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Abstract

Using a probabilistic approach, we derive some interesting identities involving beta

functions. These results generalize certain well-known combinatorial identities involv-

ing binomial coefficients and gamma functions.

1 Introduction

There are several interesting combinatorial identities involving binomial coefficients, gamma
functions, and hypergeometric functions (see, for example, Riordan [9], Bagdasaryan [1],
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Vellaisamy [15], and the references therein). One of these is the following famous identity
that involves the convolution of the central binomial coefficients:

n
∑

k=0

(

2k

k

)(

2n− 2k

n− k

)

= 4n. (1)

In recent years, researchers have provided several proofs of (1). A proof that uses generating
functions can be found in Stanley [12]. Combinatorial proofs can also be found, for example,
in Sved [13], De Angelis [3], and Mikić [6]. A related and an interesting identity for the
alternating convolution of central binomial coefficients is

n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k

n− k

)

=

{

2n
(

n
n
2

)

, if n is even;

0, if n is odd.
(2)

Nagy [7], Spivey [11], and Mikić [6] discussed the combinatorial proofs of the above identity.
Recently, there has been considerable interest in finding simple probabilistic proofs for com-
binatorial identities (see Vellaisamy and Zeleke [14] and the references therein). Pathak [8]
gave a probabilistic proof of the identity in (2). Chang and Xu [2] extended the result in (1)
and presented a probabilistic proof of the identity

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

2k1
k1

)(

2k2
k2

)

· · ·

(

2km
km

)

=
4n

n!

Γ(n+ m
2
)

Γ(m
2
)

, (3)

where k1, . . . , km are nonnegative integers, and m and n are positive integers. Mikić [6]
discussed a combinatorial proof of (3) based on the method of recurrence relations and
telescoping. Duarte and Guedes de Oliveira [4] discussed a generalization of the result in (3)
and proved the following identity (see their Theorem 2), using combinatorial arguments,

∑

∑m
j=1

kj=n

(

2k1 + l1
k1

)(

2k2 + l2
k2

)

· · ·

(

2km + lm
km

)

= 4n
(

n+ m
2
− 1

n

)

, (4)

where l1, . . . , lm are reals such that l1 + · · ·+ lm = 0.
Our goal in this paper is to generalize the combinatorial identities in (2) and (3), using

a simple probabilistic approach. Indeed, we derive certain identities involving beta func-
tions. Our method uses the Dirichlet-multinomial distribution and also the moments of the
difference of two gamma random variables.

2 Identities involving beta functions

Let the random variable T follow the beta distribution with parameters a, b > 0 and with
probability density

f(t) =
1

B(a, b)
ta−1(1− t)b−1, t > 0,
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where B(a, b) is the beta function. Note that the beta function B(x, y) is related to the
gamma function by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

where Γ(x) =
∫∞

0
tx−1e−tdt, x > 0. The beta function is symmetric (that is, B(x, y) =

B(y, x)) and satisfies the basic identity

B(x, y) = B(x, y + 1) + B(x+ 1, y), for x, y > 0. (5)

It is easy to see that the derivative of the beta function is

∂

∂y
B(x, y) = B(x, y) (ψ(y)− ψ(x+ y)) , (6)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function.
We start with a result that relates binomial coefficients and beta functions on one side

to a simple rational expression on the other side.

Theorem 1. For s > 0 and an integer n ≥ 0,

n
∑

j=0

j
∑

i=0

(−1)j
(

n

j

)

B(j + 1, s)

s+ i
=

1

(s+ n)2
·

Proof. Let the random variable Y follow the beta distribution with parameters 1 and n+ s.
Using the density of Y , we get

∫ ∞

0

(1− y)n+s−1dy = B(1, n+ s) =
1

n+ s
;

=⇒

∫ ∞

0

(

n
∑

j=0

(−1)j
(

n

j

)

yj

)

(1− y)s−1dy =
1

n+ s
;

=⇒
n
∑

j=0

(−1)j
(

n

j

)
∫ ∞

0

yj(1− y)s−1dy =
1

n+ s
;

=⇒
n
∑

j=0

(−1)j
(

n

j

)

B(j + 1, s) =
1

n+ s
· (7)

Differentiate both sides of (7) with respect to s > 0 to get

−1

(s+ n)2
=

n
∑

j=0

(−1)j
(

n

j

)

∂

∂s
B(j + 1, s)

=
n
∑

j=0

(−1)j
(

n

j

)

B(j + 1, s) (ψ(s)− ψ(j + 1 + s)) , (8)
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using (6). Further, it is known that the digamma function ψ(x) satisfies

ψ(x+ 1)− ψ(x) =
1

x
. (9)

Using (9) iteratively leads to

ψ(x+ j + 1)− ψ(x) =

j
∑

i=0

1

x+ i
, (10)

for a nonnegative integer j. The result follows by putting (10) into (8).

Remark 2. The identity in (7) itself is an interesting identity. When n = 2, it reduces to

B(1, s)− 2B(2, s) +B(3, s) =
1

s+ 2
,

which can also be verified using the basic identity in (5).

Next we extend the identity in (2). Let X be a gamma random variable with parameter
p > 0, denoted by X ∼ G(p). The density of X is given by

f(x|p) =
1

Γ(p)
e−xxp−1, x > 0, p > 0.

Then, it follows (see Rohatgi and Saleh [10]) that

E(Xn) =
1

Γ(p)

∫ ∞

0

e−xxp+n−1dx =
Γ(p+ n)

Γ(p)
.

Theorem 3. Let p > 0 and n be a positive integer. Then

n
∑

k=0

(−1)k
(

n

k

)

B(p+ k, p+ n− k) =







n!Γ(p)Γ(p+ n
2
)

Γ(n
2
+ 1)Γ(2p+ n)

, if n is even;

0, if n is odd.

Proof. Consider the random variable X = X1 − X2, where X1 and X2 are independent
gamma random variables with the same parameter p > 0, that is, Xi ∼ G(p), for i = 1, 2.

Since X1 and X2 are independent and identically distributed, we have X
d
= −X (that is,

X and −X have the same distributions on R). This implies the density of X is symmetric
about zero. Hence, E(Xn) = 0 if n is an odd integer.

Next we compute the even moments of X. Finding the moments of X using the proba-
bility density function is tedious. This is because the density of X is very complicated and it
involves Whittaker’s W-function (see Mathai [5]). Therefore, we use the moment generating
function (MGF) approach to find the moments of X.
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It is known (see Rohatgi and Saleh [10]) that the MGF of X1 is

MX1
(t) = E(etX1) = (1− t)−p.

Hence, the MGF of X is

MX(t) =MX1
(t)MX2

(−t) = (1− t)−p(1 + t)−p = (1− t2)−p,

which exists for |t| < 1. Using the result

(1− q)−p =
∞
∑

n=0

Γ(n+ p)qn

Γ(n+ 1)Γ(p)
, for p > 0 and |q| < 1,

we have

MX(t) = (1− t2)−p =
∞
∑

n=0

Γ(n+ p)t2n

Γ(n+ 1)Γ(p)
. (11)

Hence, for n ≥ 1, we have from (11)

E(X2n) =M
(2n)
X (t)|t=0 =

Γ(n+ p)(2n)!

Γ(n+ 1)Γ(p)
,

where f (k) denotes the k-th derivative of f . Thus, we have shown that

E(Xn) =







n!Γ(n
2
+ p)

Γ(n
2
+ 1)Γ(p)

, if n is even;

0, if n is odd.

(12)

Next, we compute the moments of X, using the binomial theorem. Note that

E(Xn) =E(X1 −X2)
n =

n
∑

k=0

(−1)k
(

n

k

)

E(Xk
1 )E(X

n−k
2 )

=
n
∑

k=0

(−1)k
(

n

k

)(

Γ(p+ k)

Γ(p)

)(

Γ(p+ n− k)

Γ(p)

)

. (13)

Equating (12) and (13), we get

n
∑

k=0

(−1)k
(

n

k

)

Γ(p+ k)Γ(p+ n− k) =







n!Γ(n
2
+ p)Γ(p)

Γ(n
2
+ 1)

, if n is even;

0, if n is odd,

(14)

which is an interesting identity involving gamma functions and binomial coefficients. Divid-
ing both sides of (14) by Γ(2p+ n), the result follows.
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We will show now that the identity in (2) follows as a special case.

Corollary 4. Let n be a positive integer. Then

n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k

n− k

)

=

{

2n
(

n
n
2

)

, if n is even;

0, if n is odd.

Proof. Let p = 1
2
in (14) and it suffices to consider the case when n is even. Then

n
∑

k=0

(−1)k
(

n

k

)

Γ

(

k +
1

2

)

Γ

(

n− k +
1

2

)

=
n!Γ(n

2
+ 1

2
)Γ(1

2
)

Γ(n
2
+ 1)

.

That is,

n
∑

k=0

(−1)k
(

n

k

)(

Γ(k + 1
2
)

Γ(1
2
)

)(

Γ(n− k + 1
2
)

Γ(1
2
)

)

=
n!Γ(n

2
+ 1

2
)

Γ(1
2
)Γ(n

2
+ 1)

. (15)

Note that,

Γ(n+ 1
2
)

Γ(1
2
)

=

(

n− 1
2

) (

n− 3
2

)

· · ·
(

3
2

) (

1
2

)

Γ
(

1
2

)

Γ
(

1
2

)

=
(2n− 1) · (2n− 3) · · · 3 · 1

2n

=
(2n)!

n!4n
. (16)

Using (16) in (15), we get

n
∑

k=0

(−1)k
n!

k!(n− k)!

(2k)!

4kk!

(2n− 2k)!

4(n−k)(n− k)!
=

n!n!

4
n
2 (n

2
)!(n

2
)!
.

That is,
n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k

n− k

)

=
n!4n

(n
2
)!(n

2
)!4

n
2

= 2n
(

n
n
2

)

,

which proves the result.

Finally, we discuss an extension of the identity given in (3). Let pi > 0 for 1 ≤ i ≤ m.
Let

B(p1, . . . , pm) =
Γ(p1)Γ(p2) · · ·Γ(pm)

Γ(p1 + · · ·+ pm)

denote the beta function of m variables, and
(

n

k1,...,km

)

= n!
k1!···km!

denote the multinomial
coefficient.
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Let X = (X1, . . . , Xm) be a discrete nonnegative random vector and Y = (Y1, . . . , Ym)
be a continuous positive random vector such that

∑m

1 Xi = n and
∑m

1 Yi = 1. Let (X|Y ) ∼
MN(n;Y1, . . . , Ym), the multinomial distribution, with

P (X1 = k1, . . . , Xm = km|Y1 = y1, . . . , Ym = ym) =

(

n

k1, . . . , km

)

yk11 . . . ykmm

and Y ∼ Dir(p1, . . . , pm), the Dirichlet distribution, with density

f(y1, . . . , ym) =
1

B(p1, . . . , pm)
yp1−1
1 · · · ypm−1

m .

Then the marginal distribution of X follows the Dirichlet-multinomial distribution with

P (X1 = k1, . . . , Xm = km)

=
1

B(p1, . . . , pm)

(

n

k1, . . . , km

)

B(k1 + p1, . . . , km + pm),

where k1 + · · ·+ km = n.
The next result follows trivially as the sum of the above probabilities is unity.

Theorem 5. Let p1, . . . , pm > 0. Then for any nonnegative integer n,

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

n

k1, . . . , km

)

B(k1 + p1, . . . , km + pm) = B(p1, . . . , pm). (17)

It is interesting to note that the identity in (3) follows as a special case.

Corollary 6. When p1 = p2 = · · · = pm = 1
2
, the identity in (17) reduces to

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

2k1
k1

)(

2k2
k2

)

· · ·

(

2km
km

)

=
4n

n!

Γ(n+ m
2
)

Γ(m
2
)

, (18)

for all integers m,n ≥ 1.

Proof. Putting p1 = p2 = · · · = pm = 1
2
in (17), we obtain

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

n

k1, . . . , km

)

B

(

1

2
+ k1, . . . ,

1

2
+ km

)

= B

(

1

2
, . . . ,

1

2

)

.

This implies,

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

n

k1, . . . , km

)

Γ
(

1
2
+ k1

)

· · ·Γ
(

1
2
+ km

)

Γ
(

n+ m
2

) =
Γ
(

1
2

)

· · ·Γ
(

1
2

)

Γ
(

m
2

) ,

7



or, equivalently,

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

n

k1, . . . , km

)

Γ
(

1
2
+ k1

)

· · ·Γ
(

1
2
+ km

)

Γ
(

1
2

)

· · ·Γ
(

1
2

) =
Γ
(

n+ m
2

)

Γ
(

m
2

) .

Using (16), we get

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

n

k1, . . . , km

)

(2k1)! · · · (2km)!

4k1(k1)! · · · 4km(km)!
=

Γ
(

n+ m
2

)

Γ
(

m
2

) ,

which is equivalent to the identity in (18).

Remark 7. Obviously, when m = 2, the identity in (17) reduces to

∑

kj≥0, 1≤j≤2;
k1+k2=n

(

n

k1, k2

)

B(p1 + k1, p2 + k2)

=
n
∑

k=0

(

n

k

)

B(p1 + k, p2 + n− k) = B(p1, p2).

Also, in view of Corollary 6, when p1 = p2 =
1
2
, the above equation reduces to (1).

Remark 8. Let m be even so that m = 2l for some positive integer l. Then the right hand
side of (18) is

4n

n!

Γ(n+ l)

Γ(l)
= 4n

(

n+ l − 1

n

)

= 4n
(

n+ m
2
− 1

n

)

.

Similarly, when m is odd, say m = 2l + 1,

4n

n!

Γ(n+ m
2
)

Γ(m
2
)

=
4n

n!

Γ(n+ l + 1
2
)

Γ(l + 1
2
)

=
4n

n!

(

Γ(n+ l + 1
2
)

Γ(1
2
)

)(

Γ(1
2
)

Γ(l + 1
2
)

)

=

(

2n+ 2l

2n

)(

(2n)!

n! n!

)(

l! n!

(n+ l)!

)

(using (16))

=

(

2n+2l
2n

)(

2n
n

)

(

n+l

n

)

=

(

2n+m−1
2n

)(

2n
n

)

(

n+m−1

2

n

)

,
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since 2l = m− 1. Thus, we have, from (18),

∑

kj≥0, 1≤j≤m;∑m
j=1

kj=n

(

2k1
k1

)(

2k2
k2

)

· · ·

(

2km
km

)

=



























4n
(

n+ m
2
− 1

n

)

, if m is even;

(

2n+m−1
2n

)(

2n
n

)

(

n+m−1

2

n

)

, if m is odd,

which is equation (3) of Mikić [6]. Indeed, Mikić [6] provided a combinatorial proof of the
above result based on recurrence relations.

Corollary 9. Let k1, . . . , km be nonnegative integers and l1, . . . , lm be integers such that

0 ≤ ki + li ≤ n and
∑m

i=1 li = 0. Then

∑

∑m
j=1

kj=n

(

2k1 + 2l1
k1 + l1

)(

2k2 + 2l2
k2 + l2

)

· · ·

(

2km + 2lm
km + lm

)

=
4n

n!

Γ(n+ m
2
)

Γ(m
2
)

,

for all integers m,n ≥ 1.

The above corollary, which follows from Corollary 6, is similar to (4). It is not clear if
the identity in (4) can be obtained through probabilistic considerations.
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