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Abstract

An n-color composition is one in which a part of size m can come in m colors
(denoted by subscripts). Let C(ν) denote the set of n-color compositions of the positive
integer ν. In this paper, we consider further modular restrictions on the subscripts of
the parts within members of C(ν). We first count members of C(ν) in which all parts
have subscripts of the form ℓa + b, where b and ℓ are fixed and a ≥ 0 is arbitrary.
Generating function and explicit formulas are found for general b and ℓ which extend
earlier results when ℓ = 2 and b ≤ 3. We study the case ℓ = b − 1 in further detail
and find that the corresponding subset of C(ν) is in bijection with various classes of
compositions. Finally, we consider two related problems: one where the subscript
restriction applies only to parts within a given modular class and another where the
subscript of a part belongs to the same modular class mod ℓ as the part where ℓ is
fixed.

1 Introduction

A composition of a positive integer ν is a sequence of positive integers σ = {σ1, σ2, . . . , σr}
such that σ1 + σ2 + · · · + σr = ν. The summands σi are called the parts of σ and ν is the
weight of σ. For example, the compositions of 4 are

{4}, {3, 1}, {1, 3}, {2, 2}, {2, 1, 1}, {1, 2, 1}, {1, 1, 2}, {1, 1, 1, 1}.

Agarwal [1] introduced a generalization of the concept of a composition known as an
n-color composition wherein a part of size m ≥ 1 can come in one of m different colors. The
colors of the part m are denoted by subscripts m1,m2, . . . ,mm. For example, the n-color
compositions of 4 are

{41}, {42}, {43}, {44}, {31, 11}, {32, 11}, {33, 11}, {11, 31}, {11, 32}, {11, 33}, {21, 21},

{21, 22}, {22, 21}, {22, 22}, {21, 11, 11}, {22, 11, 11}, {11, 21, 11}, {11, 22, 11}, {11, 11, 21},

{11, 11, 22}, {11, 11, 11, 11}.

It is well-known that the total number of n-color compositions of ν is given by the Fibonacci
number F2ν . Moreover, the number of n-color compositions of ν with exactly m parts is
the binomial coefficient

(
ν+m−1
2m−1

)
. For further results about n-color compositions, see, e.g.,

[1, 2, 4, 6, 7, 9, 10, 11, 13, 14, 15]. In this paper, we study some new restrictions on n-color
compositions that generalize previous results given by Sachdeva and Agarwal [13].

The organization of this paper is as follows. In the next section, we count the members
of C(ν) in which the subscripts on all parts are of the form ℓa + b for some a ≥ 0, where
b, ℓ ≥ 1 are fixed, providing generating function and explicit formulas. This extends recent
work [13] in the case ℓ = 2. We consider further the case ℓ = b − 1, which yields several
previously studied sequences from [16], and find bijections between various restricted classes
of binary words and compositions and the corresponding subset of C(ν). In the third section,
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we count members of C(ν) in which only parts of the form ℓa + b for some a ≥ 0 satisfy a
similar modular requirement with respect to their subscripts. An explicit formula for the
generating function is found which extends prior results [13]. Finally, a comparable formula
can be given which counts members of C(ν) in which parts of the form ℓa + b where a ≥ 0
and 1 ≤ b ≤ ℓ must have subscripts of the same form.

2 Generalized restricted n-color compositions

Given positive integers ℓ and b, let Cℓa+b(ν) denote the number of n-color compositions of
ν into parts with subscripts of the form ℓa + b for some integer a ≥ 0. We also denote by
Cℓa+b(m, ν) the number of n-color compositions of ν into m parts with subscripts of the form
ℓa+ b.

For example, C3a+1(4) = 9, the compositions being

{41}, {44}, {31, 11}, {11, 31}, {21, 21}, {21, 11, 11}, {11, 21, 11}, {11, 11, 21}, {11, 11, 11, 11}.

Theorem 1. Let GCℓa+b(m,x) and GCℓa+b(x) denote the generating functions for the se-
quences Cℓa+b(m, ν) and Cℓa+b(ν), respectively. Then we have

GCℓa+b(m,x) =

(
xb

(1− x)(1− xℓ)

)m

,

GCℓa+b(x) =
xb

1− x− xℓ + xℓ+1 − xb
.

Proof. Let σ = σ1 · · · σm be a non-empty n-color composition having m parts where each
subscript is of the form ℓa + b for some a ≥ 0. If σj = i with i ≥ b, then σj contributes to
the generating function the term wix

i, where

wi =

⌊
i− b+ ℓ

ℓ

⌋

,

while if i < b, then it fails to contribute.
Note that the generating function of the sequence

{wi}i≥0 =






0, . . . , 0
︸ ︷︷ ︸

b

, 1, . . . , 1
︸ ︷︷ ︸

ℓ

, 2, . . . , 2
︸ ︷︷ ︸

ℓ

, . . .







is given by
xb

(1− x)(1− xℓ)
.

Therefore,

GCℓa+b(m,x) =

(
∑

i≥0

wix
i

)m

=

(
xb

(1− x)(1− xℓ)

)m

.
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Finally, summing the last expression over m ≥ 1, we get

GCℓa+b(x) =

xb

(1−x)(1−xℓ)

1− xb

(1−x)(1−xℓ)

=
xb

1− x− xℓ + xℓ+1 − xb
.

We have the following combinatorial formula for the sequence Cℓa+b(m, ν).

Theorem 2. The sequence Cℓa+b(m, ν) is given by the expression

Cℓa+b(m, ν) =

⌊ ν−bm

ℓ ⌋
∑

i=0

(
m+ i− 1

m− 1

)(
ν − ℓi+m(1− b)− 1

m− 1

)

.

Moreover, Cℓa+b(ν) = Cℓa+b(ν − 1) + Cℓa+b(ν − ℓ) − Cℓa+b(ν − ℓ − 1) + Cℓa+b(ν − b) when
ν > max{ℓ+ 1, b}.

Proof. By Theorem 1, we have

GCℓa+b(m,x) =

(
xb

(1− x)(1− xℓ)

)m

=
∞∑

i=0

∞∑

j=0

(
m+ i− 1

i

)(
m+ j − 1

j

)

xj+iℓ+bm.

Taking t = j + ℓi+ bm gives

GCℓa+b(m,x) =
∞∑

i=0

∞∑

t=iℓ+bm

(
m+ i− 1

m− 1

)(
t− ℓi+m(1− b)− 1

m− 1

)

xt.

By comparing the ν-th coefficient of both sides of the last equation, we obtain the desired
result. The recurrence relation follows from the generating function formula for GCℓa+b(x)
given in Theorem 1.

Remark 3. Setting ℓ = b = 1 in Theorem 2, and using the binomial identity [5, Formula
5.26], recovers the fact that there are

(
ν+m−1
2m−1

)
n-color compositions of ν with exactly m parts

and thus F2ν altogether with no restriction as to the number of parts.

By setting ℓ = 2 and b = 1, we have the following corollary (see Theorem 2.1 of [13]).

Corollary 4. The generating functions for the number of n-color compositions of ν into
m parts with odd subscripts and for the total number of n-color compositions of ν with odd
subscripts are

GC2a+1(m,x) =

(
x

(1− x)(1− x2)

)m

=

(
x

(1 + x)(1− x)2

)m

,

GC2a+1(x) =
x

1− 2x− x2 + x3
.
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Moreover,

C2a+1(m, ν) =

⌊ ν−m

2 ⌋
∑

i=0

(
m+ i− 1

m− 1

)(
ν − 2i− 1

m− 1

)

and C2a+1(ν) = 2C2a+1(ν − 1) + C2a+1(ν − 2)− C2a+1(ν − 3) for ν > 3, with the initial values
C2a+1(1) = 1, C2a+1(2) = 2, C2a+1(3) = 5.

Letting ℓ = 2 and b = 2 yields the following corollary (see Theorem 2.3 of [13]).

Corollary 5. The generating functions for the number of n-color compositions of ν into m
parts with even subscripts and for the total number of n-color compositions of ν with even
subscripts are

GC2a+2(m,x) =

(
x2

(1− x)(1− x2)

)m

=

(
x2

(1 + x)(1− x)2

)m

,

GC2a+2(x) =
x2

1− x− 2x2 + x3
.

Moreover,

C2a+2(m, ν) =

⌊ ν−2m

2 ⌋
∑

i=0

(
m+ i− 1

m− 1

)(
ν − 2i−m− 1

m− 1

)

and C2a+2(ν) = C2a+2(ν − 1) + 2C2a+2(ν − 2)− C2a+2(ν − 3) for ν > 3, with the initial values
C2a+2(1) = 0, C2a+2(2) = 1, C2a+2(3) = 1.

Letting ℓ = 2 and b = 3 yields the further corollary (see Theorem 2.2 of [13]).

Corollary 6. The generating functions for the number of n-color compositions of ν into m
parts with odd subscripts > 1 and for the total number of n-color compositions of ν with odd
subscripts > 1 are

GC2a+3(m,x) =

(
x3

(1 + x)(1− x)2

)m

,

GC2a+3(x) =
x3

1− x− x2
.

Moreover,

C2a+3(m, ν) =

⌊ ν−3m

2 ⌋
∑

i=0

(
m+ i− 1

m− 1

)(
ν − 2i− 2m− 1

m− 1

)

and C2a+3(ν) = C2a+3(ν − 1) + C2a+3(ν − 2) for ν > 3, with the initial values C2a+3(1) =
0, C2a+3(2) = 0, C2a+3(3) = 1.
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ℓ b Sequence Cℓa+b(ν) A-Sequence

3 1 1, 2, 4, 9, 19, 40, 85, 180, 381, 807, 1709, 3619, 7664, 16230, 34370 A052908
3 2 1, 1, 2, 4, 6, 11, 19, 32, 56, 96, 165, 285, 490, 844, 1454, 2503, 4311 A116732
3 3 1, 1, 1, 3, 4, 5, 10, 15, 21, 36, 56, 83, 134, 210, 320, 505, 791, 1221 A176848

Table 1: Some particular cases for ℓ = 3.

When ℓ = 3, we obtain some known sequences from the OEIS [16]. In Table 1, we give
the first several non-zero values.

Note that the sequence A052908 does not have a combinatorial interpretation listed. For
the sequence A116732, our combinatorial interpretation differs from the one given. Let A be
the set of compositions with parts in {1, 2, 3} such that the order of adjacent 1’s and 3’s is
unimportant. Let a(n) be the number of elements in A of weight n. For example, a(6) = 19,
where the compositions are

{3, 3}, {3, 2, 1}, {3, 1, 2}, {2, 3, 1}, {1, 2, 3}, {3, 1, 1, 1}, {2, 2, 2}, {2, 2, 1, 1}, {2, 1, 2, 1},

{2, 1, 1, 2}, {1, 2, 2, 1}, {1, 2, 1, 2}, {1, 1, 2, 2}, {2, 1, 1, 1, 1}, {1, 2, 1, 1, 1}, {1, 1, 2, 1, 1},

{1, 1, 1, 2, 1}, {1, 1, 1, 1, 2}, {1, 1, 1, 1, 1, 1}.

Theorem 7. For n ≥ 0, a(n) = C3a+2(n+ 2).

Proof. Let w be a composition in A. Then w is either an integer partition (non-ordered
composition) with parts in {1, 3} or can be factorized as p 2w′, where p is a partition with
parts in {1, 3} and w′ ∈ A. Thus, the generating function A(x) of the sequence a(n) satisfies
the relation

A(x) = P1,3(x) + P1,3(x)x
2A(x),

where P1,3(x) counts integer partitions with parts in {1, 3}. Since

P1,3(x) =
1

(1− x)(1− x3)
,

we have

A(x) =
1

1− x− x2 − x3 + x4
.

Finally, by Theorem 1,
GC3a+2(x) = x2A(x),

which yields the desired result upon comparing n-th coefficients.

Let b(n) be the number of compositions of n where each part of size j for j ≥ 1 comes in
⌊j/3⌋ kinds (sequence A176848). For example, b(7) = 4, the enumerated compositions being
{7x}, {7y}, {3x, 4x}, {4x, 3x}. It is clear from the definitions that b(n) = C3a+3(n) for n ≥ 1.

We now give a bijective proof of the prior theorem.
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Combinatorial proof of Theorem 7.

Let An and Cn denote the set of compositions enumerated by a(n) and C3a+2(n), respec-
tively. We will define a bijection between An and Cn+2 for n ≥ 0. Let us assume that 3
always precedes 1 whenever there is an adjacency of the two letters within a member of An.
Let λ ∈ An. First assume λ contains no 2’s. Then we may write λ = 3i1j, where i, j ≥ 0
with 3i + j = n. In this case, we map λ to the colored composition λ′ = (3i + j + 2)3i+2 of
n + 2 containing a single part. So assume λ contains at least one 2, in which case we may
write

λ = 3i01j02a13i11j12a23i21j2 · · · 2ar3ir1jr ,

where all exponents are non-negative, r ≥ 1, a1, . . . , ar ≥ 1, and ik+jk ≥ 1 for 1 ≤ k ≤ r−1.
In this case, we let

λ′ = (3i0 + j0 + 2)3i0+2, (22)
a1−1, (3i1 + j1 + 2)3i1+2, . . . , (22)

ar−1, (3ir + jr + 2)3ir+2,

where (22)
t denotes a run of the part 22 of length t.

Note that λ′ contains r + 1 parts and indeed belongs to Cn+2. Also, while it is possible
for the first or the last part of λ′ to be 22, all parts of the form (3ik + jk + 2)3ik+2 where
1 ≤ k ≤ r − 1 are greater than 2. Furthermore, since jk ≥ 0 for 0 ≤ k ≤ r, arbitrary
differences can occur between the part sizes and subscripts. Thus, the mapping λ 7→ λ′ may
be reversed and hence is a bijection between An and Cn+2, as desired, upon decomposing
members of Cn+2 in the same way λ′ was above.

2.1 The case ℓ = b− 1

In this subsection, we provide additional combinatorial interpretations for the sequence
Cℓa+ℓ+1(n), where ℓ ≥ 1. In Table 2, we give the first several non-zero values of these
sequences for 2 ≤ ℓ ≤ 6.

ℓ b Sequence Cℓa+b(ν) A-Sequence

2 3 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 A000045
3 4 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595 A000930
4 5 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250 A003269
5 6 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, 45, 60, 80, 106, 140 A003520
6 7 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92 A005708

Table 2: Some particular cases of ℓ = b− 1.

Let Fℓ(n) := Cℓa+ℓ+1(n). By Theorem 1, we have

Fℓ(x) :=
∞∑

n=0

Fℓ(n)x
n =

xℓ+1

1− x− xℓ
.
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Moreover, Fℓ(n) = Fℓ(n− 1) + Fℓ(n− ℓ) for n > ℓ+ 1, with the initial values Fℓ(ℓ+ 1) = 1
and Fℓ(n) = 0 for n ∈ [ℓ] = {1, 2, . . . , ℓ}. For ℓ = 2, it is clear that the sequence F2(n)
coincides with the Fibonacci numbers, i.e., F2(n) = Fn−2 for n ≥ 2. Moreover, F3(n) is seen
to correspond to the Narayana sequence (cf. [12]).

Let Eℓ be the set of compositions into parts 1 and ℓ, where ℓ ≥ 2. Let eℓ(n) denote
the number of elements in Eℓ of weight n. Chinn and Heubach [3] studied this family of
compositions and, in particular, found

Eℓ(x) :=
∞∑

n=0

eℓ(n)x
n =

1

1− x− xℓ
.

Then xℓ+1Eℓ(x) = Fℓ(x) and we have the following result.

Theorem 8. For n ≥ 0, Fℓ(n+ ℓ+ 1) = eℓ(n).

Let Hℓ be the set of compositions into parts greater than or equal to ℓ. Let hℓ(n) be the
number of elements in Hℓ of weight n. It is not difficult to show that (see, for example, [8,
Theorem 3.13])

Hℓ(x) :=
∞∑

n=0

hℓ(n)x
n =

1

1− (xℓ + xℓ+1 + · · · )
=

1− x

1− x− xℓ
.

Therefore, we have the following relation.

Theorem 9. For n ≥ 1, Fℓ(n+ 1) = hℓ(n).

Let Gℓ be the set of binary words such that between any two successive ones there are at
least ℓ−1 zeros. Let gℓ(n) be the number of words in Gℓ of length n. Let w be a binary word
in Gℓ of length n > ℓ. Then w can be decomposed as w = 0w1 or w = 10 · · · 0

︸ ︷︷ ︸

ℓ−1

w2, where

w1, w2 ∈ Gℓ, which implies gℓ(n) = gℓ(n − 1) + gℓ(n − ℓ) for all n > ℓ. Thus, this sequence
satisfies the same recurrence relation as Fℓ(n). Note that gℓ(n) = n + 1 if n ∈ [ℓ], which
follows from the definitions. Since Fℓ(n+ ℓ) = 1 if n ∈ [ℓ], applying the recurrence for Fℓ(n)
implies Fℓ(n + 2ℓ) = n + 1 for n ∈ [ℓ]. Comparing the recurrences and initial values gives
the following relation.

Theorem 10. For n ≥ 0, Fℓ(n+ 2ℓ) = gℓ(n).

We conclude this section by providing bijective proofs of the last three results.

Combinatorial proofs of Theorems 8 and 9.

Let Eℓ(n) denote the set of compositions of n with parts 1 and ℓ and Fℓ(n) the set of
colored compositions enumerated by Fℓ(n). We define a mapping f : Eℓ(n) → Fℓ(n+ ℓ+ 1)
as follows. If λ = 1n−bℓℓb, where 0 ≤ b ≤ ⌊n/ℓ⌋, then let f(λ) = ((b+1)ℓ+n− bℓ+1)(b+1)ℓ+1.
Otherwise, we have

λ = 1a0ℓb11a1 · · · ℓbr1arℓbr+1 ,
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where r ≥ 1, a0 ≥ 0, ai, bi ≥ 1 if 1 ≤ i ≤ r and br+1 ≥ 0. In this case, let

f(λ) = (b1ℓ+ a0 + 1)b1ℓ+1, (b2ℓ+ a1)b2ℓ+1, . . . , (brℓ+ ar−1)brℓ+1, ((br+1 + 1)ℓ+ ar)(br+1+1)ℓ+1.

Note that f(λ) contains r + 1 parts and indeed belongs to Fℓ(n+ ℓ+ 1) (a 1 not accounted
for by λ occurs in the first part and there is an extra ℓ in the last part). Observe further that
the last part of f(λ) has subscript greater than or equal to ℓ+ 1 depending on whether the
last part of λ is ℓ or 1. Upon considering the number of parts in a member of Fℓ(n+ ℓ+ 1),
the mapping f is seen to be reversible and hence yields the desired bijection.

To show Theorem 9, let Hℓ(n) denote the set of compositions of n having parts of size ℓ
or more. We define g : Hℓ(n) → Fℓ(n+1) for n ≥ 1 as follows. If n ∈ [ℓ− 1], then both sets
are empty, so assume n ≥ ℓ. Then we may express λ ∈ Hℓ(n) as

λ = x1ℓ
a1x2ℓ

a2 · · · xrℓ
ar ,

where r ≥ 1, x1 ≥ ℓ, xi ≥ ℓ+ 1 if i > 1 and ai ≥ 0 for all i. Let

g(λ) = (a1ℓ+ x1 + 1)(a1+1)ℓ+1, (a2ℓ+ x2)(a2+1)ℓ+1, . . . , (arℓ+ xr)(ar+1)ℓ+1.

One may verify that the mapping g is a bijection, which completes the proof.

Combinatorial proof of Theorem 10.

Let Gℓ(n) denote the set of binary words enumerated by gℓ(n). We define a mapping
f : Gℓ(n) → Fℓ(n + 2ℓ) in several steps as follows. Let λ = λ1λ2 · · ·λn ∈ Gℓ(n) and first
assume n ∈ [ℓ]. In this case, let

f(λ) =







(n+ 2ℓ)ℓ+1, if λ = 0n;

(n− s+ ℓ)ℓ+1, (s+ ℓ)ℓ+1, if λ = 0s10n−1−s, where 1 ≤ s ≤ n− 1;

(n+ 2ℓ)2ℓ+1, if λ = 10n−1.

Henceforth, assume n > ℓ. We will also assume ℓ > 1, as the adjustments necessary in
the ℓ = 1 case will be apparent. Note that λ ∈ Gℓ(n) may start with an initial (possibly
empty) run of 0’s with the remainder of λ being decomposed into sections of the form
u = 10ℓ−1 (1 followed by ℓ − 1 0’s) and v = 10m−1 where m ≥ ℓ + 1 is arbitrary (to be
specified). Furthermore, it is possible for λ to end in a section w of the form w = 10p, where
0 ≤ p ≤ ℓ− 2.

First assume λ contains no section of the form v above. Then either

λ = 0n−iℓui, 0 ≤ i ≤ ⌊n/ℓ⌋, (1)

or
λ = 0n−p−1−iℓuiw, 0 ≤ p ≤ ℓ− 2 and 0 ≤ i ≤ ⌊(n− p− 1)/ℓ⌋, (2)

where w = 10p. We define f in this case by considering whether or not n is divisible by ℓ. If
ℓ divides n, then let f(λ) = (n+ 2ℓ)(i+1)ℓ+1, if λ is of the form (1), and let

f(λ) = (ℓ+ p+ 1)ℓ+1, ((i+ 1)ℓ+ n− p− 1− iℓ)(i+1)ℓ+1,
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if of form (2). If ℓ does not divide n, then we define f(λ) the same way as before provided λ
is not of the form (2) with n− p− 1 = iℓ. Note that n− p− 1 = iℓ corresponds to exactly
one λ in (2) since 0 ≤ p ≤ ℓ− 2. We set f(λ) = (n+2ℓ)qℓ+1 in this case where q = ⌊n/ℓ⌋+2
(note that qℓ+ 1 ≤ n+ 2ℓ if and only if ℓ does not divide n). Observe that in either case f
maps the members of Gℓ(n) not containing a v section in a one-to-one manner to the subset
of Fℓ(n+ 2ℓ) whose members either have one part or have two parts where the first part is
less than 2ℓ.

Assume henceforth that λ contains at least one section of the form v above. Then we
may write

λ = 0jui1v1 · · · u
irvru

ir+1 , (3)

where r ≥ 1, j, i1, . . . , ir+1 ≥ 0, and vi = 10mi−1 with mi ≥ ℓ+ 1 for 1 ≤ i ≤ r, or

λ = 0jui1v1 · · · u
irvru

ir+1w, (4)

with all the same restrictions as before and w = 10p for some 0 ≤ p ≤ ℓ − 2. If λ is of the
form (3), then let

f(λ) = ((i1 + 2)ℓ+ j)(i1+1)ℓ+1, (i2ℓ+m1)(i2+1)ℓ+1, . . . , (ir+1ℓ+mr)(ir+1+1)ℓ+1.

Observe that r ≥ 1 implies f(λ) contains at least two parts in this case and mi ≥ ℓ + 1 for
all i implies the size of the part always exceeds the size of the subscript (with the first part
of size at least 2ℓ).

Now suppose λ is of form (4). To define f , we consider cases on j. If j ≥ 1 in (4), then
let

f(λ) = (ℓ+ p+ 1)ℓ+1, ((i1 + 1)ℓ+ j)(i1+1)ℓ+1, (i2ℓ+m1)(i2+1)ℓ+1, . . . , (ir+1ℓ+mr)(ir+1+1)ℓ+1.

Note f(λ) here must contain at least three parts and therefore this covers the remaining
cases where the first part is less than 2ℓ. If j = 0 in (4), then let

f(λ) = ((i1 + 2)ℓ+ p+ 1)(i1+2)ℓ+1, (i2ℓ+m1)(i2+1)ℓ+1, . . . , (ir+1ℓ+mr)(ir+1+1)ℓ+1.

Notice that this covers the remaining ρ ∈ Fℓ(n+2ℓ) in which the first part of ρ is at least 2ℓ
with ρ containing at least two parts. The inverse of f can then be constructed (we leave the
details to the reader) in a composite manner in much the same way as f was above upon
considering the number of parts and whether or not the first part is at least 2ℓ.

3 Subscript restrictions only on certain parts

Given integers ℓ, ℓ′, b, b′ ≥ 1, let Dℓ′a′+b′

ℓa+b (ν) denote the number of n-color compositions of
ν such that the parts of the form ℓa + b for some a ≥ 0 have only subscripts of the form
ℓ′a′+b′ for some a′ ≥ 0. Additionally, we denote by Dℓ′a′+b′

ℓa+b (m, ν) the number of such n-color
compositions of ν that have exactly m parts.

For example, D3a′+1
4a+3 (3) = 6, the compositions being

{31}, {21, 11}, {22, 11}, {11, 21}, {11, 22}, {11, 11, 11}.
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Theorem 11. Let GDℓ′a′+b′

ℓa+b (m,x) and GDℓ′a′+b′

ℓa+b (x) denote the generating functions for the

sequences Dℓ′a′+b′

ℓa+b (m, ν) and Dℓ′a′+b′

ℓa+b (ν), respectively. Then we have

GDℓ′a′+b′

ℓa+b (m,x) =



xbH(xℓ) + P (x) +
ℓ∑

i=1, i 6≡b (mod ℓ)

i+ (ℓ− i)xℓ

(1− xℓ)2
xi





m

,

GDℓ′a′+b′

ℓa+b (x) =
xbH(xℓ) + P (x) +

∑ℓ

i=1, i 6≡b (mod ℓ)
i+(ℓ−i)xℓ

(1−xℓ)2
xi

1−
(

xbH(xℓ) + P (x) +
∑ℓ

i=1, i 6≡b (mod ℓ)
i+(ℓ−i)xℓ

(1−xℓ)2
xi

) ,

where H(x) is the generating function of the sequence

hn =

{⌊
ℓn+b−b′

ℓ′

⌋
+ 1, if ℓn+ b ≥ b′ and n ≥ 0;

0, otherwise,

and P (x) is the polynomial given by

P (x) =
∑

i≡b (mod ℓ)
0≤i<b

ixi.

Proof. Summing the first expression over m ≥ 1 gives the second, so we need only prove
the first. Let σ = σ1σ2 · · · σm be a non-empty n-color composition having m parts such that
parts of the form ℓa+ b where a ≥ 0 have only subscripts of the form ℓ′a′ + b′ where a′ ≥ 0.
First assume σj ≡ b (mod ℓ) and suppose σj = r = ℓa + b. If a ≥ 0 and r ≥ b′, then σj

contributes to the generating function a wax
r term, where

wa =

⌊
ℓa+ b− b′

ℓ′

⌋

+ 1.

If a ≥ 0 and r < b′, then there are no possible such parts for otherwise the index would
exceed the part (note that this case can occur only if b < b′).

If a < 0, then σj = r < b and there is a contribution to the generating function of rxr

per the definitions, and combining all such r yields the polynomial P (x) defined above. If
σj 6≡ b (mod ℓ), then there is again a contribution of rxr. Thus, for each i ∈ [ℓ] such that
i 6≡ b (mod ℓ), we have a total contribution of

ixi + (ℓ+ i)xℓ+i + (2ℓ+ i)x2ℓ+i + · · ·

= ixi(1 + xℓ + x2ℓ + · · · ) + ℓxi(xℓ + 2x2ℓ + 3x3ℓ + · · · )

=
ixi

1− xℓ
+ ℓxi

[
y

(1− y)2

]

y=xℓ

=
ixi

1− xℓ
+

ℓxi+ℓ

(1− xℓ)2
,

which gives the final part of the formula for GDℓ′a′+b′

ℓa+b (m,x) above.
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For example, the generating function for the sequence D4a′+3
3a+7 (m, ν) is given by

GD4a′+3
3a+7 (m,x) =

(

x7H(x3) + x+ 4x4 +
(2 + x3)

(1− x3)2
x2 +

3

(1− x3)2
x3

)m

,

where H(x) = 2+x2+x3−x4

(1−x)2(1+x+x2+x3)
. Note that H(x) is the generating function for the sequence

{2, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, . . . }.

Moreover,

GD4a
′
+3

3a+7 (x)

=
−3x19 + 2x16 − x

14 − 3x12 − 3x11 − 3x9 − 3x8 + 2x7 − 3x6 − 3x5 − 3x4 − 3x3 − 2x2 − x

3x19 − 2x16 − x15 + x14 + 4x12 + 3x11 + 3x9 + 3x8 − 2x7 + 3x6 + 3x5 + 3x4 + 4x3 + 2x2 + x− 1

= x+ 3x2 + 8x3 + 21x4 + 55x5 + 144x6 + 372x7 + 977x8 + 2549x9 + 6647x10 + · · · .

For example, D4a′+3
3a+7 (7) = 372, as all n-color compositions of n = 7 are counted except

{71}, {72}, {74}, {75}, {76}.

Remark 12. Taking all of the relevant parameters to be one in Theorem 11 gives

GDa′+1
a+1 (m,x) =

xm

(1− x)2m
, m ≥ 1,

and
GDa′+1

a+1 (x) =
x

1− 3x+ x2
,

which are the generating functions for the number with m parts and the total number of
n-color compositions of ν for ν ≥ 1, respectively.

By setting ℓ = 2 = ℓ′ in Theorem 11, we have the following corollaries.

Corollary 13 (Theorem 2.4 of [13]). The generating functions for the number of n-color
compositions of ν into m parts such that the odd parts have only even subscripts and for the
total number of n-color compositions of ν such that the odd parts have only even subscripts
are

GD2a′+2
2a+1 (m,x) =

(
2x2 + x3

(1− x2)2

)m

,

GD2a′+2
2a+1 (x) =

2x2 + x3

1− 4x2 − x3 + x4
.

Corollary 14 (Theorem 2.5 of [13]). The generating functions for the number of n-color
compositions of ν into m parts such that the odd parts have only odd subscripts and for the
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total number of n-color compositions of ν such that the odd parts have only odd subscripts
are

GD2a′+1
2a+1 (m,x) =

(
x+ 2x2

(1− x2)2

)m

,

GD2a′+1
2a+1 (x) =

x+ 2x2

1− x− 4x2 + x4
.

Corollary 15 (Theorem 2.6 of [13]). The generating functions for the number of n-color
compositions of ν into m parts such that the even parts have only even (odd) subscripts and
for the total number of n-color compositions of ν such that the even parts have only even
(odd) subscripts are

GD2a′+2
2a+2 (m,x) = GD2a′+1

2a+2 (m,x) =

(
x+ x2 + x3

(1− x2)2

)m

,

GD2a′+2
2a+2 (x) = GD2a′+1

2a+2 (x) =
x+ x2 + x3

1− x− 3x2 − x3 + x4
.

4 A further related restriction

Given ℓ ≥ 1, let Tℓ(ν) denote the number of n-color compositions of ν such that any part of
the form ℓa+ b for some a ≥ 0 and 1 ≤ b ≤ ℓ has a subscript of the same form. Additionally,
we denote by Tℓ(m, ν) the number of such n-color compositions of ν that have m parts.

For example, T4(5) = 17, the compositions being

{51}, {55}, {44, 11}, {11, 44}, {33, 22}, {22, 33}, {33, 11, 11}, {11, 33, 11}, {11, 11, 33},

{22, 22, 11}, {22, 11, 22}, {11, 22, 22}, {22, 11, 11, 11}, {11, 22, 11, 11}, {11, 11, 22, 11},

{11, 11, 11, 22}, {11, 11, 11, 11, 11}.

Similar to the proof of Theorems 1 and 2 above, we have the following result.

Theorem 16. Let GTℓ(m,x) and GTℓ(x) denote the generating functions for the sequences
Tℓ(m, ν) and Tℓ(ν), respectively. Then we have

GTℓ(m,x) =

(
x

(1− x)(1− xℓ)

)m

,

GTℓ(x) =
x

1− 2x− xℓ + xℓ+1
.

Moreover, the sequence Tℓ(m, ν) for 1 ≤ m ≤ ν is given explicitly by

Tℓ(m, ν) =

⌊ ν−m

ℓ ⌋
∑

i=0

(
m+ i− 1

m− 1

)(
ν − ℓi− 1

m− 1

)

,

with Tℓ(ν) = 2Tℓ(ν − 1) + Tℓ(ν − ℓ)− Tℓ(ν − ℓ− 1) for ν > ℓ+ 1.
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Note that the sequences Tℓ(ν) and Cℓa+1(ν) are the same which can be shown using the
definitions.

We now describe a statistic on n-color compositions which accounts for the expression
given for Tℓ(m, ν) above. More precisely, let Sℓ(m, ν) denote the set of n-color compositions
enumerated by Tℓ(m, ν) and we determine a statistic σ on Sℓ(m, ν) such that

|{π ∈ Sℓ(m, ν) : σ(π) = i}| =

(
m+ i− 1

m− 1

)(
ν − ℓi− 1

m− 1

)

.

Given a part αβ of π ∈ Sℓ(m, ν), let σ(αβ) = ⌊(β − 1)/ℓ⌋. Define σ(π) to be the sum of the
σ-values of its individual parts. For example, if ℓ = 3 and π = 52, 77, 85, 129, 33 ∈ S3(5, 35),
then σ(π) = 0 + 2 + 1 + 2 + 0 = 5. Note that if β corresponds to the i-th smallest possible
subscript on a part of π of size α, then αβ contributes i− 1 towards the σ(π) statistic value.
If ℓ = 1, then it is seen that σ(π) is simply the sum of the subscripts of all the parts minus
the number of parts of π. Define

t(ℓ)ν,m(q) =
∑

π∈Sℓ(m,ν)

qσ(π), ν ≥ m ≥ 1,

where q is an indeterminate. We have the following explicit formula for t
(ℓ)
ν,m(q).

Theorem 17. If ν ≥ m ≥ 1 and ℓ ≥ 1, then

t(ℓ)ν,m(q) =

⌊ ν−m

ℓ ⌋
∑

i=0

(
m+ i− 1

m− 1

)(
ν − ℓi− 1

m− 1

)

qi. (5)

Proof. Let σ′ be the statistic defined on π ∈ Sℓ(m, ν) as follows. Given a part αβ of π, let
σ′(αβ) = α−β

ℓ
and define σ′(π) to be the sum of the σ′ values of its parts. For example,

if π ∈ S3(5, 35) is as before, then σ′(π) = 3. We first show that σ and σ′ are identically
distributed on Sℓ(m, ν). To do so, we change the subscripts on each part of π ∈ Sℓ(m, ν) as
follows. Let rs be a part of π. First assume r is not divisible by ℓ. Then r = ℓa + b where
a ≥ 0 and 1 ≤ b ≤ ℓ− 1 and s = ℓa′+ b for some 0 ≤ a′ ≤ a. In this case, we replace rs with
rt, where t = ℓ(a− a′)+ b. If r is divisible be ℓ, then r = ℓa and s = ℓa′ for some 1 ≤ a′ ≤ a,
in which case we replace the part rs with rt, where t = ℓ(a − a′ + 1). Let π′ denote the
resulting member of Sℓ(m, ν). One may verify that the mapping π 7→ π′ is a bijection with
σ(π) = σ′(π′) for all π.

We now count members π ∈ Sℓ(m, ν) such that σ′(π) = i where 0 ≤ i ≤ ⌊(ν − m)/ℓ⌋.
We denote these π by

π = (a1 + ℓb1)a1 , . . . , (am + ℓbm)am ,

where aj ≥ 1 and bj ≥ 0 for all j. Then b1+· · ·+bm = i implies there are
(
m+i−1
m−1

)
possibilities

for the bj. Thus, a1 + · · · + am = ν − ℓi so that there are
(
ν−ℓi−1
m−1

)
possibilities for the aj.

Since the aj and bj may be chosen independently of one another, it follows that there are
(
m+i−1
m−1

)(
ν−ℓi−1
m−1

)
such π, which completes the proof of (5).
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Let t
(ℓ)
ν (q, u) =

∑ν

m=1 t
(ℓ)
ν,m(q)um for ν ≥ 1 and define the generating function

T (ℓ)(x; q, u) =
∑

ν≥1

t(ℓ)ν (q, u)xν .

Using (5) and interchanging summation yields the following result.

Corollary 18. We have

T (ℓ)(x; q, u) =
xu

1− x(1 + u)− xℓq + xℓ+1q
(6)

and thus

t(ℓ)ν (q, u) = (1 + u)t
(ℓ)
ν−1(q, u) + qt

(ℓ)
ν−ℓ(q, u)− qt

(ℓ)
ν−ℓ−1(q, u), ν > ℓ+ 1. (7)

Formulas (6) and (7) reduce, respectively, to the generating function and recurrence
formulas for Tℓ(ν) in Theorem 16 when q = u = 1. Note that the ℓ = u = 1 case of
recurrence (7) was previously considered in [9]. A combinatorial proof may be given for
(7) by considering whether or not the last part is 11, and if not, whether or not the last
part is equal to its subscript. Finally, taking ℓ = 2 in the preceding yields a polynomial
generalization of the problem of counting n-color compositions of a given size in which each
part and its respective subscript always have the same parity.
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