesn,k (132, 213) = a(n− 1, k) =
n−1∑

i=0

ai(n− 1, k).

First, consider the case when i = 0. We have a0(n, k) = a(n − 1, k) since i = 0 implies
the string must start with 1. The remaining n− 1 digits may be any string of length n− 1
with k 00 factors.

Now, for i ≥ 1, we have ai(n, k) = a(n− 1− i, k − (i− 1)). This is because the initial i
digits of our string are 0. These 0s account for i − 1 00 factors. The next digit is a 1. The
remaining n−1− i digits may be any binary string of length n− i with k− (i−1) 00 factors.

Together, we have:

a(n− 1, k) =
n−1∑

i=0

ai(n− 1, k) = a(n− 2, k) +
n−1∑

i=1

a(n− 2− i, k − (i− 1))

= a(n− 2, k) +
k+1∑

i=1

a(n− 2− i, k − (i− 1)).

Equivalently:

addesn,k (132, 213) = addesn−1,k(132, 213) +
k+1∑

i=1

a(n− 1− i, k − (i− 1)).

This recurrence implies that

∑

n≥0

∑

k≥0

addesn,k (132, 213)qkzn =
1− qz

1− z − z2 − qz + qz2
.

The number of binary sequences with exactly k 00 factors is given in OEIS entry A076791,
and Proposition 11 gives a new permutation statistic interpretation of the sequence.
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Proposition 12.

apkn,k(132, 213) = avln,k(132, 213) = apkn,k(213, 231) = avln,k(213, 231) =

(
n

2k + 1

)
.

Proof. By construction π ∈ Sn(132, 213) has a peak at i if and only if s = φ132,213(π) has
si = 1 and si+1 = 0 and π has a valley at i if and only if s = φ132,213(π) has si = 0 and

si+1 = 1. By symmetry, apkn,k(132, 213) = avln,k(132, 213). Similarly, π ∈ Sn(213, 231) has a
peak at i if and only if s = φ213,231(π) has si = 1 and si+1 = 0 and a valley at i if and

only if s = φ213,231(π) has si = 0 and si+1 = 1. Therefore, apkn,k(132, 213) = avln,k(132, 213) =

apkn,k(213, 231) = avln,k(213, 231).
Let a(n, k) denote the number of binary sequences of length n with k 10 factors. We

wish to determine a(n− 1, k).
Clearly a(n, 0) = n+1, since a binary sequence with no 10 factors consists of i 0s followed

by n− i 1s, and there are n+1 choices for the value of i. On the other hand, a sequence with
k 10 factors requires at least 2k digits, so if n < 2k, then a(n, k) = 0. Similarly, a(2k, k) = 1
corresponds to the 1 way to have a binary sequence of length 2k with k 10 factors, namely
1010 · · · 10.

Now that we have determined the boundary conditions, suppose that 0 < k < n−1
2
. Now

suppose s is a binary sequence of length n with k 10 factors. We call a position si a switch
if si 6= si+1. In all, a sequence of length n has n− 1 positions where a switch could occur.

If s starts with 1, the sequence switches from 1 to 0 k times and from 0 to 1 either k
times or k − 1 times, so there are 2k or 2k − 1 switches. In the first case, there are

(
n−1
2k

)

ways to choose the locations of the switches and in the second case there are
(
n−1
2k−1

)
ways to

choose the locations of the switches for a total of
(
n−1
2k

)
+
(
n−1
2k−1

)
=
(
n

2k

)
binary sequences of

length n with k 10 factors that begin in 1.
If s starts with 0, the sequence switches from 1 to 0 k times and from 0 to 1 either k

times or k + 1 times, so there are 2k or 2k + 1 switches. In the first case, there are
(
n−1
2k

)

ways to choose the locations of the switches and in the second case there are
(
n−1
2k+1

)
ways to

choose the locations of the switches for a total of
(
n−1
2k

)
+
(
n−1
2k+1

)
=
(

n

2k+1

)
binary sequences

of length n with k 10 factors that begin in 0.
Combining these two cases, we have that a(n, k) =

(
n

2k

)
+
(

n

2k+1

)
=
(
n+1
2k+1

)
. Therefore,

apkn,k(132, 213) = a(n− 1, k) =

(
n

2k + 1

)
.

Proposition 12 gives a new interpretation of OEIS sequence A034867.

4.3 Statistics on Sn(123, 132)

We first describe the structure of a {123, 132}-avoiding permutation. For π ∈ Sn(123, 132),
either πn−1 = 1 or πn = 1; otherwise, 1, πn−1 and πn would form a forbidden pattern.
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There is a natural bijection φ123,132 between Sn(123, 132) and binary sequences of length
n − 1 that is described recursively as follows: φ123,132(1) = ǫ, the empty string. Then, for
π ∈ Sn(123, 132),

φ123,132(π) =

{
φ123,132(red(π1 · · · πn−2πn))0, πn−1 = 1;

φ123,132(red(π1 · · · πn−1))1, πn = 1.

For example, φ123,132(653241) = 11001. We can also read a binary string s of length n − 1
from left to right to construct the corresponding permutation φ−1

123,132(s). Namely, begin with

π(1) = n. Then for 1 ≤ i ≤ n − 1, if si = 0, then π(i+1) = π
(i)
1 · · · π

(i)
i−1(n − i)π

(i)
i , and if

si = 1, then π(i+1) = π(i)(n−1). π = φ−1
123,132(s) = π(n). Because of the bijection φ123,132 with

binary strings, we have |Sn(123, 132)| = 2n−1. We use this bijection to prove the following
propositions.

Proposition 13.

aascn,k(123, 132) =

(
n

2k

)
.

Proof. Suppose π ∈ Sn(123, 132) has k ascents and consider s = φ123,132(π) and the sequence
of partial permutations π(1), π(2), . . . , π(n) where π(n) = π. By construction, asc(π(i+1)) =
asc(π(i)) or asc(π(i+1)) = asc(π(i)) + 1 for all i, so we seek to characterize factors in s that
introduce a new ascent in π(i+1) compared to π(i).

By construction, asc(π(1)) = 0 and π(2) has an ascent if and only if s1 = 0. For i ≥ 3,
asc(π(i)) = asc(π(i−1)) + 1 if and only if si−2 = 1 and si−1 = 0.

Therefore, in order to determine aascn,k(123, 132) we wish to count binary strings of length
n− 1 that either begin with 0 and have k − 1 10 factors or that begin with 1 and have k 10
factors. As before, we call a position si a switch if si 6= si+1, and in all, a sequence of length
n− 1 has n− 2 positions where a switch could occur.

In the first case, since s1 = 0 and there are k − 1 switches from 1 to 0, there must be
either k − 1 or k switches from 0 to 1 for a total of either 2k − 2 or 2k − 1 switches. In all
there are

(
n−2
2k−2

)
+
(
n−2
2k−1

)
=
(
n−1
2k−1

)
such binary strings.

In the second case, since s1 = 1 and there are k switches from 1 to 0 there must be
either k − 1 or k switches from 0 to 1 for a total of 2k − 1 or 2k switches. In all there are(
n−2
2k−1

)
+
(
n−2
2k

)
=
(
n−1
2k

)
such binary strings.

Combining both cases, there are
(
n−1
2k−1

)
+
(
n−1
2k

)
=
(
n

2k

)
permutations of length n that

avoid 123 and 132 and have exactly k ascents.

Proposition 13 gives an alternate interpretation to OEIS A034839.

Proposition 14.

adesn,k(123, 132) =

(
n

2(n− k − 1)

)
.
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Proof. For any permutation π ∈ Sn, asc(π) + des(π) = n − 1. Therefore, a permutation
of length n with k descents has n − k − 1 ascents. By Proposition 13, adesn,k(123, 132) =(

n

2(n−k−1)

)
.

Proposition 14 gives an alternate interpretation to OEIS A109446, which is a symmetry
of OEIS A034839.

Proposition 15. For n ≥ 3

adascn,k (123, 132) =

{
2n−1, k = 0;

0, otherwise.

Proof. Since a consecutive 123 pattern is a double ascent, any permutation that avoids 123
has 0 double ascents.

Proposition 16. For n ≥ 3,

addesn,k (123, 132) =

(
n− 2

k

)
+ 2

(
n− 3

k

)
.

Proof. For n ≤ 2, every permutation has 0 double descents, so we focus on the case where
n ≥ 3. Similarly, no permutation has more than n − 2 double descents, so we focus on
k ≤ n− 2.

Suppose π ∈ Sn(123, 132) has k ascents and consider s = φ123,132(π) and the sequence
of partial permutations π(1), π(2), . . . , π(n) where π(n) = π. By construction, ddes(π(i+1)) =
ddes(π(i)) or ddes(π(i+1)) = ddes(π(i)) + 1 for all i, so we seek to characterize factors in s

that introduce a new double descent in π(i+1) compared to π(i).
By construction, ddes(π(1)) = ddes(π(2)) = 0 and π(3) has a double descent if and only

if s1 = s2 = 1. For i ≥ 4, ddes(π(i)) = ddes(π(i−1)) + 1 if and only if si−2 = si−1 = 1 or
si−2 = si−1 = 0.

Therefore we wish to count the number of binary strings of length n− 1 that begin with
00 and have k additional 00 or 11 factors plus the number of binary strings of length n− 1
that do not begin with 00 and have k total 00 or 11 factors.

Now, suppose k = 0. By our characterization, there are exactly 3 such permutations.
They correspond to φ−1

123,132(0101 · · · ), φ
−1
123,132(1010 · · · ), and φ−1

123,132(00101010 · · · ). This

matches our formula above since
(
n−2
0

)
+ 2
(
n−3
0

)
= 3 for n ≥ 3.

Notice that if k = n − 2 there is
(
n−2
n−2

)
+ 2
(
n−3
n−2

)
= 1 permutation with n − 2 double

descents, namely the strictly decreasing permutation, which corresponds to φ−1
123,132(11 · · · 1).

Now, let an,k be the number of binary strings of length n with k 00 or 11 factors (other
than a possible initial 00). We wish to determine an−1,k. Suppose n ≥ 4 and s = s1 · · · sn is
such a string. If sn−1 = sn then s1 · · · sn−1 is a string of length n-1 with k−1 00 or 11 factors
(other than a possible initial 00). If sn−1 6= sn, then s1 · · · sn−1 is a string of length n-1 with k
00 or 11 factors (other than a possible initial 00). This implies that an,k = an−1,k−1 + an−1,k.
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We now proceed to show that an,k =
(
n−1
k

)
+2
(
n−2
k

)
by induction. We have confirmed this

formula holds when when k = 0 and k = n−2. In particular, this implies an,k =
(
n−1
i

)
+2
(
n−2
i

)

for 0 ≤ i ≤ n− 1 for the case when n = 2.
Now, suppose that an−1,i =

(
n−2
i

)
+ 2
(
n−3
i

)
for 0 ≤ i ≤ n − 2. We know that an,k =

an−1,k−1 + an−1,k. Therefore:

an,k = an−1,k−1 + an−1,k

=

(
n− 2

k − 1

)
+ 2

(
n− 3

k − 1

)
+

(
n− 2

k

)
+ 2

(
n− 3

k

)

=

((
n− 2

k − 1

)
+

(
n− 2

k

))
+ 2

((
n− 3

k − 1

)
+

(
n− 3

k

))

=

(
n− 1

k

)
+ 2

(
n− 2

k

)
,

which is what we wanted to show.

Proposition 16 gives a new interpretation of OEIS A093560.

Proposition 17.

apkn,k(123, 132) =

(
n

2k + 1

)
.

Proof. Suppose π ∈ Sn(123, 132) has k ascents and consider s = φ123,132(π) and the sequence
of partial permutations π(1), π(2), . . . , π(n) where π(n) = π. By construction, pk(π(i+1)) =
pk(π(i)) or pk(π(i+1)) = pk(π(i)) + 1 for all i, so we seek to characterize factors in s that
introduce a new peak in π(i+1) compared to π(i).

By construction, pk(π(1)) = pk(π(2)) = 0. Also, for i ≥ 3, pk(π(i)) = pk(π(i−1)) + 1 if and
only if si−2 = 0 and si−1 = 1. Therefore, we wish to count the number of binary strings s of
length n− 1 with exactly k 01 factors. We have two cases.

If s begins with 0 then s switches from 0 to 1 k times and s switches from 1 to 0 either
k− 1 times or k times for a total of 2k− 1 or 2k switches. There are

(
n−2
2k−1

)
+
(
n−2
2k

)
=
(
n−1
2k

)

sequences in this case.
If s begins with a 1 then s switches from 0 to 1 k times and s switches from 1 to 0 either

k times or k+1 times for a total of 2k or 2k+1 switches. There are
(
n−2
2k

)
+
(
n−2
2k+1

)
=
(
n−1
2k+1

)

sequences in this case.
Combining both cases yields a total of

(
n−1
2k

)
+
(
n−1
2k+1

)
=
(

n

2k+1

)
binary sequences of length

n− 1 with k 01 factors. By bijection φ123,132, this implies apkn,k(123, 132) =
(

n

2k+1

)
.

Proposition 17 gives a new interpretation of OEIS A034867, which also appeared in
Proposition 12.

Proposition 18.

avln,k(123, 132) = 2

(
n− 1

2k

)
.
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Proof. Suppose π ∈ Sn(123, 132) has k ascents and consider s = φ123,132(π) and the sequence
of partial permutations π(1), π(2), . . . , π(n) where π(n) = π. By construction, vl(π(i+1)) =
vl(π(i)) or vl(π(i+1)) = vl(π(i)) + 1 for all i, so we seek to characterize factors in s that
introduce a new valley in π(i+1) compared to π(i).

By construction, vl(π(1)) = vl(π(2)) = 0, and vl(π(3)) = 1 if and only if s1 = 0 and s2 = 0.
For i ≥ 4, vl(π(i)) = vl(π(i−1)) + 1 if and only if si−2 = 1 and si−1 = 0. Therefore, we wish
to count the number of binary strings s of length n− 1 that either begin with 00 and have
k− 1 10 factors or that don’t begin with 00 and have k 10 factors. We consider three cases:
s begins with 1, s begins with 01, and s begins with 00.

If s1 = 1, there are k switches from 1 to 0 and either k − 1 or k switches from 0 to 1 for
a total of 2k − 1 or 2k switches. There are

(
n−2
2k−1

)
+
(
n−2
2k

)
=
(
n−1
2k

)
such sequences of length

n− 1.
If s1 = 0 and s2 = 1 there are still k switches from 1 to 0 and either k−1 or k switches from

0 to 1 after s2 for a total of 2k− 1 or 2k switches after s2. There are
(
n−3
2k−1

)
+
(
n−3
2k

)
=
(
n−2
2k

)

such sequences of length n− 1.
If s1 = 0 and s2 = 0 there are k − 1 switches from 1 to 0 and either k − 1 or k switches

from 0 to 1 for a total of 2k − 2 or 2k − 1 switches. There are
(
n−3
2k−2

)
+
(
n−3
2k−1

)
=
(
n−2
2k−1

)
such

sequences of length n− 1.
Combining these cases yields

(
n− 1

2k

)
+

((
n− 2

2k

)
+

(
n− 2

2k − 1

))
=

(
n− 1

2k

)
+

(
n− 1

2k

)
= 2

(
n− 1

2k

)

such sequences.

Proposition 18 gives a new interpretation of OEIS A119462.

4.4 Statistics on Sn(132, 321)

We first describe the structure of a {132, 321}-avoiding permutation.

Proposition 19. If π ∈ Sn(132, 321) then π = (Ia ⊖ Ib) ⊕ In−a−b for some 1 ≤ a ≤ n and

0 ≤ b ≤ n− 1.

Proof. We proceed by induction on n; that is, assume that every member of Sn−1(132, 321)
is of the form (Ia ⊖ Ib)⊕ I(n−1)−a−b and prove this is the case for members of Sn(132, 321).

For the base case, notice that S1(132, 321) = {1} and 1 = I1, so the permutation 1 has
the desired form where a = 1 and b = 0.

For the induction step, suppose π ∈ Sn(132, 321). This implies that
π̂ = red(π1 · · · πn−1) ∈ Sn−1(132, 321). By the induction hypothesis, either π̂ = In−1, π̂ =
Ia ⊖ In−1−a or π̂ = (Ia ⊖ Ib)⊕ I(n−1)−a−b.

If π̂ = In−1, there are two choices for πn. Either πn = 1, which means π = In−1 ⊖ I1 or
πn = n, which means π = In. Any other choice of πn produces a 132 pattern involving πn.
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If π̂ = Ia ⊖ In−1−a, there are two choices for πn. Either πn = n − a which means
π = Ia ⊖ In−a or πn = n which means π = (Ia ⊖ In−1−a) ⊕ I1. Any other choice of πn
produces a 132 pattern or a 321 pattern involving πn.

If π̂ = (Ia ⊖ Ib) ⊕ I(n−1)−a−b, then πn = n which means (Ia ⊖ Ib) ⊕ In−a−b. Any other
choice for πn produces a 132 pattern or a 321 pattern.

As a consequence of Proposition 19, we have the following Corollary.

Corollary 20. |Sn(132, 321)| =
(
n

2

)
+ 1.

Proof. The permutation In is in Sn(132, 321) for all n.
Otherwise, there are n positions in π. We may choose one position to be the last digit of

Ia and a second position to be the last position of Ib. This choice of two positions uniquely
determines the permutation. There are

(
n

2

)
permutations in Sn(132, 321) \ {In}.

The propositions below follow from the structure given in Proposition 19.

Proposition 21.

aascn,k(132, 321) =





1, k = n− 1;(
n

2

)
, k = n− 2;

0, otherwise.

and

adesn,k(132, 321) =





1, k = 0;(
n

2

)
, k = 1;

0, otherwise.

Proof. We know π = (Ia ⊖ Ib) ⊕ In−a−b. If a = n, π has n − 1 ascents and 0 descents.
Otherwise, the only descent in π is at position a, so π has n− 2 ascents and 1 descent.

Proposition 22.

adascn,k (132, 321) =





1, k = n− 2;

n, k = n− 3;(
n

2

)
− n, k = n− 4;

0, otherwise.

Proof. We know π = (Ia ⊖ Ib)⊕ In−a−b.
If a = n, π has n− 2 double ascents. There is one such permutation.
If a = n− 1 then b = 1. This means π has n− 3 double ascents in Ia. There is one such

permutation.
If a = 1 then there are 0 double ascents in a and there are (n− 1)− 2 double ascents in

Ib ⊕ In−a−b = In−1 for a total of n − 3 double ascents. There are n − 1 such permutations
since there are n− 1 choices for the value of b, i.e., 1 ≤ b ≤ n− 1.
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So far we have accounted for 1 permutation with n−2 double ascents and 1+(n−1) = n

permutations with n− 3 double ascents.
If 2 ≤ a ≤ n− 2, then π has a− 2 double ascents in Ia and (n− a)− 2 double ascents in

Ib ⊕ In−a−b = In−1 for a total of (a− 2)+ (n− a− 2) = n− 4 double ascents. The remaining(
n

2

)
− n permutations fall into this category, which completes the proof.

Proposition 23. For n ≥ 3,

addesn,k (132, 321) =

{(
n

2

)
+ 1, k = 0;

0, otherwise.

Proof. Since a consecutive 321 pattern is a double descent, any permutation that avoids 321
has 0 double descents.

Proposition 24.

apkn,k(132, 321) =





n, k = 0;(
n−1
2

)
, k = 1;

0, otherwise.

Proof. There is at most one peak in a permutation of the form (Ia ⊖ Ib)⊕ In−a−b. In partic-
ular, we get a peak exactly when 2 ≤ a ≤ n− 1.

There are n− 1 permutations where a = 1, and there is 1 permutation where a = n, so
there are a total of n permutations with 0 peaks.

The remaining
(
n

2

)
+ 1− n =

(
n−1
2

)
permutations have one peak.

Proposition 25.

avln,k(132, 321)





2, k = 0;(
n

2

)
− 1, k = 1;

0, otherwise.

Proof. There is at most one valley in a permutation of the form (Ia ⊖ Ib) ⊕ In−a−b. In
particular, we get a valley exactly when 2 ≤ n − a ≤ n − 1. The only permutations that
violate this rule are when a = n and when a = n − 1. There is one permutation with
a = n, i.e., In. There is one permutation with a = n − 1, i.e., In−1 ⊖ I1. All other

(
n

2

)
− 1

permutations avoiding 132 and 321 have a valley involving the last digit in Ia and the first
two digits of Ib ⊕ In−a−b.
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