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Abstract

In this paper, by using the classical Lagrange inversion formula, we establish a
nonlinear inverse relation that involves the Bell polynomials. As applications of this
inverse relation, we not only find a short proof of another nonlinear inverse relation
due to Birmajer et al., but also deduce some allied combinatorial identities. Finally, we
propose the general problem of finding nonlinear inverse relations and give a positive
solution to it.

1 Introduction

Throughout this paper, we adopt the same notation of Henrici [8]. For instance, we use
C[[x]] to denote the ring of formal power series (in short, fps) over the complex number field
C and for any f(x) =

∑

n≥0 anx
n ∈ C[[x]], the coefficient functional

[xn]f(x) = an, n ≥ 0.

For convenience, define

L0 =

{ ∞
∑

n=0

anx
n|a0 6= 0

}

,

L1 =

{ ∞
∑

n=0

anx
n|a0 = 0, a1 6= 0

}

.
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Moreover, for f(x), g(x) ∈ C[[x]], g(x) is said to be the composite inverse of f(x) if f(g(x)) =
g(f(x)) = x. As conventions, we denote the composite inverse g(x) of f(x) by f 〈−1〉(x).

Lemma 1. Given f(x) ∈ C[[x]], f(x) has the composite inverse if and only if f(x) ∈ L1.

We also need the concept of the ordinary Bell polynomials (referenced by A263633 in the
OEIS [14]).

Definition 2. For integers n ≥ k ≥ 0 and variables (xn)n≥1, the sums

∑

σk(n)

k!

i1!i2! · · · in−k+1!
xi1
1 x

i2
2 · · · x

in−k+1

n−k+1 (1)

are called the ordinary Bell polynomials in x1, x2, . . . , xn−k+1, where σk(n) denotes the set
of partitions of n with k parts, namely, all nonnegative integers i1, i2, . . . , in−k+1 subject to

{

i1 + i2 + · · ·+ in−k+1 = k
i1 + 2i2 + · · ·+ (n− k + 1)in−k+1 = n.

(2)

We let Bn,k(x1, x2, . . . , xn−k+1) denote (1).

As of today, the Bell polynomials have played very important roles in analysis, combina-
torics, and number theory. It should be pointed out here that the above Bell polynomials are
in agreement with the exponential Bell polynomials [5, Def., p. 133] with the specialization
xn → xn/n! and multiplied by n!/k!. The exponential Bell polynomials are referenced by
A111785 in the OEIS [14].

The ordinary generating function of the Bell polynomials Bn,k(x1, x2, . . . , xn−k+1) will be
often used in our discussions.

Lemma 3. For any fps f(x) =
∑

n≥1 xnx
n, it holds that

fk(x) =
∞
∑

n=k

Bn,k(x1, x2, . . . , xn−k+1)x
n. (3)

Proof. According to the Cauchy product of the fps, for given f(x) =
∑

n≥1 xnx
n, let

fk(x) =
∞
∑

n=k

An,kx
n.

Then

An,k =
∑

i1+i2+···+ik=n

ij≥1

xi1xi2 · · · xik .
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It is easy to see that

max{ij ≥ 1|i1 + i2 + · · ·+ ik = n} = n− k + 1.

Consequently, after a bit of series rearrangement, we have

An,k =
∑

i1+2i2+···+(n−k+1)in−k+1=n

i1+i2+···+in−k+1=k

k!

i1!i2! · · · in−k+1!
xi1
1 x

i2
2 · · · x

in−k+1

n−k+1

= Bn,k(x1, x2, . . . , xn−k+1),

as claimed.

As far as the Bell polynomials are concerned, it is very natural to study inverse relations
lurking behind it. Hereafter, the word “inverse” means a pair of equivalent relations express-
ing (xn)n≥1 in terms of the Bell polynomials in variables (yn)n≥1 and vice versa. To the best
of our knowledge, it is one of the most interesting problems first posed and solved by Riordan
[13, Chaps. 2 and 3], and also investigated by Chou et al. [4] and Mihoubi [12]. The reader
may consult Riordan [13, Sect. 5.3] for further details and Mihoubi [12] for many of such
inverse relations. It is especially noteworthy that in their paper [2], via the establishment of
many interesting identities for the Bell polynomials, Birmajer et al. achieved the following
somewhat unusual (essentially different from [4, 10, 13]) inverse relation.

Theorem 4 ([2, Thm. 17]). Let Bn,k(x1, x2, . . . , xn−k) denote the Bell polynomials as above.

Then for any integers a, b,m with m ≥ 1, a2+b2 6= 0, and any sequence (xm)m≥1, the system

of nonlinear relations

zm(b) =
m
∑

k=1

am+ bk

k(am+ b)

(

−am− b

k − 1

)

Bm,k(x1, x2, . . . , xm−k+1) (4)

is equivalent to the system of nonlinear relations

xm =
m
∑

k=1

1

k

(

am+ bk

k − 1

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)). (5)

In the above theorem and what follows, we use the notation
(

x
n

)

to denote the generalized
binomial coefficients (x)n/n! and (x)n to the usual falling factorial x(x− 1) · · · (x− n+ 1).

Motivated by Birmajer et al.’s result, the aim of the present paper is to establish the
following nonlinear inverse relation. 1

1As anonymous reviewer pointed out that Theorem 5 has now been generalized to Cor. 2 of [3], which
appeared in Discrete Math. in January 2019. However, as our argument of Theorem 5 shows, Cor. 2 of [3]
is still a direct consequence of the Lagrange inversion formula. See Section 4.
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Theorem 5. Let Bn,k(x1, x2, . . . , xn−k) denote the Bell polynomials as above. For any inte-

gers m ≥ 1 and a, b ∈ C, and any sequence (xm)m≥1, define

ym(b) =
1

am+ b

m
∑

k=1

(

−am− b

k

)

Bm,k(x1, x2, . . . , xm−k+1). (6)

Then

xm =
1

am+ 1

m
∑

k=1

(

−(am+ 1)/b

k

)

bkBm,k(y1(b), y2(b), . . . , ym−k+1(b)), (7)

and vice versa.

Later as we shall see, Theorem 5 sheds a new light on the mystery of Theorem 4. Fur-
thermore, by Theorem 5, we easily extend Theorem 4 to the following

Corollary 6. With the same notation as in Theorem 4, for any integers m ≥ j ≥ 1, the
system of nonlinear relations

Bm,j(z1(b), z2(b), . . . , zm−j+1(b)) (8)

=
m
∑

k=j

j(am+ bk)

k(am+ bj)

(

−am− bj

k − j

)

Bm,k(x1, x2, . . . , xm−k+1)

is equivalent to the system of nonlinear relations

Bm,j(x1, x2, . . . , xm−j+1) (9)

=
m
∑

k=j

j

k

(

am+ bk

k − j

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)).

Corollary 6 leads us to a short proof of another combinatorial identity of [2].

Corollary 7 ([2, Thm. 15 and Rem.]). With all assumptions of Theorem 4, for integers

m ≥ s ≥ 1 and arbitrary λ ∈ C, it holds that

m
∑

k=s

1

k

(

λ

k − s

)

Bm,k(x1, x2, . . . , xm−k+1) (10)

=
m
∑

k=s

1

k

(

λ+ am+ bk

k − s

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)).
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2 Proof of Theorem 5

Our argument for Theorem 5 is merely based on the classical Lagrange inversion formula [5,
Thms. C and D, p. 150]. This celebrated formula is now known to be a basic but useful tool
of finding of the composite inverse of fps. We refer the reader to [6, 9, 11] for further details.

Lemma 8 (The Lagrange inversion formula). Let φ(x) ∈ L0. Then for any fps F (x), it
always holds that

F (x) =
∞
∑

n=0

an

(

x

φ(x)

)n

, (11)

where

an =
1

n
[xn−1]F ′(x)φn(x). (12)

Next is the full proof of Theorem 5.

Proof. We only need to show the theorem for integers a, b ≥ 1, since both right-hand sides
of (6) and (7) are polynomials in a, b, the equalities remain true for a, b ∈ C provided that
they hold for all integers a, b ≥ 1. Now we proceed to establish (7) from (6). As such, for
integers a, b ≥ 1, we may consider

f(x) = x
(

1 +
∞
∑

m=1

xmx
am

)

. (13)

Then identity (6) amounts to

(

f 〈−1〉(x)
)b

= xb
(

1 + b
∞
∑

m=1

ym(b)x
am

)

. (14)

The proof for this goes as follows. At first, according to Lemma 1, it is reasonable to assume
that there exists the expansion

(

f 〈−1〉(x)
)b

=
∞
∑

n=1

λnx
n. (15)

Further replacing x with f(x) in (15), we obtain

xb =
∞
∑

n=1

λnf
n(x). (16)
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Now we are able to apply the Lagrange inversion formula to (16). As a consequence, we
arrive at

λn =
b

n
[xn−b]

(

f(x)

x

)−n

=
b

n
[xn−b]

(

1 +
∞
∑

i=1

(

−n

i

)( ∞
∑

m=1

xmx
am

)i)

=
b

n
[xn−b]

(

1 +
∞
∑

i=1

(

−n

i

) ∞
∑

m=i

Bm,i(x1, x2, . . . , xm−i+1)x
am

)

.

Relabeling the corresponding parameters, we conclude that for n 6= b (mod a), λn = 0; for
n = b, λn = 1; and for n = am+ b,

λn =
b

am+ b

m
∑

k=1

(

−am− b

k

)

Bm,k(x1, x2, . . . , xm−k+1) = bym(b).

Having (14) been shown, by Lemma 1 again, we now assume that

f(x) =
∞
∑

n=1

µnx
n. (17)

Clearly, to show (7) we need to express µn in terms of ym(b). To do this, we solve (14) for
f 〈−1〉(x) to obtain

f 〈−1〉(x) = x
(

1 + b

∞
∑

m=1

ym(b)x
am

)1/b
. (18)

Note that (17), after the replacement of x with f 〈−1〉(x), reduces to

x =
∞
∑

n=1

µn(f
〈−1〉(x))n.

Now by making use of the Lagrange inversion formula and substituting (18) for f 〈−1〉(x), we
easily compute

µn =
1

n
[xn−1]

(

f 〈−1〉(x)

x

)−n

=
1

n
[xn−1]

(

1 + b
∞
∑

m=1

ym(b)x
am

)−n/b

=
1

n
[xn−1]

(

1 +
∞
∑

i=1

(

−n/b

i

)(

b
∞
∑

m=1

ym(b)x
am

)i)

=
1

n
[xn−1]

(

1 +
∞
∑

i=1

(

−n/b

i

)

bi
∞
∑

m=i

Bm,i(y1(b), y2(b), . . . , ym−i+1(b))x
am

)

.
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Relabeling the corresponding parameters, we conclude that µn = 0 when n 6= 1 (mod a)
and µ1 = 1; for n = am+ 1,

µn =
1

am+ 1

m
∑

k=1

(

−(am+ 1)/b

k

)

bkBm,k(y1(b), y2(b), . . . , ym−k+1(b)).

Comparing (17) with (13), we thereby obtain

xm =
1

am+ 1

m
∑

k=1

(

−(am+ 1)/b

k

)

bkBm,k(y1(b), y2(b), . . . , ym−k+1(b)).

Hence (7) is proved. It is quite clear that the above derivations are valid in reverse direction.
The theorem is therefore proved.

Some necessary comments on Theorem 5 are in order.

Remark 9. A simple comparison between Theorem 4 and Theorem 5 reminds us that the
requirement that a, b be integral and a2 + b2 6= 0 can be removed by appealing to the fact
that all ym(b) are polynomials in a and b, whereas these conditions are very necessary to our
argument. For instance, when a = b = 0, Theorem 5 reduces, treated as the limiting case as
a and b tend to zero, to a pair of inverse relations































ym(0) =
m
∑

k=1

(−1)k

k
Bm,k(x1, x2, . . . , xm−k+1)

xm =
m
∑

k=1

(−1)k

k!
Bm,k(y1(0), y2(0), . . . , ym−k+1(0)).

(19)

It is obviously equivalent, in terms of generating functions, to the composite inverse relation
between the logarithmic and the exponential fps



























−

∞
∑

m=1

ym(0)x
m = log

(

1 +
∞
∑

m=1

xmx
m

)

∞
∑

m=1

xmx
m = exp

(

−

∞
∑

m=1

ym(0)x
m

)

− 1.

(20)

Remark 10. It is noteworthy that xm’s in (6) are independent of b, suggesting that for
yi = yi(1),

xm =
m
∑

k=1

(−1)k

am+ 1

(

am+ k

k

)

Bm,k(y1, y2, . . . , ym−k+1). (21)
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To illustrate Theorem 5, we consider the special case xm = 1/m! as an example. In this
case, by making use of the well-known identity for the Stirling numbers of the second kind

xm =
m
∑

k=0

S(m, k)(x)k, (22)

we may set up an interesting combinatorial identity.

Example 11. For arbitrary complex numbers a, b and integers m ≥ 1, we have

m
∑

k=1

(−1)m−k

(

m− 1

k − 1

)

(am+ bk)m−1

am+ 1 + bk
=

(m− 1)!bm−1

∏m
k=1(am+ 1 + bk)

. (23)

Proof. As indicated as above, putting xm = 1/m! in (6) and using (22), it is easily found
that ym(b) = (−1)m(am + b)m−1/m!. Observe that bym(b)’s are just the Abel polynomials
[5, (1c), p. 128] in b, whose generating function turns out to be

1 + b
∞
∑

m=1

ym(b)(xe
ax)m = e−bx. (24)

Hence, from Lemma 3 it follows that

bk
∞
∑

m=k

Bm,k(y1(b), y2(b), . . . , ym−k+1(b))(xe
ax)m

=(e−bx − 1)k =
k

∑

i=0

(−1)k−i

(

k

i

)

e−bix.

On applying the Lagrange inversion formula to this expansion, we immediately obtain

bkBm,k(y1(b), y2(b), . . . , ym−k+1(b))

=
1

m
[xm−1]

(

−b

k
∑

i=0

(−1)k−ii

(

k

i

)

e−bix

)

e−amx

= (−1)m
b

m!

k
∑

i=0

(−1)k−ii

(

k

i

)

(am+ bi)m−1.

Next, substituting the last expression for bkBm,k(y1(b), y2(b), . . . , ym−k+1(b)) of (7) and in-
terchanging the order of two sums, we at once obtain

1 =
m
∑

i=1

(−1)m−i

(i− 1)!
(am+ bi)m−1H(m, i), (25)
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where

H(m, i) :=
m
∑

k=i

b1−k

(k − i)!

k−1
∏

j=1

(am+ 1 + bj)

=
b1−m

(m− i)!

m
∏

j=1,j 6=i

(am+ 1 + bj).

This reduces (25) to the claimed identity.

3 Proof of Theorem 4

Analogous to the proof of Theorem 5, we are able to show the nonlinear inverse relation of
Birmajer et al., (i.e., Theorem 4) in a shorter way. To make this point clear, we need

Lemma 12. Define

Γm(j, k, a, b) :=
k

∑

i=0

(−1)k−i

(

k

i

)

bk − i

am+ bk − i+ j

(

am+ bk − i+ j

j

)

. (26)

Then, for 1 ≤ k ≤ j ≤ m,

Γm(j, k, a, b) = (−1)k
k(am+ bj)

j(am+ bk + j − k)

(

am+ bk + j − k

j − k

)

, (27)

and for m ≥ k ≥ j + 1, Γm(j, k, a, b) = 0.

Proof. It suffices, for 1 ≤ j ≤ k − 1, to reformulate the term

bk − i

am+ bk − i+ j

(

am+ bk − i+ j

j

)

:=

j
∑

s=0

ηsi
s.

Note that all ηs are i-free. In this form, by using of the usual forward-difference operator
∆ : f(x) → f(x+ 1)− f(x), it is clear that

Γm(j, k, a, b) =

j
∑

s=0

ηs

k
∑

i=0

(−1)k−i

(

k

i

)

is =

j
∑

s=0

ηs∆
k(xs)

∣

∣

∣

∣

x=0

= 0.

Next we proceed to show (27) for m ≥ j ≥ k ≥ 1. For the same reason as indicated
at beginning of the proof of Theorem 5 or Remark 9, we only need to show this under
a ≥ 1, b ≥ 2. For this, we invoke the classical Hagen-Rothe formula [7] as follows:

n
∑

i=0

p

ic+ p

(

ic+ p

i

)

q

(n− i)c+ q

(

(n− i)c+ q

n− i

)

=
p+ q

nc+ p+ q

(

nc+ p+ q

n

)

. (28)
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Evidently, by putting c = 1, n = am + bk in (28) and then letting p = −k, q = j, we
immediately obtain

am+bk
∑

i=0

−k

i− k

(

i− k

i

)

j

am+ bk − i+ j

(

am+ bk − i+ j

am+ bk − i

)

=
−k + j

am+ bk − k + j

(

am+ bk − k + j

am+ bk

)

.

Multiplying both sides by (am+ j)/j and using the basic relation

(

i− k

i

)

=
(−1)i(k − i)

k

(

k

i

)

,

then we obtain

k
∑

i=0

(−1)i
(

k

i

)

am+ j

am+ bk − i+ j

(

am+ bk − i+ j

am+ bk − i

)

=
(−k + j)(am+ j)

j(am+ bk − k + j)

(

am+ bk − k + j

am+ bk

)

. (29)

On the other hand, we have

k
∑

i=0

(−1)i
(

k

i

)(

am+ bk − i+ j

am+ bk − i

)

=

(

am+ bk − k + j

am+ bk

)

. (30)

This is in fact the special case of c = 1 and n = am+ bk in another Hagen-Rothe formula [7]

n
∑

i=0

p

ic+ p

(

ic+ p

i

)(

(n− i)c+ q

n− i

)

=

(

p+ q + nc

n

)

, (31)

while p = −k, q = j at the same time. Upon subtracting (29) from (30), we obtain

k
∑

i=0

(−1)i
(

k

i

)

bk − i

am+ bk − i+ j

(

am+ bk − i+ j

am+ bk − i

)

=

(

1−
(−k + j)(am+ j)

j(am+ bk − k + j)

)(

am+ bk − k + j

am+ bk

)

=
j(bk − k) + (am+ j)k

j(am+ bk − k + j)

(

am+ bk − k + j

am+ bk

)

=
k(am+ bj)

j(am+ bk − k + j)

(

am+ bk − k + j

am+ bk

)

.

10



Hence, we have

k
∑

i=0

(−1)i
(

k

i

)

bk − i

am+ bk − i+ j

(

am+ bk − i+ j

am+ bk − i

)

=
k(am+ bj)

j(am+ bk − k + j)

(

am+ bk − k + j

am+ bk

)

.

This, after multiplying (−1)k on both sides, yields (27).

Now we are ready to show Birmajer et al.’s nonlinear inverse relation, i.e., Theorem 4,
via the use of Theorem 5. For the same reason as indicated at beginning of the proof of
Theorem 5 or Remark 9, we only need to prove the theorem for integers a ≥ 1, b ≥ 2.

Proof. First, we show (5) from (4). To this end, by taking both (4) and (6) in Theorem 5
into account and noting that xm’s are independent of b, we easily verify that

zm(b) = (b− 1)ym(b− 1)− bym(b). (32)

By virtue of this relation, we can show a key fact that

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)) =
k

∑

i=0

(−1)k−i

(

k

i

)

(bk − i)ym(bk − i). (33)

The proof goes as follows. By the definition of the Bell polynomials, it holds

( ∞
∑

m=1

zm(b)x
am

)k

=
∞
∑

m=k

Bm,k(z1(b), z2(b), . . . , zm−k+1(b))x
am.

On the other hand, referencing (14) and (32), we may deduce

( ∞
∑

m=1

zm(b)x
am

)k

=

(

(b− 1)
∞
∑

m=1

ym(b− 1)xam − b
∞
∑

m=1

ym(b)x
am

)k

=

(

(f 〈−1〉(x)/x
)b−1

−
(

f 〈−1〉(x)/x
)b
)k

=
k

∑

i=0

(−1)k−i

(

k

i

)

(

f 〈−1〉(x)/x
)bk−i

=
k

∑

i=0

(−1)k−i

(

k

i

)(

1 + (bk − i)
∞
∑

m=1

ym(bk − i)xam

)

= δk,0 +
∞
∑

m=1

( k
∑

i=0

(−1)k−i

(

k

i

)

(bk − i)ym(bk − i)

)

xam,

11



where δk,0 denotes the usual Kronecker symbol. Upon equating the coefficients of xam on
both sides of these expansions, we immediately obtain (33).

Now, with (33) in hand, we commence evaluating the sum on the right side of (5), namely,

Ω :=
m
∑

k=1

1

k

(

am+ bk

k − 1

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b))

=
m
∑

k=1

1

k

(

am+ bk

k − 1

) k
∑

i=0

(−1)k−i

(

k

i

)

(bk − i)ym(bk − i).

Upon inserting the expression of ym(b) given by (6) into this identity and after some rear-
rangement, it reduces to

Ω =
m
∑

j=1

χm(j, a, b)Bm,j(x1, x2, . . . , xm−j+1),

where

χm(j, a, b) :=
m
∑

k=1

(−1)j

k

(

am+ bk

k − 1

)

Γm(j, k, a, b)

with Γm(j, k, a, b) given by Lemma 12. By virtue of the same lemma, we further find

χm(j, a, b)

=

( j
∑

k=1

+
m
∑

k=j+1

)

(−1)j

k

(

am+ bk

k − 1

)

Γm(j, k, a, b)

=
1

j

j
∑

k=1

(−1)j−k(am+ bj)

am+ bk + j − k

(

am+ bk

k − 1

)(

am+ bk + j − k

j − k

)

=
1

j

j−1
∑

k−1=0

am+ bj

am+ bk

(

am+ bk

k − 1

)(

−am− bk

j − k

)

=
am+ bj

j(am+ b)

(

0

j − 1

)

= δj,1.

The penultimate equality is the special case of (31), wherein setting p = am+b, q = −am−bj
and c = b, after taking (n, i) → (j − 1, k − 1). The preceding computation simplifies

Ω = Bm,1(x1, x2, . . . , xm) = xm.

Hence, (5) is confirmed.
Conversely, assume (5) is given. For simplicity, we let wm denote the right-hand side of

(4), namely,

wm :=
m
∑

k=1

am+ bk

k(am+ b)

(

−am− b

k − 1

)

Bm,k(x1, x2, . . . , xm−k+1). (34)
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In the sequel, in order to show (4), we only need to show zm(b) = wm for all m ≥ 1. To that
end, performing as above, we first solve for xm in (34) and find that

xm =
m
∑

k=1

1

k

(

am+ bk

k − 1

)

Bm,k(w1, w2, . . . , wm−k+1). (35)

In the meantime, (5) states that

xm =
m
∑

k=1

1

k

(

am+ bk

k − 1

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)). (36)

Therefore, we have

Bm,1(zm(b)) +
m
∑

k=2

1

k

(

am+ bk

k − 1

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b))

= Bm,1(wm) +
m
∑

k=2

1

k

(

am+ bk

k − 1

)

Bm,k(w1, w2, . . . , wm−k+1). (37)

All that remains is to show zm(b) = wm by induction on m via the use of (37). When m = 1,
it is easy to see that

x1 = B1,1(z1(b)) = B1,1(w1),

so z1(b) = w1. Suppose further zk(b) = wk for all k ≤ m − 1. Then we need to prove that
zm(b) = wm. Since m− k + 1 ≤ m− 1 for k ≥ 2, by the hypothesis, we have zi(b) = wi for
1 ≤ i ≤ m− k + 1, thereby

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)) = Bm,k(w1, w2, . . . , wm−k+1).

Thus we obtain Bm,1(zm(b)) = Bm,1(wm), i.e., zm(b) = wm. Summing up, for all integers
m ≥ 1, zm(b) = wm, so (4) follows from (34). The theorem is proved.

Next is a sketched proof of Corollary 6 by use of Theorem 5.

Proof. This is a direct consequence of substituting (6) of Theorem 5 into (33), and then
applying Lemma 12 again to the obtained one. Identity (9) follows from (8) by using once
again the special case of the Hagen-Rothe formula (31)

j
∑

k=r

am+ bj

am+ bk

(

am+ bk

k − r

)(

−am− bk

j − k

)

= δj,r.

All other details are left to the interested reader.

We end this section by a short proof of Corollary 7.

13



Proof. It suffices to compute, by making use of (9), in a straightforward manner that

m
∑

j=s

1

j

(

λ

j − s

)

Bm,j(x1, x2, . . . , xm−j+1)

=
m
∑

k=s

1

k

( k
∑

j=s

(

λ

j − s

)(

am+ bk

k − j

))

Bm,k(z1(b), z2(b), . . . , zm−k+1(b))

=
m
∑

k=s

1

k

(

λ+ am+ bk

k − s

)

Bm,k(z1(b), z2(b), . . . , zm−k+1(b)).

Note that the inner summation on the second equality can be evaluated in closed form by
the Vandermonde convolution formula [7, (1)].

4 Recent results on nonlinear inverse relations

Thanks to the anonymous reviewer’s suggestions, we are led to the latest work [3]. Indeed,
Birmajer et al. [3] found a general and more beautiful nonlinear inverse relation for the Bell
polynomials. Their result inspires us to consider the following research problem.

Problem 13. For any integers m ≥ 1, let p, (ak)
m
k=1, and (qk)

m
k=1 be 2m+1 complex numbers

subject to

p 6= 0,
m
∑

k=1

ak = 0,
m
∑

k=1

akqk 6= 0.

Assume further that F (x) =
∑

n≥1 xnx
n and φ(x) = 1 +

∑

n≥1 ynx
n satisfy

F (x/φp(x)) =
m
∑

k=1

akφ
qk(x). (38)

Find any relationship between the sequences (xn)n≥1 and (yn)n≥1.

Using the Lagrange inversion formula as in the proof of Theorem 5, we can find a positive
solution to this problem as follows.

Theorem 14. With the same notation and assumptions as above, the system of nonlinear

relations

xn =
n

∑

k=1

( m
∑

i=1

aiqi
np+ qi

(

np+ qi
k

))

Bn,k(y1, y2, . . . , yn−k+1) (39)

is equivalent to the system of nonlinear relations

yn =
n

∑

k=1

λk(−1/p+ n)

1− pn
Bn,k(x1, x2, . . . , xn−k+1), (40)
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where λn(s) is defined by

(n+ 1)λn+1(s)
m
∑

k=1

akqk = −

(

ps+ n
m
∑

k=1

akqkλ1(−qk/p)

)

λn(s) (41)

−

m
∑

k=1

akqk

n−1
∑

j=1

λn+1−j(−qk/p)jλj(s).

Evidently, (39) can be obtained via the direct application of the Lagrange inversion
formula to (38), while (40) can be derived by the very similar method as we did for (7) of
Theorem 5. For instance, when m = 2, the nonlinear relation (39)/(40) reduces to

Corollary 15. Let c = r − q 6= 0. Then the system of nonlinear relations

xn =
1

c

n
∑

k=1

(

q

q + np

(

q + np

k

)

−
r

r + np

(

r + np

k

))

Bn,k(y1, y2, . . . , yn−k+1) (42)

is equivalent to the system of nonlinear relations

yn = −
n

∑

k=1

1

k!

k−1
∏

j=1

(

cj + np+ kq − 1
)

Bn,k(x1, x2, . . . , xn−k+1). (43)

We remark that under the parametric replacement (p, q, r) → (−p/d,−q/d,−r/d) and
(xn, yn) → (−dxn, dyn), Corollary 15 is in agreement with Cor. 2 of [3]. A full proof of
Theorem 14 will be given in a forthcoming paper.
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