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Abstract

A free numerical semigroup is a submonoid of the non-negative integers with finite
complement that is additively generated by the terms in a telescopic sequence with ged
1. However, such a sequence need not be minimal, which is to say that some proper
subsequence may generate the same numerical semigroup, and that subsequence need
not be telescopic. In this paper, we will see that for a telescopic sequence with any
ged, there is a minimal telescopic sequence that generates the same submonoid. In
particular, given a free numerical semigroup we can construct a telescopic generating
sequence that is minimal. In the process, we will examine some operations on and
constructions of telescopic sequences in general.

1 Introduction

Let N denote the set of positive integers and let Ny = N U {0}. For a set A C Ny, let
(A) denote the set of all (finite) Ny-linear combinations of elements of A. Let S be a
submonoid of Ny. All submonoids of Ny are finitely generated, so S = (A) for some finite
A={ay,...,ar} C Ng. We also write this as S = (ay,...,a;). We say a set A is minimal if
(A') # (A) for all A” C A. It is well known that any set has a unique minimal subset that
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generates the same submonoid, and hence there exists a bijection between submonoids of N
and minimal subsets of Ny. (See Rosales and Garcia-Sanchez [19, Cor. 2.8] for details.)

In this paper, we are interested in generating sets that are ordered in some way. We
therefore consider (finite) sequences G = (g, ..., gx) for some k € N with ¢g; € Ny, which we
denote by G € NE.! We similarly define the submonoid generated by G as (G) = (g1, .. ., gr)-
As with sets, a sequence G is minimal if (G') # (G) for all proper subsequences G’ of G.
Any sequence then has a unique minimal subsequence that generates the same submonoid.
Observe that any permutation of a minimal sequence is also necessarily minimal.

For G € NE a sequence with g; + ¢go > 0, let G; = (g1,...,¢) and d; = ged(G;) for
1 <i <k Let c(G) = (ca,...,cx) where ¢; = d;_1/d; for 2 < j < k.2 If ¢;g; € (Gj_1)
for all j > 2, then we say G is a telescopic (or smooth) sequence. Some authors include the
additional properties where ged(G) = 1 and/or G is an increasing sequence. In this paper,
we require neither.

The reader can confirm that all sequences G € Nf with g; + g, > 0 for k=1 and k = 2
are telescopic. There are longer sequences that are not telescopic, though some permutation
is. One example is G = (4,5, 6), which is not telescopic, though G’ = (4,6,5) is telescopic.
And finally, there are sequences for which no permutation is telescopic, such as G = (3,4, 5).

Telescopic sequences arise naturally in the world of numerical semigroups. They generate
so-called free numerical semigroups, which have some nice properties that we will see along
with references for further reading in Section 2. Unfortunately, the usage of the word “free”
here does not coincide with the categorical idea of free objects.

The motivation for this paper is how the definitions of “telescopic” and “minimal” inter-

act. Consider the following example.
Example 1. Let S = (G) for G = (660, 550,352,50,201) € Nj. We see that ¢(G) =
(6,5,11,2) and that c¢;g; € (Gj_1) for 2 < j < 5, so G is a telescopic sequence. Since
ged(G) = 1, S is a free numerical semigroup. However, G is not minimal because 550 =
0-660+0-352411-50+0-201. We eliminate 550 from G to obtain the proper subsequence
G’ = (660, 352, 50,201) with (G') = (G) = S. We can see that G’ is minimal. However, G’
is not telescopic.

This leads to the following question.

Question 2. Given a telescopic sequence GG, does there exist a telescopic sequence G’ that
is minimal and has (G') = (G)?

We can ask this more generally.

Question 3. Suppose G and H are sequences such that (G) = (H). If G is telescopic, must
some permutation of H be telescopic?

!By taking G € NE, we allow for the possibility that g; = g; for i # j. We can also have g; = 0 for some
i. Clearly, if we remove any repeats or 0s, the resulting subsequence will still generate the same submonoid.
However, our results hold in the more general case of allowing repeats and/or zeros, so we choose to allow
them to give slightly more general results.

2Observe that c; is a well-defined integer when d; # 0. We have d; # 0 for all j precisely when g1 +g2 > 0.
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As Example 1 illustrates, for G telescopic and G’ its unique minimal subsequence, G’
need not be telescopic. In this particular case, the permutation (660, 50,352,201) of G’ is
telescopic. We will show that this always happens — i.e., that the answer to Question 2 is
“yes,” as is the answer to the more general Question 3. In the context of numerical semi-
groups, this means that any free numerical semigroup is generated by a telescopic minimal

sequence, and we will give a procedure to compute it.

1.1 Organization

This paper is organized as follows. In Section 2, we will give some background material on
free numerical semigroups. Following that, given a sequence (cy, ..., ¢;) and some d € N,
we provide an explicit method (Remark 19) in Section 3 to produce any telescopic sequence
G = (q1,...,9xr) such that ¢(G) = (ca,...,c) and ged(G) = d. In Section 4, we describe
two functions that map telescopic sequences to telescopic sequences. As we will see, any
function that maps telescopic sequences to telescopic sequences (with the same ged) must
be a composition of these functions (with certain parameters).

Then, in Section 5 we present a construction that takes a telescopic sequence as input
and outputs a minimal telescopic sequence that generates the same submonoid, answering
Question 2 affirmatively. The main result is Theorem 52. As a corollary, we find that every
free numerical semigroup is generated by a minimal telescopic sequence. We also answer the
more general Question 3 affirmatively.

Finally, in Section 6 we combine two results (Remark 19 and Proposition 43) to give an

explicit method to construct any minimal telescopic sequence G with ¢(G) = (ca, ..., cx). As
an application, we have Corollary 58, which says that any non-decreasing telescopic sequence
G = (g1,...,0x) with ¢; > 1 for all j is necessarily minimal.

2 Background

Free numerical semigroups, which are generated by telescopic sequences G with ged(G) = 1,
have been studied in various contexts by Brauer and Shockley [5], Herzog [10], Bertin and
Carbonne [3], Rodseth [17], Kirfel and Pellikaan [12], Rosales and Garcia-Sanchez [18, 19],
Leher [13], Ayano [2], Robles-Pérez and Rosales [16], Gassert and Shor [9], and others. We
will highlight some of their properties.

2.1 Numerical semigroups

We begin with numerical semigroups. For a comprehensive reference on the subject, see the
work of Rosales and Garcia-Sanchez [19)].

A numerical semigroup S is a submonoid of Ny with finite complement. It is well-
known that every numerical semigroup S is given by S = (A) for some finite A C Ny with
ged(A) = 1. Since we are interested in generating sequences, we equivalently have that every



numerical semigroup S is given by S = (G) for some k € N and G € N with ged(G) = 1.
Elements of the complement of S are known as gaps of S, and we denote the set of gaps by
H(S). The genus of S, denoted ¢(5), is the number of gaps of S. The Frobenius element of
S, denoted F'(S), is the largest integer not in S, which is max(H(S)) when S # Ny. The
embedding dimension of S, denoted e(.9), is the cardinality of the unique minimal generating
set of S (which is the cardinality of any minimal generating sequence of .S).

Given a numerical semigroup S, it can be difficult to compute ¢(S), F(S), and other
properties of the set of gaps. Curtis [6] showed that there cannot be a polynomial formula
to compute the Frobenius number of S as a function of the generating elements of S when
e(S) > 2 . Ramirez Alfonsin [14] proved that the problem of computing the Frobenius
number of S, when e(S) > 2, is NP-hard. For more on the Frobenius problem, see Ramirez
Alfonsin’s book [15].

A very helpful tool in understanding the gaps of a numerical semigroup is called the
Apéry set [1]. For any nonzero t € S, the Apéry set of S relative to t is

Ap(S;t)={se€ S:s—t¢S}. (1)

Equivalently, Ap(S;t) is the set of elements in S that are minimal in their congruence class
modulo ¢.

If we know Ap(S;t), then we immediately know the genus of S (from Selmer [20]) and
the Frobenius number of S (from Brauer and Shockley [5]).

Theorem 4 ([5, Lem. 3], [20, Eqn. 2.3]). For S a numerical semigroup and any nonzero
te s,

F(S) = max(Ap(S;t)) — ¢, (2)
and
(=" Y on )
neAp(S;t)

We can also deduce other properties of the gaps of S with the following identity and an
appropriately chosen function f.

Theorem 5 ([9, Thm. 2.3]). For S a numerical semigroup with set of gaps H(S), any
nonzero t € S, and any function f defined on Ny,

Yo+t =fm)l= > fn " ). (4)
neH(S) neAp(S;t) n=0

For instance, with f(n) = n in Equation (4), we obtain the genus formula in Equation
(3). Tuenter [21] presents additional applications in the case where S = (a, b).



2.2 Free numerical semigroups

A numerical semigroup S is a free numerical semigroup if S = (G) for a telescopic sequence
G. The following result from Bertin and Carbonne [3, Sect. 2] motivates our interest in free

numerical semigroups. We present it for any value of ged(G), whereas it usually appears in
the case of ged(G) = 1.

Theorem 6. Let G = (g1,...,g1) € N& be telescopic, let ¢(G) = (ca,...,cx), and let d =
ged(@). For any n € dZ, there is a unique representation

k
n = Z n;gi, (5)
i=1

with integers ny,...,ny where 0 < n; < ¢; for j = 2,..., k. Furthermore, for such an
n € dZ, we have n € (G) if and only if n; > 0.

This theorem is a generalization of the result that, given relatively prime positive integers
a and b, any integer n can be uniquely written as n = nja + nob with ny;,ny € Z and
0<ny <a.

We then obtain an explicit description of the Apéry set of a free numerical semigroup
relative to the first generating element.

Corollary 7 ([9, Prop. 3.6]). Suppose S is a free numerical semigroup, so S = (G) for
G = (91,---,9x) € N{ a telescopic sequence with ged(G) = 1. For ¢(G) = (ca,...,cx), we

have .
Ap(S; q1) {Zn]gj 0<n; < cj} (6)
j=2

Using Corollary 7 with Theorem 4 we obtain the formulas for the Frobenius number and

genus of a free numerical semigroup. The formula for F'(S) in this case was known to Brauer
[4].

Corollary 8. For S a free numerical semigroup generated by G = (g1,...,gr) € N&, a
telescopic sequence with ged(G) =1 and ¢(G) = (ca, ..., cx),

=—g+ Z 1)g;, (7)

and



Observe that for S a free numerical semigroup we have F'(S) = 2¢g(S) — 1. Numerical
semigroups with this property are symmetric. These semigroups are equivalently character-
ized as those for which the map ¢ : S — Z\ S given by ¢(s) = F(S) — s is a bijection.

We can combine Corollary 7 with Theorem 5 to obtain an explicit identity for the gaps
of a free numerical semigroup.

Corollary 9 ([9, Cor. 3.7]). Suppose S = (G) for G = (g1,...,gx) telescopic and ¢(G) =
(co,...,ck). For H(S) the set of gaps of S, and for any function f defined on Ny,

> lfn+g)— Z Z f (Zw) =" fn). 9)

As before, with the function f(n) = n in Equation (9) we recover the genus formula given
in Equation (8).

2.3 Prior results

The motivating question for this paper is whether a free numerical semigroup has a minimal
telescopic generating sequence. We can answer the question immediately for embedding
dimension at most 3.

If e(S) =1, then S = Ny = (G) for G = (1), which is a minimal telescopic sequence.

If e(S) = 2, then S = (G) for G = (a,b) with a,b > 1 and ged(a,b) = 1. The sequence
G = (a,b) is telescopic, so S is generated by a minimal telescopic sequence.

If e(S) = 3, then we need a result of Herzog [10]. (We quote the result as written by
Rosales and Garcia-Sanchez [19].)

Theorem 10 ([19, Cor. 9.5]). For S a numerical semigroup with e(S) =3, S is symmetric
if and only if S = (G), for G = (amy,ams, bmy + cmy) where a,b,c,my,ms € N with
ged(my,ma) =1, a,my,me > 2, b+ ¢ > 2, and ged(a,bmy + emg) = 1.

For our purposes, if S is a free numerical semigroup then S is symmetric. If we also have
e(S) = 3, then by the above theorem we have S = (G) for G = (amy, ams, bmy + cmy),
which is necessarily telescopic (and of course minimal).

This approach will not work when e(S) > 4, however, because there are symmetric
numerical semigroups that are not free. For instance, the numerical semigroup S = (e +
1,...,e+ e) of embedding dimension e is symmetric and not free for all e > 4.

In what follows, we will take a different approach to show that every free numerical
semigroup S is generated by a minimal telescopic sequence.

3 Explicit form of telescopic sequences

In this section, our goal is to obtain an explicit form for the terms in a telescopic sequence,
which we will need for our main result in Section 5. We will see a method to construct



a telescopic sequence G with ged(G) = d given a desired sequence ¢(G) and d € N. Our
method uses the same ideas as in “gluing” of numerical semigroups, described by Watanabe
[22] and by Rosales and Garcia-Sanchez [19, Chap. §].

3.1 Notation and preliminaries

For notation, given ¢, 41, ..., ¢, € Ny, let
Con =[] o (10)

If n < m, then this product is empty, so C,,,, = 1. In particular, we will make use of the

fact that C), ,, = 1. Additionally, as was mentioned in the introduction, for i =1,... k, let

G; = (g1,...,g;). Finally, recall that we will only consider sequences G with g; + go > 0.
We begin with a few lemmas.

Lemma 11. Let G € NE be any sequence with ¢(G) = (ca,...,cx). Then ged(G;) =
Cikecd(G) for alli=1,... k. In particular, if gcd(G) = 1, then ged(G;) = Ciy.

Proof. Observe that

O = CootCrng - = ged(Gi) ged(Giv1)  ged(Giron)
o 2ed(Gir1) ged(Gryz) | ged(Gr)

With cancellation and the fact that Gy, = G, we get C;;, = ged(G;)/ ged(G), as desired. [

For any sequence G' = (g1, ..., gr) € NE and any m € Ny, let mG = (mgy, ..., mgx) € NE.
Ifm|gy,... g let G/m=(g/m,...,gx/m)e NE

Lemma 12. For any G € Nf and any m € Ny,
1. (mG); = m(G;); and
2. ged((mG);) = mged(G;).

Proof. Let H=mG = (mg,...,mgx). Then H; = (mg,...,mg;) = m(g1,...,q9) =m(G;),
so ged(H;) = ged(m(G;)) = mged(G;). O

Lemma 13. For any G € Nt and any m € N,
1. ¢(mG) = ¢(G); and

2. G 1is telescopic if and only if mG is telescopic.



Proof. Let ¢(G) = (ca, . . ) H =mG, and ¢(H) = (e,...,ex). For i =1,... k, we have
H; = m(G;). Thus, fOl"j—2 k.

ej = ged(Hj-1)/ ged(H;)
= (mged(Gj-1))/(mged(Gj))
= ged(Gj-1)/ ged(Gy)

—= Cj?

so ¢(H) = ¢(Q).

Finally, for any j = 2,...,k, suppose ¢jg; € (Gj_1). For m € N, this occurs exactly
when ¢;mg; € (mG;_1). Since e; = ¢; and h; = mg;, we conclude that ¢;g; € (G;_;) if and
only if ejh; € (H;_1). This holds for all j = 2,...,k, so G is telescopic if and only if H is
telescopic. O

Let Sy denote the symmetric group on k letters. Elements of S, act on sequences G' € N§
in a natural way: for o € Sy and G = (g1,...,gx), let 0(G) = (4o}, - - - Gory) € N§. Since
0(G) is a permutation of G, we have (¢(G)) = (G). In the following proposition, we show
that the permutation (1 2) € Sy, takes telescopic sequences to telescopic sequences.

Proposition 14. For k > 2, G = (g1,...,9:) € N&, and 0 = (1 2) € S, G is telescopic if
and only if o(G) is telescopic.

Proof. Suppose G is telescopic and let H = o(G). Then H = (hy, ..., hx) = (92,91, 93, - - - G)-
Let ¢(H) = (e, ..., €ex).
We have ey = ged(H,)/ ged(Hs) = g2/ ged(gz, g1), so

92 g1

ehy = ————g1 = ———
ng(Qz; 91) ng<glv 92)

Since g1/ ged(g1, g2) € No, eaha € (g2) = (Hi).

For i > 1, H; is a permutation of G;, so (H;) = (G;) and ged(H;) = ged(G;). For j > 2,
e; = ged(H, 1)/ ged(H;) = ged(Gj- )/gcd( ;) = ¢;, and therefore ejh; = ¢;g;. Since G is
telescopic, ¢;g; € (Gj_1), so ejh; € (Gj_1) = (H;_1). Thus ejh; € (H;_q) for j = 2,... kK,
so H is a telescopic sequence.

For the reverse implication, since ¢ has order two, if o(G) is telescopic, then o(o(G)) = G
is telescopic as well. O]

Remark 15. Since we already have the restriction that g; + g» > 0, and since G is telescopic
exactly when (1 2)(G) is telescopic, for the rest of this paper we will assume g; > 0. Therefore
ged(g, ..., i) > 0 for all ¢ > 1, and since ¢; = ged(gs, ..., gj-1)/ ged(g1, - .., g;), this will
ensure that ¢; > 0 for all j > 2 as well. We can therefore divide by g1, ged(G;) for all ¢, and
c; for all j without worrying about possibly dividing by zero.

Finally, we show that the sequence consisting of the first m terms of a telescopic sequence
forms a telescopic sequence on its own.



Lemma 16. For any k € N, let G € NE be a telescopic sequence with g > 0 and ¢(G) =
(co,...,ck). For any m € {1,... k}, the sequence G,, = (g1,--.,Gm) 1S telescopic with
c(Gp) = (cay. . Cm)-

Proof. Let m € {1,... k}, let H=G,,, and let ¢(H) = (ea,...,€m). Then H = (hy,..., hy)
with h; = g; for i = 1,...,m. Observe that h; > 0. We have e; = ged(H;_1)/ ged(H;) =
ged(Gj1)/ ged(G;) = ¢ for 2 < j < m. Since ¢jg; € (Gj_1) for j = 2,...,k, and since
m < k, it follows that e;jh; € (H;_q) for j = 2,...,m. Therefore H is telescopic with
c(H) = (coy...,Cm). O

3.2 Construction of telescopic sequences

We can now give an explicit description for the elements of a telescopic sequence. We do so
first in the case where ged(G) = 1 and then for any value of ged(G).

Proposition 17. Suppose G = (g1,...,gr) € NE with gcd(G) = 1 and ¢(G) = (¢, ..., ).
Let z; = 1. Then G is a telescopic sequence if and only if, for each i =2, ...k, there exists
zi € Ny such that g; = z,Cix, ged(zi,¢;) =1, and

2 € <ZjCj7i_1 1<y < Z> .
Proof. ( =) Suppose G is telescopic. For ¢ = 2,..., k, we will use strong induction.

We first show the statement is true for the base case i = 2. Since G is telescopic we
have cog2 € (g1). Let 20 = caga/g1 € (1) = (21Cy 1) since 23 = Cy; = 1. Then, since
g1 = Ch (by Lemma 11), we get go = 2291/c2 = 22C5 . By definition ¢ = g1/ ged(g1, 92), so
Cok = g1/ca = ged(g1, 92) = ged(Ch g, 2205 k) = ged(caCh g, 2005 ;) = Cay ged(ca, 22). Hence
ged(eg, 29) = 1. The conditions are therefore satisfied for i = 2.

For strong induction, for i = 2,...,n, with n < k, we assume g; = 2;C; ,, with ged(z;, ¢;) =
1 and 2z € (2;C;;-1 : 1 < j < ). By Lemma 11, gy = Cy so Cp | g1. Then, since
Cop | Cip for j = 2,...,n, by induction C, | g2,...,9,. Since G is telescopic, we have

Cnt19n+1 € (g1, - -, gn). We can divide through by C,, ;, (using the fact that g;/C,,r = 2;C;} )

to get
Cn+19n+1 o In+1

Cn,k B CnJrl,k
Let 241 = gn+1/Crs1 k- Then gni1 = 2,01Cht1k, and 2,11 € (2;C;,, 1 1 <j<n+1).
Next, we verify the ged condition. By Lemma 11, ged(G,,) = Cyk, sO
Cor1 = ng(Gn) _ Cn,k .
ged(Gni1)  ged(Chps Gnt1)

< <z101,n, ey ZnCn,n> g No.

Therefore
On—i—l,k - Cn,k’/cn—i-l
- ng<On,ka gn+1)
= ng<Cn,k7 ZnJrlCnJrl,k)

= Un+1k ng(Cn-‘rla Zn—l—l)a



so ged(cpat, Zny1) = 1.

Since we have verified all of the conditions for ¢ = n + 1, by induction the statement is
true for all i = 2,... k.

( <= ) Suppose G = (91,92, -+ 9k) = (Crx,22Co 4, - .., 2Cl ) with ged(z;,¢;) = 1 and
2 € (20,21 :1 < j<i)fori=2,... k For G to be telescopic, we need ¢;g9; € (G;_1) for
i=2,...,k. Since ¢;g; = ¢;2;C; ), = 2,Ci_1, and z; € (2;C},1 1 1 < j < i), we have

cigi = ziCi—1p € (2C;,i-1Ci—1p 0 1 < j <)
= (zCip:1<j<i)

= (915, i-1)

= (Gi-1)

for 2 =2,..., k. Thus, G is telescopic. O
We now give the result for any ged(G).

Corollary 18. Suppose G = (g1,...,gx) € N& and ¢(G) = (co,...,cx). Let 21 = ged(G).
Then G is a telescopic sequence if and only if, for each i = 2,... k, there exists z; € (z1)
such that g; = 2,C;, ged(2;/21,¢) = 1, and

Zi € <chj,i—1 o1 S] < Z>

Proof. Let d = ged(G) and H = G/d, so ged(H) = 1. By Lemma 13, ¢(H) = ¢(G) =
(coy... ). Let yy = 1. For H = (hy,...,hy), by Proposition 17, H is telescopic if and
only if, for each i = 2,...,k, there exists y; € Ny such that h; = y;C; x, ged(y;, ¢;) = 1, and
yi € (y;Cji-1 01 < j <i). Since G = dH, g; = dh;. By Lemma 13, G is telescopic if and
only if H is telescopic. Finally, let z; = dy;.

We rewrite the quoted result of Proposition 17 to now say that with z; = dy; = d, G is
telescopic if and only if, for each i = 2,..., k, there exists z; € dNy such that g; = 2,C;,
ged(z;/d,¢;) = 1, and 2 € (2;C;;-1 : 1 < j < i). Since z; = d, the corollary statement
follows. O]

Remark 19. For k € N, given any sequence (cy,...,c;) € N¥~! and any d € N, we have
a process to construct any telescopic sequence G € N& for which ged(G) = d and ¢(G) =
(cay...,cx). We just need non-negative integers 21, ...,z where z; = d and, fori = 2,... k,
ged(z;, de;) = d and z; € (2;C;,-1 : 1 < j <i). Then, fori=1,... k, welet g, = 2,C;, to
produce G = (g1, ..., gx), a sequence for which ged(G) = d and ¢(G) = (ca, ..., cx).

Example 20. Suppose we want a telescopic sequence G' € Nj with ged(G) = 4 and ¢(G) =
(627 C3, C4, 05) = (37 27 57 3)

To start, we have z; = ged(G) = 4.

For z, 23, 24, 25, we have some choices to make. For zy, we need ged(zg,4 - 3) = 4 and
29 € (21). For z3, we need ged(z3,4-2) = 4 and z3 € (321, 22). For z4, we need ged(z4,4-5) = 4
and z4 € (621,22, z3). For 25, we need ged(zs,4 - 3) = 4 and z5 € (3021, 1029, 523, 24).
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One option is to take 2o = 23 = 2y = z; = 4. With ¢, = 2,Cij, we get G =
(91, 92, 93, 94, g5) = (360,120, 60, 12, 4).

Another option is to take zo = 8, 23 = 20, 24 = 28, 25 = 44. With g; = 2,C;, we get
G = (360, 240, 300, 84, 44).

Both sequences are telescopic with ged(G) = 4 and ¢(G) = (3, 2,5, 3).

Observe that the first sequence in Example 20 is not minimal, whereas the second se-
quence is. In Section 6, we present Corollary 56, a refinement of Remark 19, which allows us
to construct any minimal telescopic sequence. We postpone its appearance because it relies
on a result (Proposition 43) from Section 5.

3.3 Specific values for certain telescopic sequences

We describe the sequences (ca, ..., cx) and (z1, ..., 2zx) that occur for some families of tele-
scopic sequences: geometric, supersymmetric, and compound sequences. Gassert and Shor
8] detail some applications of Corollary 9 to these sequences, as well as connections to certain
algebraic curves.

A (finite) geometric sequence G of length k with ged(G) = 1 is a sequence of the form
(g1,--.,gr) where g; = a*~?bi~1 for a,b € N with ged(a, b) = 1. In this case, ged(gy, ..., ;) =

a*~' so ¢; = a for i = 2,...,k. In the notation of Proposition 17, we have z; = b'~! for

i=1,... k.

As named and studied by Froberg, Gottlieb, and Héggkvist [7], a supersymmetric se-
quence G of length k with ged(G) = 1 is a sequence of the form (g¢i,...,g;) where g; =
A/a; for pairwise coprime natural numbers aq,...,a; and A = a;---a,. In this case,
ged(gay .-, 9:) = Af(ay -+ - a;), so ¢; = a;. In the notation of Proposition 17, we have z; =1
and z;, =aq---a;_1 fori=2,... k.

Geometric and supersymmetric sequences are special cases of compound sequences, which
were named and studied by Kiers, O’Neill, and Ponomarenko [11]. A compound sequence G of
length k& with ged(G) = 1 is a sequence of the form (gi, ..., gx) where g; = by -+ - b;_1a; -~ ap_1
for a;,b; € N with ged(a;,b;) = 1 for all ¢ > j. In this case, ged(g1,...,0:) = a;- - ap_1,
so ¢; = a;_1. In the notation of Proposition 17, we have z; = 1 and z; = by ---b;_; for
1=2,...,k.

4 Operations on telescopic sequences

In this section, we will introduce two operations: p,, which maps a sequence of length &
to a sequence of length £ — 1; and 7,,,, a gluing map as described by Rosales and Garcia-
Sanchez [19, Chap. 8], which maps a sequence of length k to a sequence of length k + 1.
With appropriate parameters, these operations “preserve telescopicness,” which is to say
they map telescopic sequences to telescopic sequences. We will also show that any function
between two telescopic sequences with the same greatest common divisor can be written as
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a composition of these functions. In particular, p, will be useful in Section 5 where we will
use it to eliminate redundant terms from a telescopic sequence that is not minimal.

As a reminder, in Remark 15 we saw that we can assume ¢; > 0 for any sequence
G = (g1,...,9r) € NE. We will continue to make this assumption, from which it follows that
ged(G;) > 0 for all ¢ > 1 and ¢; > 0 for all j > 2.

4.1 Two useful sequence operations

For k,l € N, let G = (g1,...,9x) € Nk and H = (hi,...,ly) € N}. For integers ¢ and j with
0<i<j<klet Gij=(git1:Gir2,---,95) € Ng " Let G x H = (g1,..., 95, ,.... lu) €
I\

Using this notation, we have the following results.
Proposition 21. For any G € N,

1. ged(G x H) = ged (ged(Q), ged(H)) for any H € Ni; and

2. Gi; x Gy = G,y for any integers i, j, L with 0 <i < j <<k
Proof. The first result is a consequence of the fact that for a,b,c¢ € Z, ged(a,b,c) =
ged(ged(a, b), c).

The second result is equivalent to saying (gi+1,-.-.65) X (Gj+1,--->91) = (Gix1s---, 1),
which is true when i < 7 < [. O]

We now introduce two operations on sequences that preserve telescopicness. The first,
Pn, Produces a sequence with one fewer entry. The second, 7,,,, produces a sequence that
has one more entry. As we will see, given any two telescopic sequences G and H with
ged(G) = ged(H), one can compose finitely many of these functions together to transform
G into H.

For the definition of p, below, note that for G € N, ¢(G) = (ca,...,cx), andn =2, ...k,
we have ¢, | C,,—1 . Then, by Lemma 11, ¢, | ged(G,—1), so Gn—1/c, € Nyt

Definition 22. For any k > 2, G € N, ¢(G) = (ca,...,cx), and n =2,... k, let
pn(G) = (Gp_1/cn) X Gnp € NOTH X NET™ = NA—1, (11)

In other words, p,(g1,---,9%) = (91/Cny - s In-1/Crs Gty - - - > Gic)-
Remark 23. We specify k& > 2 in the definition because there are no corresponding n for
which to define p,, when k£ = 1.

Remark 24. The definition of p,, allows us to remove the nth entry of G for any n € {2,..., k}.
If we wish to remove the first entry, we can apply the permutation o = (1 2) first and then
apply po.

p2(0(G)) = p2(92, 91, 93, - - - k) = (8cd(g2,91), g, - - - G)-
Since ged(ga, 1) = ged(g1, g2), it follows that po(o(G)) = p2(G). Thus, removal of the first
entry is equivalent to removal of the second entry.
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Definition 25. For any k > 1, G € N}, g € (G), and m € N with ged(m, g) = 1, let
7,m(G) = (mG) x (g) € Ng™. (12)
In other words, 7y.m (91, ..., 0x) = (Mmg1, ..., mgx, g).

Example 26. As in Example 1, let G = (660, 550,352,50,201) € Nj. We have ¢(G) =
(6,5,11,2).

We can apply p, for any n € {2,3,4,5}. Applying p, (and thereby removing go), we
get po(G) = (Gy/c2) x Gas = (110,352,50,201) € Nj. If we wish to remove g;, we apply
the permutation (1 2) first. Let H = (1 2)(G) = (550,660, 352,50,201). Then ¢(H) =
(€9, e3,€4,€5) = (5,6,11,2) and

p2((12)(G)) = p2(H) = (Hy/e2) x Hy5 = (110,352, 50,201) € N,

which, as expected, is equal to po(G).
We can apply 7, for any g € (G) and any m with ged(m, g) = 1. Applying 705 3, we
have Ta513(G) = (3G) x (251) = (1980, 1650, 1056, 150, 603, 251) € NS,

Our goal with p,, and 7, ,, is to determine the conditions under which they send telescopic
sequences to telescopic sequences. We begin by investigating their basic properties. In
Lemma 27, we see how p,, and 7, act on multiples of sequences. In Lemma 28, we compute

ged(pn(G)) and ¢(p,(G)). In Lemma 29, we compute ged(7,,,(G)) and ¢(7,,,(G)).

Lemma 27. Suppose G € Nt and d € N. Forn = 2,....k, p,(dG) = dp,(G). For any
g € (G) and any m € N with ged(g,m) = 1, Tagm(dG) = dry.m(G).

Proof. Let ¢(G) = (ca, ..., cx). By Lemma 13, ¢(dG) = ¢(G), so ¢(dG) = (¢, ..., c;). Then

pn(dG) = ((dG)n-1/cn) X ((dG)n i)
= (d(Gn1/cn)) X (d(Grr))
=d((Gn-1/cn) X Gux)
= dp,(G).

Next, 749.m(dG) = (mdG) x (dg) = d ((mG) x (g)) = d7y.m(G). O

Lemma 28. Let G € N§ with ¢(G) = (ca, ..., cx). Foranyn =2,....k, we have ged(p,(G)) =
ged(G) and c(pn(G)) = (2, -+ -y Cro1y Crg1s - - - 5 Ck)-

Proof. We begin with the case where ged(G) = 1.

Let H = p,(G), so H = (hy,...,hg_1) where, for i = 1,...,n — 1, we have h; = g;/cp,
and for i =n,..., k — 1, we have h; = g;41. Let ¢(H) = (e2,...,€5_1).

We begin by computing ged(H;). For i < n, H; = G;/c,. Thus ged(H;) = ged (G;/c).
By Lemma 11, ged(G;) = Ci = ¢iy1- - . Since i < n, ged(G;) contains ¢, as a factor.
Therefore ged (G /c,) = Cix/cn.
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For i > n, we wish to show gcd(H;) = Cjt1 5. We proceed with induction on i. If i = n,
H, = (Gy-1/¢n) X (gnt1). By the previous paragraph, ged(G,—1/¢,) = C,, . By Proposition
17, gnt1 = 2n11Cn11, With ged(cpq1, 2n41) = 1. Then

ged(Hy) = ged ((Gro1/cn) X (gn41))
= ged (ged(Gn-1/¢n);s Gnt1)
= ged(C ks Gnt1)
= ng(cn+1Cn+1,k7 Zn+1Cn+1,k)
= Unt1k ng(Cn—HaZn—H)

= Unt1k-

For i > n, by Proposition 17 we have ¢;10 = 2;12Ci10x With ged(ciya, zi42) = 1. By
induction we assume ged(H;) = Ciiq, SO

ged(H;p1) = ged(hy, ... higa)
= ng(g ( ) gz+2)
= ng( i+1,k> Zz—i-QCH—Q k)

= ng (Cz+2 Cz+2,k 5 Ri42 Cz+2,k)

— Yi+2)k-

Therefore ged(H;) = Cigy1 for ¢ > n. In particular, ged(H) = ged(Hi—1) = Ci = 1.

Now we compute e;. For j < n, e; = ged(H;_1)/ged(H;) = (Cij_1x/cn)/(Cjx/cn) = ¢;.
For j = n, e; = ged(Hpu—1)/ ged(Hy,) = (Cho1/cn)/Cns1k = Cns1 = ¢js1. For j > n,
e; = gcd(Hj—1)/ ged(H;) = Cjx/Cjs1k = ¢jr1. Therefore ¢(H) = (c2,. .., o1, Cnt1,-- - C),
as desired.

Now, suppose ged(G) = d > 1, let G’ = G/d. Since ¢(G) = ¢(G’), we have ¢(G") =
(cay...,ck). Since ged(G') = 1, we apply the above result to obtain ged(p,(G')) = 1 and
c(pn(G) = (c2,.. ., Cn1,Cns1,s .-+, Ck). By Lemma 27, p,(G) = p,(dG") = dp,(G"), so
ged(pn(G)) = ged(dpn(G')) = dged(pn(G')) = d and c(pn(G)) = c(dpa(G')) = c(pu(G)) =

(Coyeevy Cro1y Crtty -y Ck)- O

Lemma 29. Let G € N} with ¢(G) = (ca,...,cx). For any g € (G) and any m € N with
ged(g,m) =1, we have ged(7,,,(G)) = ged(G ) and ¢(7ym(G)) = c(G) x (m).

Proof. Let H = 7,,,(G), and let c¢(H) = (e, ..., ex41). We'll compute e; for j =2,... k,
and for j =k + 1.

We have Hy = mG. By Lemma 13, ¢(mG) = ¢(G). By Lemma 16, c¢(Hg) = (ea, ..., ex).
Thus ej = ¢ for j =2,... k.
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For 7 = k + 1, first note that

ged(H) = ged((mG) x (g))
= ged(ged(m@), g)
= ged(m ged(G), g)
= ged(ged(G), g)
(@),

where the fourth equality follows from ged(g, m) = 1 and the final equality follows from the
fact that g € (G), which implies that ged(G) | g. Then

= ged

ert1 = ged(Hy)/ ged(Hgy1)
= ged(mGy)/ ged(H)
= mged(G)/ ged(G)

=1m.

Combining the results for j = 2,...,k and j =k + 1, we have ¢(H) = (ca,...,c,,m) =
¢(G) x (m), as desired. O

With appropriate parameters, p, and 7, are inverses of each other as the following
lemma shows.

Lemma 30. Let G = (g1,...,gr) € NE with ¢(G) = (ca,...,c1), g € (G), and m € N with
ged(g,m) = 1. Then 7y, 0, (0x(G)) = G and pia(79m(G)) = G.

Proof. Since pi(G) = Gi_1/ck,

Torer (PR(G)) = T e (Gr1 /i)
= (exGr—1/ck) x (gr)
= Gr-1 % (g)
=G.

By Lemma 29, ¢(7,,,(G)) = (ca, ..., cx,m), S0

Prr1(Tgm(G)) = pra1 (MG) % (9))
= pry1 ((Mgy, - .., Mgk, g))
= (mgy,...,mgx)/m
= (91, k)
=dG.
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4.2 'Telescopicness-preserving operations

Now that we have developed some of the properties of p,, and 7, ,,, we will see how they map
telescopic sequences to telescopic sequences. The goal is to then construct a map between
any two telescopic sequences with the same greatest common divisor using some sequence of
these maps composed together.

We first show that p,, preserves telescopicness.

Proposition 31. For k > 2, let G € NE. Forn=2,....k, if G is telescopic, then p,(G) is
telescopic.

Proof. Let H = p,(G). Then H = (hy,...hg_1) where h; = g;/¢c, for i < n, and h; = g;11
for i > n. Let ¢(H) = (ea,...,ex-1). By Lemma 28, ¢(H) = (C2,...,Cpn-1,Cnt1y---,Ck)-
Since G is telescopic, ¢;g; € (Gj_1) for j = 2,..., k. We need to show e;h; € (H,_1) for
j=2, . k-1

Fori=1,...,n—1, H;=G;/cy,s0 for j =2,...,n—1, e; = ¢;. Since G is telescopic,
¢;g; € (Gj1). Thus e;h; = ¢;g;/cn € (Gja/cn) = (Hja).

Next, we have ¢,g, € (G,_1). Since ¢, | gcd(G,_1), gn € (Gn_1/cn), 50 (Gn_1/cn) =
((Gp-1/cn) x(gn)). Fori=mn,....k—=1,(G;) C ((Gp-1/cn) X Gp14) = (Gn-1/cn) X Gpi) =
<Hi_1>. For ] =nN,..., k — 1, we have ejh'j = Cj+19j+1 S <GJ> C <Hj_1>.

Since ejh; € (Hj_y) for j =2,...,k —1, H is telescopic. ]

Remark 32. Unfortunately, Proposition 31 is not an “if and only if” statement. Since all
sequences of length 2 are telescopic, we can illustrate this with a sequence of length 3
that is not telescopic. For example, consider the sequence G = (3,4,5). We have that
c(G) = (ca,c3) = (3,1). Since 1-5 ¢ (3,4), G is not telescopic. However, po(G) = (1,5) and
p3(G) = (3,4), and both are telescopic sequences.

Next, we show that, with proper parameters, 7, preserves telescopicness.

Proposition 33. For k € N, let G € N, g € (G), and m € N with gcd(g,m) = 1. Then G
is telescopic if and only if 7,,,(G) is telescopic.

Proof. ( = ) Let H = 7,,,(G), so H = (hy,...,hgy1) with h; = mg; for i = 1,... Fk,
and hyy1 = g. Let ¢(H) = (eq,...,exr1). By Lemma 29, ¢(H) = (cg,...,ck,m). Since G is
telescopic, ¢;g; € (Gj_1) for j =2,..., k. We need to show e;h; € (H;_;) for j =2,..., k+1.

Forj=2,...,k ejh; =cjg; € (Gj_1) = (H;_1). For j = k+1, e;h; = mg. Since g € (G),
mg € (mG) = (Hy). Thus egy1hpr1 € (Hi). Therefore ejh; € (Hj—q) for j =2,...,k+1,
so H is telescopic.

(<=) For G = (g1,--., k), if Ty.m(G) € NE™ is telescopic, then pyi1(7,.(G)) is also
telescopic. Since pji1(7ym)(G) = pr41((MG) x (g)) = G, and p,, maps telescopic sequences
to telescopic sequences, we conclude that G is telescopic. O

Now that we know p,, and 7,,, send telescopic sequences to telescopic sequences (using
appropriate parameters with 7,,,), in Lemma 34 we will construct a map from N to Ny
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using a sequence of p, functions that sends G to ged(G). Following this, in Lemma 35 we
will construct a map from Ny to NE using a sequence of 7, functions that sends ged(G) to

G.

Lemma 34. For any G € Nk (telescopic or not), let
Rgzpzop3o---opk:N§—>Ng. (13)
Then R (G) = ged(G).

Proof. 1f k = 1, then R is the identity map. Since ged(g1) = g1, Ra(G) = ged(G).
Now, suppose k > 1. Let ¢(G) = (ca,...,c;). Then pp(G) = Gi_1/cx and c(pp(G)) =

(cay...yck—1). Then pr_1(pp(G)) = (Gr_o/ck)/cr—1 and c(pr—1(pp(G))) = (c2y...,Ck—2).
Continuing in this way we find

(p2opso---0op)(G) =Gr/(cker1--c2) = g1/Chy = ged(G),
by Lemma 11. O]

Lemma 35. For G € N} a telescopic sequence with ¢(G) = (ca, ..., c) and z; = g;/Ciy for
1=1,....k, let
T = Tpoer © Tap1,0p-1 © 7" O Tapep No — ng (14>

Then Te(ged(G)) = G.

Proof. 1f k = 1, then Tg is the identity map. Since ged(g1) = g1, Te(ged(G)) = G.
Now, suppose k > 1. We first consider the case where ged(G) = 1. For j = 2,... k, we

wish to §h0w Teje; © 7 © Tsy.co(1) 18 defined and equal to (2,C 5, . .., 2;,C};).

For j = 2, since 23 € (1), Tzy.0, (1) = (€2, 22) = (21C1 2, 22C52).

Now, for induction assume 7, . 0---07,, ., (1) is defined and equal to (2:C1 ;.. ., 2;C;j ;).
Since G is telescopic, ¢j19;41 € (G;), 80 2j41Ck € (21C1k, ..., 2;C;k). It follows that
zjy1 € (2101, . .., 2;C} ), and therefore 211 € (7, ¢, 0+ 07, 0, (1)). Then

(sz+170j+1 ©---0 7—22702)(1) = Tzj41,¢j41 (ZlCl,jﬂ s 7ZjCj7j>
= (21C15¢41, -, %05 5¢41, Z41)
= (210151155 205511, 2410 g41)

In particular, for j = k, we have
(Tzk,ck O Tz q,0p1 "0 TZ2762)(1) = (Zchk, R Zka,k) =d.

Now, suppose ged(G) = d > 1 and let H = G/d, so H = (hy,...,hy) with h; = g¢;/d
and c¢(H) = ¢(G). Let y; = z;/d. By Proposition 17, since ¢; = 2z;,C; with z; € dN, for
i=1,...,k, we have h; = y;C;;, with y; € Ny. By above,

(Tykvck O Typ_1,e5-1 0" © Tyz,Cz)(l) = (lel,ka <. ,kak,k) = H.
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Since T4g.m(G) = 7ym(dG) (by Lemma 27), we multiply by d and get

(Tdykyck O Tdyy_1,c0-1 © """ © Tdy2,02)(d) - (dylol,k: ce adykck,k) = dH.

Finally, since z; = dy; and dH = G,

(Tzk,ck O Top_1,cpg @0 Tzz,cg)(d) - (Zlcl,ka s 7chk7k) =G.
]

We now have our result. Given any two telescopic sequences G and H with ged(G) =

ged(H), we can perform a sequence of p, and 7, operations on G to produce H. We send
G to ged(G) = ged(H) and then send ged(H) to H.

Proposition 36. Let G and H be telescopic sequences with ged(G) = ged(H). Then there
exist functions ¢q.u and dyq, each a finite composition of functions p,, and Ty, ., (for
parameters n; and g;,m;) such that pc.p(G) = H and ¢ppc(H) =G.

Proof. By Lemmas 34 and 35, Ty(Rc(G)) = Tu(ged(G)) = Tu(ged(H)). Since H is tele-
scopic, Ty (ged(H)) = H. Thus, ¢gu = Ty o Rg is composition of p,, and 7y, functions
such that ¢¢ y(G) = H.

Reversing the roles of G and H, since G is telescopic, we have the same result for ¢p . O

We conclude this section with an example.

Example 37. Let G = (4,6,9) and H = (30,18,20,33). Then gcd(G) = ged(H) = 1,
c(G) = (2,2), and ¢(H) = (5,3,2). Both sequences are telescopic. Then Rg = ps o p3, and

R(G) = (p20p3)(4,6,9) = p2(2,3) = 1.

For Ty, we first need the z; values for H. Since z; = h;/C;4 for i = 1,2, 3,4, we get z; = 1,
29 = 3, z3 = 10, and z4 = 33. Therefore Ty = 7339 0 19,3 © T35, and

Tr(1) = (T332 0 T103 0 T35)(1) = (T332 0 T10,3) (5, 3) = T332(15,9,10) = (30, 18, 20, 33).
Thus, for ¢pg.y = Th o R = T332 © Ti03 © T35 © pa © p3, we have ¢ u(G) = H.

We follow the same process for the reverse direction. Here, Tz = 792 0 732 and Ry =
p2 0 ps o py. Therefore ¢y =Tgo Ry =Tg2 07320 p20p30ps and ¢y a(H) =G.

5 Reduction of a telescopic sequence to a minimal tele-
scopic sequence

In this section, we present a method to take a telescopic sequence G and produce a minimal
telescopic sequence G’ such that (G') = (G). The main result is Theorem 52. In the context
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of free numerical semigroups, this shows that every free numerical semigroup is generated
by a telescopic sequence that is minimal. As we will see, the main idea is in Proposition 43,
which says there are only two ways in which a telescopic sequence can fail to be minimal.
Before we begin, we introduce one more sequence operation and two helpful lemmas. For
GeNrandn=1,... k, let
T(G) = Gpo1 X G (15)

In other words, for G = (g1, ..., gx),
Wn(G) = (917' .. 79/;17' .. 7gk) = (gla <oy 9n—1,9n+1, - - - 7916) S ng_l- (16)

The nth term is removed from G and the indices of all subsequent terms are decreased by
one.

With this notation, we have that a sequence G € Nf is minimal if and only if (r,(G)) #
(G) for all n =1,..., k, which occurs if and only if g, & (7, (G)) for alln =1,... k.

As in previous sections, we will continue to assume that g; > 0.

Lemma 38. For any sequence G € Nf, let S = (G). Then ged(G) = ged(S).
Proof. Let dg = ged(G) and dg = ged(S). Since G C S, ds | dg. For any s € S,

s =y, a;g; for some non-negative integers a;. Since d¢ | g; for all i, we have d¢ | s for all
s € S. Since dg is a common divisor for all elements of S, dg | ds. Thus d¢ = ds. O

Lemma 39. Suppose G = (g1,...,gr) € NE is any sequence (not necessarily telescopic). If
gn € (mn(Q)) for some n, then ged(m,(G)) = ged(G).

Proof. Since (m,(G)) = (G), we use Lemma 38 twice with 7,(G) and G to get
ged(m, (@) = ged({mn (@) = ged((G)) = ged(G).
[

5.1 Determination of the two cases for non-minimality of a tele-
scopic sequence

As we will see, there are two ways for which a telescopic sequence can fail to be minimal. In
Lemmas 40 and 41, we will show that if one entry of a telescopic sequence can be written
as a non-negative linear combination of the remaining elements, then we have a divisibility
condition on the coefficient of the term with highest index.

Lemma 40. Let G = (g1,...,9x) € NE be telescopic with ¢(G) = (ca,...,cx). Suppose
gn € (m(GQ)) for somen € {1,...,k}. That is, suppose

gn = Z a;gi (17)
for non-negative integers a;. Then cy. | ay.
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Proof. Since g, € (m,(G)), by Lemma 39, ged(m,(G)) = ged(G). We consider two cases:
n =k andn <k.

Assume n = k. Since Gx_1 = (g1, ..., 9k-1) = T(G), we have ged(Gg_1) = ged(Gy), so
cr = ged(Gr_1)/ ged(Gy) = 1, and consequently ¢y, | ay.

Now assume n < k. Since ged(Gy) = ged(G), then ¢ = ged(Gy-1)/ ged(G). Therefore,
in order to have that ¢, | ag, it is enough to show that ged(Gy_1) | (arged(G)). From
Equation (17) we solve for axgy to get

k-1
Uge =g — D, g,
i=1,i#n
SO argr is a linear combination of gi,...,gx—1. Since ged(Gr—1) | g1,...,9k—1, we have
ged(Gg-1) | (argr). Then, since ged (ged(Gr-1), gx) = ged(G), we conclude that ged(Gr—1) |
(ar ged(@)). O

Lemma 41. Let G = (g1,...,9x) € N be a telescopic sequence with ¢(G) = (ca,...,ck).
Suppose there exist n and m with 1 <n < m < k such that g, € (7,(Gp)). That is, suppose

In = Z a;gi (18)

i=1,i#n
for non-negative integers a;. Then cp, | ap,.

Proof. Suppose g, € (m,(Gy,)) for some m > n. Let H = G,,, a sequence of length m. By
Lemma 16, H is telescopic with ¢(H) = (co,...,¢p). Since g, € (m,(H)), we apply Lemma
40 to H to conclude that ¢, | ay,. O

We need one more lemma before we can state our main result on the form of a non-
minimal telescopic sequence.

Lemma 42. For G = (g1,...,gr) € NE telescopic with ¢(G) = (ca,...,c1), suppose g, €
(10 (Gr)) for some m and n with 1 <n <m <k. Then g, € (m,(Grn_1)) 0T G = CnGm-

Proof. First, suppose n = m. Since m,(Gp) = (91, -, Gn-1) = Tn(Gn_1), if g, € (7o (Gpn))
then ¢, € (m,(Gm-1)), as desired. (Additionally, we have that ¢, = ged(G,)/ ged(Gra1) =
1 in this case. Since g, = g, we also have ¢, = ¢, Gm-)

Now suppose n < m. Suppose ¢, € (7,(Gp)) and ¢, € (7, (Gm-1)). We wish to show
that g, = ¢ gm.

Since g, € (m,(G.,)), there exist non-negative integers a; such that

9n = Z a;gi- (19)

i=1,i#n
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Since ¢, & (mp(Gyn_1)), we must have a,, > 0. By Lemma 41, ¢, | a,, so we let ¢ = a,,, /¢, €
N. For G telescopic, ¢ngm € (Gm-1), so there are by, ..., b, _1 € Ny such that

Cmdm = blgl + -+ bmflgmfl- (20)

m—1
Thus @mGm = ¢CmGm = q Y, big;, which we plug into Equation (19) to obtain
i=1

m—1

i=1,i#n

Since g, & (mn(Gp1)), we must have gb, # 0. Since gb, € N, this implies ¢b, = 1, so
(gb; + a;)g; = 0 for i = 1,...,m — 1, with i # n. Therefore ¢ = b, = 1 and a;g; = b;g; = 0
forte=1,...,m — 1, with ¢ # n. Since ¢ = 1, a,, = ¢,,. Finally, we plug these values into
either Equation (19) or Equation (20) to conclude that g, = ¢;,gm. O

We now have our result.

Proposition 43. For G = (g1,...,g1) € NE a telescopic sequence, suppose g, € (m,(G)).
Then g, € (Gn_1) Or gn = Cmgm for some m > n.

Proof. This follows immediately from Lemma 42. O]

Therefore, if a telescopic sequence G is not minimal, there are two cases: Case 1, where
gn € (Gp_1); and Case 2, where g, = ¢,;,gy, for some m > n.

Proposition 43 gives us a straightforward criterion to determine whether a given telescopic
sequence is minimal.

Corollary 44. Suppose G = (g1,...,qx) € NE is telescopic with ¢(G) = (ca,...,c). Let
H = (ha,...,h) = (c292, .., ckgr). Then G is minimal if and only if g; # h; for all i,j.

Proof. (=) Suppose G is minimal. Then g; ¢ (G;_;) for all j > 2. Since G is telescopic,
cjg; € (G,—q) for all j > 2. Thus g; # c¢;jg; for all j > 2.

Also, since G is minimal, g; & (g;) for all i # j. In particular, we have g; # c;g, for all
it # 7. Combined with the previous paragraph, we have g; # h; for all 7, j.

( <) Suppose G is not minimal, so ¢; € (m;(G)) for some i. By Proposition 43, we
have either g; € (m;(Gi—1)) or g; = ¢;g; for some j > 7. In the first case, ged(g1,...,9:) =
ged(gas - -+, gi1), so ¢; = 1. Therefore g; = ¢;g; = h;. In the second case, g; = h;. H

The following example illustrates the two cases of Proposition 43.

Example 45. Let G = (660, 550, 352,902, 50, 201) a telescopic sequence with ¢(G) = (6,5, 1,11, 2).
We have g5 € (m(G)) and g4 € (my(G)). Observe that go = c5¢95, which is Case 2. And
gs = g2 + g3, which is Case 1.

For each case, we will see how to remove g, without losing the telescopic property of the
generating sequence. We will illustrate our methods with the above example.

21



5.1.1 Casel

For the case where g, € (G,_1), we use a result (Proposition 31) about p,, from Section 4.

Corollary 46. Suppose G = (g1, ..., gr) € Nk is telescopic with g; > 0 and that g,, € (Gp_1)
for some n. Thenn > 1, ¢, =1, and 7,(G) is a telescopic sequence with (m,(G)) = (G).

Proof. Suppose n = 1. Then G,,_; = Gy = (), the empty sequence, so (Go) = {0}. Thus
g1 = 0. However, since we have assumed that g; > 0, this cannot occur. Therefore n > 1.
Now, let ¢(G) = (ca,...,cx). If g, € (Gr-1), then (G,,—1) = (G,,) so

cn = ged(Gpo1)/ ged(Gp) = 1.
By Proposition 31, the sequence p,(G) is telescopic. Since ¢, = 1,

on(G) = (91/Cns -3 Gn1/Cns Gnsts - - s 9k) = (915 - s Gne1s Gt 15 - - - Gr) = Tn(G),

so m,(G) is telescopic. Also, since (Gy,—1) = (Gp), (Gno1 X Gpi) = (G X Gpi), s0 (1, (GQ)) =
(G), as desired. O

In this case, we can therefore remove g, to produce a shorter telescopic sequence that
generates the same submonoid.

Example 47. For the telescopic sequence G = (660,550, 352,902, 50,201) with ¢(G) =
(6,5,1,11,2) from Example 45, g4 = 902 = 550 4+ 352 = ¢ + g3 € (G3). To remove g,
from G, we compute m4(G) = (660, 550, 352, 50,201), a telescopic sequence with ¢(my(G)) =
(6,5,11,2) and (m4(Q)) = (G).

5.1.2 Case 2

Now we consider the case where g, = ¢ng, for m > n. Instead of just removing g, (like
we did in Case 1), we will first swap the positions of g, and g, before removing g,,. As the
following lemma states, this is equivalent to a permutation from Sj_; acting on 7, (G).

Lemma 48. For G € NE, suppose 1 < n < m < k and consider the transposition (n m) € S.
Then mm((n m)(GQ)) = o(m,(GQ)) for o € Si—1 defined by

i, ifi<mnori>m;
o(i) =< n, ifi=m—1; (22)

i+1, ifn<i<m-—1.
We now have a lemma with two results about greatest common divisors that will be
useful for the main result of the g, = ¢,,9,» case. Since c¢; is not defined, we will assume

n > 1 for the following lemma and proposition. We will then address the possibility of n = 1
in Theorem 52 with the help of the permutation (1 2).
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Lemma 49. For G = (g1,...,g9x) € NE a telescopic sequence with ¢(G) = (ca,...,c1) and
ged(G) =d, if g, = cmGm for some m,n with1 < n <m <k, then g, = 2,Cy,, with z, € (d)
and ged(z,/d, c,) = 1. In addition we have ged(z,/d, ¢,) = 1 and ged(cj, ) = 1 for all
n<j<m.

Proof. By Proposition 17, g, = 2,Cp with ged(z,/d,¢,) = 1 and ¢, = 2,Cy . With
ged(2,/d, ¢y) = 1. Since ¢, = CmGm, we have 2,Cp ;. = cn2mCnk, 50 2,.Cpm_1 = Zpm.
Therefore (2,/d)Chm-1 = (2m/d).

For the first greatest common divisor statement, (z,/d) | (zn,/d), so ged(z,/d, cy) |
ged(zm/d, ¢), which is 1. Thus ged(z,/d, ¢p) = 1.

For the second greatest common divisor statement, for n < j < m since ¢; | Cp -1,
¢; | (zm/d). Then ged(cj, ¢n) | ged(2m/d, ¢), which is 1. Thus ged(cy, ¢,) = 1. O

We now have our main result for this case.

Proposition 50. For G = (g1,...,g9x) € NE telescopic with ¢(G) = (ca,...,cx), suppose
Gn = CmGm for some m,n with 1 < n < m < k. For the transposition (n m) € Sy, the
sequence m,((n m)(Q)) is telescopic and (m,,((n m)(G))) = (G).

Proof. For H = m,,((n m)(G)), by Lemma 48, H is a permutation of 7,(G), and since

gn € (ma(@)), (H) = (mn(G)) = (G).
We have H = (hy,. .., hx_1) € Ng™' where

Ji, fori=1,...,m—1 with ¢ # n;
hi =< gm, fori=mn;

Giy1, fori=m,... . k—1

Let ¢(H) = (e2,...,ex—1). To show H is telescopic, we must show e;h; € (H;_1) for 2 < j <
k — 1. We will consider five subintervals of indices: 2 < j <n;j=nn<j<m;j=m;
and m<j<k-—1.

Since H,,_1 = G,,_1 and G is telescopic, by Lemma 16 H,,_; is telescopic, which implies
that ejh; € (Hj_q) for 2 <j <n—1.

Suppose j = n. Let d = ged(G). By Corollary 18, g, = 2,C,, . for some z, € dN, with
ged(z,/d, ¢,) = 1. Then

ged(H,y,)

ng hla )
ged(g1, - -5 gn-1, )

(
(
d(ged(Gn-1), gn/Cm)
d(C

n— lkd Zn nk/cm>

d

m

Note that C, /¢, € N since m > n. Since ged(z,/d,c,) = 1 and ged(z,/d,cpn) = 1
(the latter from Lemma 49), ged(H,,) = C, xd/cy,. Since ged(H,—1) = ged(G,—1), we have

gc
gc
C

ged(emen, 2n/d).
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e, = ged(Hy,—1)/ ged(H,) = ged(Gro1)/(Crid/cm) = ¢mCn,y SO €phn = CmCngn/Cm = Can,
which is in (G,_1) since G is telescopic. And since H,,_; = G,,_1, we have e, h, € (H,_1).

From the j = n case, we saw ged(H,) = Cyid/cy. By Corollary 18 again, g, =
Zn41Cny1 x for some 2,11 € dN with ged(2,,41/d, ¢nq1) = 1. Then,

ng(Hn—f—l) = ng(gb <oy On—1, gm7gn+1)
- ng(Cn,kd/Cm, gn—i—l)
= ng<Cn,kd/Cma Zn+1cn+1,k)

Chsrid
= :_m ged(Cnr1, Cmznta/d)

Cri1xd

Cm
since ged(cpi1, 2ny1/d) = 1 and ged(cpa1, ¢n) = 1 (the latter from Lemma 49).

Continuing in this way, we find that ged(H;) = C;xd/cp, for n < i < m. Therefore, for
n<j<m, e = gcd(H;_1)/gcd(H;) = ¢;. Since G is telescopic, ¢jg; € (Gj_1). With
Gn = CmGm and h,, = g, we have g, € (h,), so (G;—1) C (H;_1). Thus e;h; = ¢;g; €
(Gj_1) C(Hj_q) forn < j <m.

Suppose j = m. We first note that (G,,) = (H,,—1). Then, since H,, is a permutation
of 7, (Gpt1), we have (Hy,,) = (m,(Gimg1)) = (Gmg1), the latter equality holding because
Gn € (gm) C (mn(Gmi1)). Thus ged(H,,) = ged(Gy1) = Chy1xd, from which it follows
that e,, = ged(Hp—1)/gcd(H,,) = (Crm1xd/cm)/(Crg1xd) = ¢mgr. Since G is telescopic,
Cmi19m+1 € (Gp). Then ehy, = cni1Gms1 € (Gm) = (Hp-1).

Finally, for m < i < k — 1, H; is a permutation of 7,(Gi1), so (H;) = (G;41) and
ged(H;) = ged(Giq1) = Ciyipd. Then for m < j < k—1, e; = ged(H;—1)/ged(H;) =
ged(G;)/ ged(Gi1) = cj1. Since G is telescopic, ¢j19j41 € (G;). Thus e;h; = ¢jp10541 €
<GJ> = <Hj_1> for m <j < k—1. ]

As a result, we can therefore remove g, and reorder the remaining terms to produce a
shorter telescopic sequence that generates the same submonoid.

Example 51. For the telescopic sequence G = (660,550, 352,902,50,201) with ¢(G) =
(6,5,1,11,2) from Example 45, go = 550 = 11-50 = ¢5g5. To remove g, from G, we compute

m5((2 5)(G)) = m5(660, 50, 352, 902, 550, 201) = (660, 50, 352, 902, 201).

Then ¢(75((2 5)(G))) = (66,5,1,2), m5((2 5)(G)) is telescopic, and (m5((2 5)(G))) = (G).

5.2 Answers to Questions 2 and 3

If a telescopic sequence G is not minimal, then there is some n such that g, € (7,(G)). In
Cases 1 and 2, we saw how to remove g, and produce a shorter telescopic sequence that
generates the same submonoid. We can now answer Question 2.
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Theorem 52. Let G € NE be telescopic. Then there exists a minimal telescopic sequence G’
such that (G') = (G).

Proof. Tf G is minimal, we are done. Otherwise, for G = (g1, . .., gx), there is some n for which
gn € (mn(G)). By Proposition 43, either g, € (G,-1) (Case 1) or, for ¢(G) = (ca, ..., cx),
Gn = Cmgm for some m > n (Case 2).

For Case 1, if g, € (G,,—1), then by Corollary 46, 7,(G) is a telescopic sequence of length
k — 1 such that (m,(G)) = (G).

For Case 2, if g, = ¢ngm for some m > n, we consider two cases of n. If n > 1,
then by Proposition 50, m,((n m)(G)) is a telescopic sequence of length & — 1 such that
(mm((n m)(G))) = (G).

If n =1 and ¢go > 0, we transpose the first two terms and use the previous paragraph to
remove the (new) second term. Let H = (1 2)(G). We have H = (hq, ..., hy), a telescopic
sequence (by Proposition 14) with hy > 0, hy € (m2(H)), and (H) = (G). By Proposition 50,
Tm((2 m)(H)) is a telescopic sequence of length k—1 such that (m,,((2 m)(H))) = (H) = (G).

Now, to construct the minimal telescopic sequence, starting with G we first iteratively
remove all of the Case 1 terms (in any order). Observe that this removes any zeros. Then,
from the resulting sequence, we can iteratively remove all of the Case 2 terms (with n > 1
and n = 1). Since G € Nf and we remove one term with each step, this process terminates
in fewer than k steps, producing a telescopic sequence G’ that is necessarily minimal and

satisfies (G') = (G). O

Example 53. Once again using the telescopic sequence G = (660, 550,352,902, 50, 201)
with ¢(G) = (6,5,1,11,2) from Example 45, we have g, € (m,(G)) for n = 2 and n =
4. In Example 47, we removed g4 from G to get the telescopic sequence H = my(G) =
(660, 550, 352, 50, 201) with ¢(H) = (6,5, 11,2). In Example 51, we removed g from G to get
the telescopic sequence H = m5((2 5)(G)) = (660, 50, 352,902, 201) with ¢(H) = (66, 5,1, 2).
Of course, neither of these resulting sequences is minimal.

In H = (hy,...,hs), hg = 11hy, which is Case 2. We therefore compute m4((2 4)(H)) =
74(660, 50, 352, 550, 201) = (660, 50, 352,201), a telescopic sequence that generates the same
submonoid as H. Observe that this sequence is also minimal. (On its own, this paragraph
addresses the motivating example in Example 1.)

In H = (hy,...,hs), hy = 11hy + 1hs, which is Case 1. We therefore compute m4(H) =
(660, 50, 352,201), which is the same sequence as in the previous paragraph.

The result is that, starting with the telescopic sequence G = (660, 550, 352, 902, 50, 201),
after two steps we produce the sequence G’ = (660, 50, 352, 201) for which ¢(G") = (66,5, 2).
Then G’ is telescopic and minimal, and (G") = (G).

Since a free numerical semigroup is one that is generated by a (not necessarily minimal)
telescopic sequence G with ged(G) = 1, we get the following.

Corollary 54. Suppose S is a free numerical semigroup. Then S is generated by a telescopic
sequence that is minimal.
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We conclude this section by answering Question 3.

Corollary 55. Let G and H be sequences with (G) = (H). Then a permutation of G is
telescopic if and only if a permutation of H is telescopic.

Proof. Suppose G is telescopic and that (G) = (H). By Theorem 52 there is a minimal
telescopic sequence G’ such that (G') = (G), so (G') = (H) as well. Since G’ is minimal,
each term in G’ must appear in H. Consider the permutation

o(H)=G"x H',

where H' consists of the remaining terms of H not included in G’. Each term in H' is in
(G"), s0 c(o(H)) = c(G") x (1,...,1). Since G’ is telescopic, the telescopic conditions hold
for the G’ portion of o(H). And since 1 times each term in H' is in (G’), the telescopic
conditions hold for the H’ portion of o(H). Therefore, o(H) is a telescopic sequence.
Switching the roles of G and H, we find the reverse implication holds as well. m

6 Construction of minimal telescopic sequences with
desired properties
We now look at necessary and sufficient conditions for a constructed telescopic sequence to

be minimal. Suppose G = (g1,...,9x) € NE and ¢(G) = (ca,..., ). If G is telescopic and
not minimal, then g, € (m,(G)) for some n, so by Proposition 43, either

L. gn € <Gn—1>; or
2. there is some m > n such that g,, | gn.

The first case occurs precisely when ¢, = 1, which we can avoid by requiring ¢; > 1 for all
Jj =2,..., k. The second case occurs precisely when z,,Cy, i | 2,Cp x, which we can avoid by
requiring z; { z;C; ; for all 4, j with 1 <i < j <k.

Corollary 56. Suppose G = (g1, ..., gx) s a telescopic sequence (with notation as in Corol-
lary 18). Then G is minimal if and only if we additionally have ¢; > 1 for j =2,...,k and
2i4 ziCij foralll <i<j<k.

Example 57. Suppose we want a free numerical semigroup S = (G) where G is minimal
and telescopic with
c(G) = (ca,c3,¢4,05) = (2,3,4,5).

To generate a numerical semigroup, we need ged(G) = 1, so we have z; = ged(G) = 1.
Since ¢; > 1 for all j, for minimality we need only satisfy the non-divisibility conditions for
Z9,...,%5. We need z; € N where

® 25 € (21), ged(29,2) = 1, and 25 1 224
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o 23 € (221, 29), ged(z3,3) = 1, and z3 1 621, 329;
o 24 € (621,329, 23), ged(2y4,4) = 1, and 24 1 2421, 1229, 423;
o 25 € (2421, 1229, 423, 24), ged(z5,5) = 1, and z5 1 12021, 6029, 2023, 524.

Any such z,, ..., z5 satisfying the above will produce the desired result, and conversely
every such numerical semigroup S can be constructed in this way.

For a concrete example, we can take 2o = 3, 23 = 5, 24 = 11, and 25 = 22. For g; = 2,C; 5,
we get G = (120,180, 100,55,22). We check that ged(G) = 1, G is minimal, and G is
telescopic with ¢(G) = (2,3,4,5), as desired.

Corollary 58. Suppose G = (g1,...,qr) € N¥ is a telescopic and non-decreasing sequence
with ¢(G) = (ca, ..., cx) where ¢; > 1 for all 5. Then G is minimall.

In particular, if gcd(G) = 1, then for the numerical semigroup S = (G), we have e(S) =
|Gl

Proof. If g; = gj—1 for some j > 1, then ¢; = 1. Since we assume c; > 1 for all j, we must
have g; # gj+1, so G is a strictly increasing sequence. In other words, g, < ¢, whenever
n < m.

Since G is telescopic and ¢; > 1 for all j, G is minimal if and only if g, { g, for all
1 <n<m<k. Since g,, > g, > 0, we have g,, 1 g,. Therefore G is minimal. O
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