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Abstract

A strictly increasing sequence of positive integers is called a slightly curved sequence

with small error if the sequence can be well-approximated by a function whose second

derivative goes to zero faster than or equal to 1/xα for some α > 0. In this paper,

we prove that arbitrarily long arithmetic progressions are contained in the graph of a

slightly curved sequence with small error. Furthermore, we extend Szemerédi’s theorem

to a theorem about slightly curved sequences. As a corollary, it follows that the graph

of the sequence {⌊na⌋}n∈A contains arbitrarily long arithmetic progressions for every

1 ≤ a < 2 and every A ⊂ N with positive upper density. Using this corollary, we show

that the set { ⌊⌊p1/b⌋a⌋ | p prime } contains arbitrarily long arithmetic progressions for

every 1 ≤ a < 2 and b > 1. We also prove that, for every a ≥ 2, the graph of {⌊na⌋}∞n=1

does not contain any arithmetic progressions of length 3.

1 Introduction

This paper considers problems involving arithmetic progressions. Let k ≥ 3 and d ≥ 1 be
integers. A sequence {a(j)}k−1

j=0 ⊂ N
d is called an arithmetic progression (AP) of length k if

there exists D ∈ N
d such that

a(j) = a(0) + jD
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for all j = 0, 1, . . . , k−1. We discuss only the cases d = 1 and d = 2. Here, note the following
two points. First, all components of the common difference D are positive, since N =
{1, 2, . . .} does not contain zero. Second, this paper addresses strictly increasing sequences
alone and then regards sequences of positive integers as subsets of N. That is why we denote
a sequence by, say, {a(n)}∞n=1 instead of (a(n))∞n=1.

APs have elicited much interest from researchers studying arithmetic combinatorics, ge-
ometric measure theory, and fractal geometry. Most studies consider the density of sets to
ensure the existence of long APs. For example, we recall Szemerédi’s celebrated result:

Proposition 1 (Szemerédi [1]). For every k ≥ 3 and 0 < δ ≤ 1 there exists an integer
N(k, δ) > 0 such that if N ≥ N(k, δ), then every set A ⊂ {1, 2, . . . , N} with |A| ≥ δN
contains an AP of length k.

Here |X| denotes the cardinality of a finite set X. Furthermore, Steinhaus showed that
every set with positive Lebesgue measure contains arbitrarily long APs from Lebesgue’s
density theorem; for instance, see [2, Theorem 3]. These sufficient conditions are traditional
and important, but it is difficult to weaken them. Hence we have found a new class of sets
containing arbitrarily long APs, which is a main contribution of this paper. We call this new
class slightly curved sequences, which are defined below.

Let g : N → R be an eventually positive function and let R
+ = (0,∞). A strictly

increasing sequence {a(n)}∞n=1 ⊂ N is called a slightly curved sequence with error O(g(n)) if
there exists a twice differentiable function f : R+ → R such that

f ′′(x) = O(1/xα), (1)

a(n) = f(n) +O(g(n))

for some α > 0. A slightly curved sequence with error o(g(n)) is also defined in the same
way. Here the notation f(x) = O(g(x)) denotes that there exist C > 0 and x0 > 0 such
that |f(x)| ≤ Cg(x) for all x ≥ x0, where g(x) is an eventually positive function. In this
paper, the constant C often depends on the length k or the exponent α in (1). When
emphasizing the dependence on k or α, we write f(x) = Ok,α(g(x)). Also, the notation
f(x) = o(g(x)) denotes that f(x)/g(x) goes to zero as x → ∞. Furthermore, to address
two-dimensional APs, we define the graph of a sequence: for every A ⊂ N, the graph of a
sequence {a(n)}n∈A ⊂ N is defined as the set {(n, a(n)) ∈ N

2 | n ∈ A}.
Surprisingly, we do not impose any density conditions on sets of the above new class.

Instead of density conditions, we restrict the behavior of leading terms of sequences. The
first goal of this paper is to prove the following theorem:

Theorem 2. Fix an integer k ≥ 3. The graph of every slightly curved sequence with error
o((log log n)1/ck) contains an AP of length k, where ck = 22

k+9

.

For small k, we can improve the above error term:
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Theorem 3. The graph of every slightly curved sequence with error o((log n)(log log n)−4)
contains APs of length 3. The graph of every slightly curved sequence with error o((log n)c)
contains APs of length 4, where c > 0 is an absolute constant.

Theorems 2 and 3 are proved in Section 3. Since the second derivative (1) of f must
vanish as x → ∞, we cannot apply Theorem 2 or 3 to the case when f is a quadratic
function. To compensate this weak point, Appendix A proves another result without the
assumption f ′′(x) = O(1/xα), which can be applied to the sequence {⌊c2n2 + c1n+ c0⌋}∞n=1

with a sufficiently small c2 > 0.
To state the second goal of this paper, let us introduce basic notions. We say that a set

A ⊂ N has positive upper density if the condition

lim sup
N→∞

|A ∩ [1, N ]|
N

> 0

holds. We also say that a set A ⊂ N has positive upper Banach density if the condition

lim sup
N→∞

maxn≥0 |A ∩ [n+ 1, n+N ]|
N

> 0

holds. If a set A ⊂ N has positive upper density, then a fortiori A has also positive upper
Banach density. However, the converse does not hold in general.

The second goal of this paper is to show the following result:

Theorem 4 (An extension of Szemerédi’s theorem). If {a(n)}∞n=1 is a slightly curved se-
quence with error O(1) and a set A ⊂ N has positive upper Banach density, then the graph
of {a(n)}n∈A contains arbitrarily long APs.

As a corollary, we also obtain the following result:

Corollary 5. If a set A ⊂ N has positive upper Banach density, then the graph of {⌊na⌋}n∈A
contains arbitrarily long APs for every 1 ≤ a < 2.

Here, for every x ∈ R the notation ⌊x⌋ denotes the greatest integer less than or equal to
x and the notation ⌈x⌉ denotes the least integer greater than or equal to x. Corollary 5 with
a = 1 is just Szemerédi’s theorem (Proposition 1). By using Corollary 5, Section 2 shows
that the set { ⌊⌊p1/b⌋a⌋ | p prime } contains arbitrarily long APs for every 1 ≤ a < 2 and
b > 1.

Proof of Corollary 5 assuming Theorem 4. Fix 1 ≤ a < 2 and let f(x) = xa. Then ⌊na⌋ =
f(n) +O(1). Since f ′′(x) = O(1/x2−a), Theorem 4 implies Corollary 5.

In particular, Corollary 5 with A = N implies the following result immediately:

Corollary 6. The graph of {⌊na⌋}∞n=1 contains arbitrarily long APs for every 1 ≤ a < 2.
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When a > 1 and a 6∈ N, the sequences {⌊na⌋}∞n=1 are called Piatetski-Shapiro sequences.
Hence Corollary 6 implies that the Piatetski-Shapiro sequence with every exponent 1 < a < 2
contains arbitrarily long APs. Piatetski-Shapiro sequences are named after Piatetski-Shapiro
[3], who proved that for every 1 < a < 12/11 the sequence {⌊na⌋}∞n=1 contains infinitely many
primes. It is known that the range 1 < a < 12/11 can be improved to 1 < a < 243/205 [4].
Many preceding studies considered prime numbers contained in Piatetski-Shapiro sequences.
For instance, Mirek [5] proved that for every 1 < a < 72/71 the set of all primes of the form
⌊na⌋ contains an AP of length 3. Recently, Li and Pan [6] claimed that for every integer
k ≥ 3 there exists ak > 1 such that for every 1 < a < ak the set of all primes of the form
⌊na⌋ contains an AP of length k. Although this paper considers Piatetski-Shapiro sequences,
prime numbers are not our main topic.

Remark 7. When a > 1, the sum of the reciprocals of {⌊na⌋}∞n=1 converges:

∞
∑

n=2

1

⌊na⌋ ≤
∞
∑

n=2

1

na − 1
≤

∞
∑

n=2

2

na
< ∞.

Thus we cannot apply the Erdős-Turán conjecture to this sequence. Here the Erdős-Turán
conjecture asserts that every subset of positive integers whose sum of reciprocals diverges
must contain arbitrarily long APs [7]. Since the sum of the reciprocals of all primes diverges,
the Erdős-Turán conjecture implies that the set of all primes contains arbitrarily long APs.
Green and Tao [8] proved that the set of all primes contains arbitrarily long APs, but the
Erdős-Turán conjecture is still open even in the case when the length of an AP is three.
The Erdős-Turán conjecture is a strong statement that implies the result by Green and Tao;
nevertheless, it does not imply Corollary 6 directly.

Corollary 6 ensures that the graph of {⌊na⌋}∞n=1 with 1 ≤ a < 2 contains arbitrarily long
APs, but the graph of {⌊na⌋}∞n=1 with a ≥ 2 does not contain any APs of length 3, which is
proved in Section 6. Hence the graph of {n2}∞n=1 does not contain any APs of length 3, while
the sequence {n2}∞n=1 (not the graph) contains APs of length 3, e.g., {1, 25, 49}. However,
there are not any APs of length 4 in {n2}∞n=1, which was proposed by Fermat in 1640 and
first shown by Euler in 1780, according to Dickson’s book [9, pp. 440 and 635]. Euler also
showed that there are not any APs of length 3 in {n3}∞n=1, according to [9, pp. 572–573].
Moreover, Dénes [10] showed that for every integer 3 ≤ a ≤ 30 there are not any APs of
length 3 in {na}∞n=1. Finally, for every integer a ≥ 3, Darmon and Merel [11] showed that
{na}∞n=1 contains no APs of length 3. We do not know whether {⌊na⌋}∞n=1 would contain
long APs if a > 2 is not an integer. One might guess that such a sequence would not contain
APs, but the following sequences are APs of length 4:

{⌊22.2⌋, ⌊112.2⌋, ⌊152.2⌋, ⌊182.2⌋},
{⌊142.655015⌋, ⌊392.655015⌋, ⌊502.655015⌋, ⌊582.655015⌋},
{⌊272.720398⌋, ⌊892.720398⌋, ⌊1142.720398⌋, ⌊1322.720398⌋}.

In the course of this study, we proved a result in Appendix B, which is that the graph
of {⌊f(n)⌋}∞n=1 contains an AP of length 4 if a function f : N → R

+ satisfies ∆f > 0,
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∆2f ≥ 0, and lim infn→∞ f(n)/n2 < 1/18, where ∆ denotes the difference operator which is
defined in Section 3. This result can be applied to the sequence {⌊c2n2 + c1n+ c0⌋}∞n=1 with
0 < c2 < 1/18, but Theorem 2 or 3 cannot be applied.

2 Warming up

As an application of Corollary 5, this section shows that the set { ⌊⌊p1/b⌋a⌋ | p prime } con-
tains arbitrarily long APs for every 1 ≤ a < 2 and b > 1. Once we putA = { ⌊p1/b⌋ | p prime },
the above set can be expressed as { ⌊⌊p1/b⌋a⌋ | p prime } = {⌊na⌋}n∈A. Thus, if A has posi-
tive upper density, the above statement follows from Corollary 5. Let us verify that A has
positive upper density. Let π(x) be the number of primes less than or equal to x > 0 and
π̃(S) be the number of primes contained in a set S ⊂ R

+. Then every x > 0 satisfies

|A ∩ [1, x]| =
∣

∣{ ⌊p1/b⌋ ≤ x | p prime }
∣

∣

≥
∣

∣{ p ≤ xb | p prime }
∣

∣

maxn≤x π̃[nb, (n+ 1)b)
≥ π(xb)

maxn≤x π̃[nb, (n+ 1)b]
.

Since there exists y0 > 0 such that every x > 0 and y ≥ y0 satisfy π̃[x, x+ y] ≤ 3y/ log y [12,
Corollary 3.4], the denominator π̃[nb, (n+1)b] of the above right-hand side is upper bounded
as

π̃[nb, (n+ 1)b]
(i)

≤ max
n≤x

π̃[nb, nb + b(n+ 1)b−1]

≤ max
n≤x

π̃[nb, nb + b(x+ 1)b−1]
(ii)

≤ 3b(x+ 1)b−1

log(b(x+ 1)b−1)

for every x ≥ (y0/b)
1/(b−1) − 1, where (i) and (ii) follow from the mean value theorem and

[12, Corollary 3.4], respectively. We now use the prime number theorem [12, Chapter 6]:
π(x) ∼ x/ log x, where the notation f(x) ∼ g(x) denotes that f(x)/g(x) goes to one as
x → ∞. Therefore, the prime number theorem yields

|A ∩ [1, x]|
x

≥ π(xb)
/

x
3b(x+ 1)b−1

log(b(x+ 1)b−1)

∼ xb

b log x

/

x
3b(x+ 1)b−1

(b− 1) log(x+ 1)
∼ b− 1

3b2
> 0 (x → ∞),

whence A has positive upper density.
As a special case of the above result, it follows that the set { ⌊⌊p1/b⌋b⌋ | p prime } con-

tains arbitrarily long APs for every 1 < b < 2. However, the case b = 1, i.e., the
Green-Tao theorem [8] would not be proved by the above method. This is because the set
{ ⌊p1/b⌋ | p prime, |⌊p1/b⌋b − p| ≤ C } has probably upper density zero for every 1 < b < 2
and C > 0.
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3 More general statement than Theorems 2 and 3

In order to prove Theorems 2 and 3, this section introduces another proposition which is
proved in Section 4. This proposition uses a function satisfying three properties below.
Before stating them, let us define the van der Waerden numbers [13]. For every k ≥ 3
and r ≥ 2, the van der Waerden number W (r, k) is the smallest number N such that if
{1, 2, . . . , N} are partitioned into r different sets then there exists at least one set which
contains an AP of length k. Fix an integer k ≥ 3. This section considers a function Uk

satisfying the following properties:

(U1) there exist xk ≥ 1 and yk ≥ 1 such that a function Uk : [xk,∞) → [yk,∞) is increasing
and bijective;

(U2) Uk(r
α) = Ok,α(Uk(r)) for all α > 0;

(U3) the inverse function U−1
k of Uk satisfies W (r, k) = Ok(U

−1
k (r)).

Using such a function Uk, we obtain the following proposition:

Proposition 8. Fix an integer k ≥ 3. Assume that a function Uk satisfies (U1), (U2),
and (U3). If {a(n)}∞n=1 is a slightly curved sequence with error o(Uk(n)), then there exists
an arithmetic progression P of length k such that a(P ) is also an arithmetic progression of
length k.

The proof of Theorem 2 uses the function Uk(r) = (log log r)1/ck with ck = 22
k+9

.
Similarly, the proof of Theorem 3 uses the functions U3(r) = C−1

3 (log r)(log log r)−4 and
U4(r) = C−1

4 (log r)c for some C3, C4 > 0 and some absolute constant c > 0. Thus Theorems 2
and 3 are special cases of Proposition 8. To prove Theorem 2 by assuming Proposition 8, we
need to use upper bounds of the van der Waerden numbers. As such upper bounds, Gowers’
upper bounds [14, Theorem 18.6] are known:

W (r, k) ≤ 22
r
ck

, ck = 22
k+9

. (2)

For general r and k, Gowers’ upper bounds are best at present.

Proof of Theorem 2 assuming Proposition 8. Fix an integer k ≥ 3. Let Uk(r) = (log log r)1/ck

with ck = 22
k+9

. It is enough to show that the function Uk satisfies (U1), (U2), and (U3).
The properties (U1) and (U2) follow from the definition of Uk. Also, Gowers’ upper bound
(2) implies that the function Uk satisfies W (r, k) ≤ exp

(

exp(rck)
)

= U−1
k (r), which is just

(U3).

Next, to prove Theorem 3 by assuming Proposition 8, we introduce the notation rk(N)
[7]. The notation rk(N) is the maximum cardinality of all subsets of {1, 2, . . . , N} that
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contain no APs of length k. For k = 3, 4, the following upper bounds of rk(N) are known
[15, Theorem 1.1], [16, Theorem 1.1]:

r3(N) = O
( N

(logN)(log logN)−4

)

, r4(N) = O
( N

(logN)c

)

(3)

for some absolute constant c > 0. As explained below, the upper bounds (3) correspond to
upper bounds of the van der Waerden numbers W (r, k) with k = 3, 4, which are better than
Gowers’ upper bounds (2).

Proof of Theorem 3 assuming Proposition 8. First, we show that if a function Uk satisfies
(U1) and

rk(N) < N/Uk(N) (N ≥ xk) (4)

then the function Uk satisfies (U3). Due to (U1), there exists rk > 0 such that every r ≥ rk
satisfies U−1

k (r) ≥ 1. Let r ≥ rk be an integer and let N = ⌈U−1
k (r)⌉. The definition of N

yields N = ⌈U−1
k (r)⌉ ≥ U−1

k (r) and then (U1) does Uk(N) ≥ r. Take an arbitrary partition
of {1, 2 . . . , N} into r small sets. Then the pigeonhole principle implies that there exists a
set A consisting of at least ⌈N/r⌉ elements. Thus A contains an AP of length k because the
inequality

|A| ≥ ⌈N/r⌉ ≥ N/r
(i)

≥ N/Uk(N)
(4)
> rk(N)

holds, where (i) follows from Uk(N) ≥ r. Since the partition of {1, 2 . . . , N} is arbitrary, the
van der Waerden number W (r, k) is upper bounded by N . Thus it follows that

W (r, k) ≤ N ≤ U−1
k (r) + 1 ≤ 2U−1

k (r)

from the definition of N and (U1). Therefore, the function Uk satisfies (U3).
Next, using the result in the previous paragraph, we show Theorem 3. The upper bounds

(3) imply that there exist constants C3, C4 > 0 such that

r3(N) < C3 ·
N

(logN)(log logN)−4
, r4(N) < C4 ·

N

(logN)c

for every sufficiently large N . If taking the functions U3(N) = C−1
3 (logN)(log logN)−4 and

U4(N) = C−1
4 (logN)c, the inequality (4) holds for k = 3 and k = 4, respectively. Since the

functions U3 and U4 satisfy (U1) and (U2), the result in the previous paragraph implies that
the functions U3 and U4 also satisfy (U3). Therefore, Proposition 8 implies Theorem 3.

4 Proof of Proposition 8

This section proves Proposition 8. Before proving Proposition 8, let us define a semi-norm
on the vector space F = {f | f : R+ → R}. Let k ≥ 3 be an integer and P = {b(j)}k−1

j=0 ⊂ R
+
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be a strictly increasing sequence. We define

NP (f) =
k−3
∑

j=0

∣

∣∆2[f ◦ b](j)
∣

∣ ,

for every f ∈ F , where ∆ denotes the difference operator, that is,

∆f(x) = f(x+ 1)− f(x),

and ∆2 := ∆ ◦∆. We can find that NP satisfies the following properties:

(N1) for every strictly increasing function f ∈ F ,

NP (f) = 0 if and only if f(P ) is an AP of length k;

(N2) NP (f) ≥ 0 for all f ∈ F ;

(N3) NP (f + g) ≤ NP (f) +NP (g) for all f, g ∈ F .

All the properties above can be easily checked from the definition.

Proof of Proposition 8. Fix an integer k ≥ 3 and take an arbitrary slightly curved sequence
{a(n)}∞n=1 with error o(Uk(n)): there exists a twice differentiable function f : R

+ → R

satisfying (1) and a(n) = f(n) + o(Uk(n)). Let r be a sufficiently large positive integer. We
define W (r) = W (r, k), R(n) = a(n)− f(n), and

A(r) =
{

m ∈ N
∣

∣ ⌊W (r)3/α⌋ ≤ m < ⌊W (r)3/α⌋+W (r)
}

.

Then every m ∈ A(r) satisfies

R(m) = o
(

Uk(2W (r)max{3/α,1})
)

= o
(

Uk(U
−1
k (r))

)

= o(r)

thanks to (U1), (U2), and (U3). Thus there exists a positive function δ(r) such that

R(m) ∈ [−δ(r), δ(r))

for all m ∈ A(r), and
δ(r) = o(r) (5)

as r → ∞. We also define

Ij =
[

−δ(r) +
2δ(r)

r
j, −δ(r) +

2δ(r)

r
(j + 1)

)

, Aj(r) = {m ∈ A(r) | R(m) ∈ Ij}

for all j = 0, 1, . . . , r − 1. Note that the union of all the small sets Aj(r) equals A(r). From
the definition W (r) = W (r, k), it follows that there exists an integer q ∈ {0, 1, . . . , r − 1}
such that Aq(r) contains an arithmetic progression P = {b(j)}k−1

j=0 of length k. Here b(j) is
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expressed as b(j) = dj + e with two integers d, e > 0. Since every j = 0, 1, . . . , k− 1 satisfies
b(j) ∈ A(r), we obtain

d ≤ W (r), ⌊W 3/α(r)⌋ ≤ e. (6)

Then the triangle inequality (N3) implies NP (a) ≤ NP (f) +NP (R).
Finally, we show that NP (a) = o(1) as r → ∞, which follows from the two relations

NP (f) = o(1) andNP (R) = o(1). Since we have (5) and b(j) ∈ Aq(r) for all j = 0, 1, . . . , k−1,
the inequality

NP (R) ≤
k−3
∑

j=0

(|∆[R ◦ b](j + 1)|+ |∆[R ◦ b](j)|) ≤ 4(k − 2)δ(r)

r
= o(1)

holds as r → ∞. Hence the remaining is to show that NP (f) = o(1) as r → ∞. The mean
value theorem implies that for every j = 0, 1, . . . , k − 3 there exist θj, ηj ∈ (0, 1) such that

∆2[f ◦ b](j) = ∆[f ◦ b](j + 1)−∆[f ◦ b](j) = (∆[f ◦ b])′(j + θj)

= d{f ′ ◦ b(j + θj + 1)− f ′ ◦ b(j + θj)} = d2f ′′ ◦ b(j + θj + ηj),

where b(x) := dx + e. Since (6) and the assumption f ′′(x) = O(1/xα) hold, every j =
0, 1, . . . , k − 3 satisfies

∆2[f ◦ b](j) = d2f ′′(d(j + θj + ηj) + e) = O
(

W (r)2 · 1

W (r)3

)

= o(1)

as r → ∞, whence NP (f) = o(1) as r → ∞. Therefore, a sufficiently large integer r > 0
satisfies NP (a) < 1. Since NP (a) is a non-negative integer from the definition, the equation
NP (a) = 0 holds, which implies that a(P ) is also an AP of length k due to (N1).

5 Proof of Theorem 4

This section considers, for every α > 0, whether the set A ∩ (hα(x), hα(x + 1)] contains an
AP or not, which is useful to prove Theorem 4. Here hα is a function satisfying the following
properties:

(H1) hα is a differentiable function defined on the interval (x0,∞) for some x0 > 0;

(H2) there exists a positive number x1 ≥ x0 such that hα and h′
α strictly increase on the

interval (x1,∞);

(H3) limx→∞ h′
α(x+ 1)2/hα(x)

α = 0;

(H4) limx→∞ h′
α(x) = ∞.

For example, the function hα(x) = x log x satisfies the above three properties. As another
example, we can take the function hα(x) = x1+α/2. The latter example is used in Appendix A.
In order to prove Theorem 4, we introduce the following condition for a set A ⊂ N:
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(C) for every integer k ≥ 3 and every α > 0, there exist a function hα satisfying (H1)–(H3)
and a strictly increasing sequence {xn}∞n=1 ⊂ R

+ which diverges such that for every
integer n > 0 the set A ∩ (hα(xn), hα(xn + 1)] contains an AP of length k.

Theorem 4 follows from the following proposition and preliminary lemma.

Proposition 9. Let A be a subset of positive integers with (C), and {a(n)}∞n=1 be a slightly
curved sequence with error O(1). Then the graph of {a(n)}n∈A contains arbitrarily long APs.

Proof. Let k ≥ 3 be an integer. There exists a twice differentiable function f : R+ → R

satisfying (1) and a(n) = f(n) +O(1). Defining R(n) = a(n)− f(n), we can take an integer
M satisfying |R(n)| < M . Put r = 4kM . Then (C) implies that there exist a function hα

satisfying (H1)–(H3) and a strictly increasing sequence {xn}∞n=1 ⊂ R
+ which diverges such

that for every integer n > 0 the set A∩(hα(xn), hα(xn+1)] contains an AP of length W (r, k).
Let P (n) be such an AP of length W (r, k). Then we define the following sets:

Ij =
[

−M +
2M

r
j,−M +

2M

r
(j + 1)

)

(0 ≤ j ≤ r − 1),

Aj(n) = {m ∈ P (n) | R(m) ∈ Ij } (0 ≤ j ≤ r − 1).

Since the union of all the small sets Aj(n) equals P (n), for some 0 ≤ q ≤ r − 1 the
set Aq(n) contains an arithmetic progression P̃ = {b(j)}k−1

j=0 . Here b(j) is expressed as
b(j) = dj + e with two integers d, e > 0. For every sufficiently large n the inequality
d ≤ hα(xn +1)− hα(xn) ≤ h′

α(xn +1) holds due to (H2), and the inequality e ≥ hα(xn) also
holds. Thus every sufficiently large n satisfies

NP̃ (f) =
k−3
∑

j=0

∣

∣∆2[f ◦ b](j)
∣

∣ =
k−3
∑

j=0

d2 |f ′′(d(j + θj + ηj) + e)|

= O
(h′

α(xn + 1)2

hα(xn)α

)

= o(1),

(7)

where the last equality follows from (H3) and the values θj = θj(d, e) and ηj = ηj(d, e) are
real numbers satisfying θj, ηj ∈ (0, 1). Moreover, the relation P̃ ⊂ Aq(n) implies

NP̃ (R) =
k−3
∑

j=0

∣

∣∆2[R ◦ b](j)
∣

∣ ≤
k−3
∑

j=0

(|∆[R ◦ b](j + 1)|+ |∆[R ◦ b](j)|)

≤ 2(k − 2)
2M

r
= 1− 2/k.

(8)

Hence a sufficiently large integer n satisfies NP̃ (f) < 2/k. The inequality NP̃ (a) < 1 follows
from (7) and (8). Since NP̃ (a) is a non-negative integer, the equation NP̃ (a) = 0 follows:
a(P̃ ) is an AP of length k. Therefore, the graph of {a(n)}n∈A contains an AP of length
k.
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Lemma 10. If a set A ⊂ N has positive upper Banach density, then there exists a function
h = hα (to be independent of α) satisfying (H1)–(H4), and

lim sup
x→∞

|A ∩ (h(x), h(x+ 1)]|
|N ∩ (h(x), h(x+ 1)]| > 0.

Proof. Step 1. For each integer N > 0, we take a non-negative integer F (N) satisfying

max
n≥0

|A ∩ [n+ 1, n+N ]| = |A ∩ [F (N) + 1, F (N) +N ]|

and then define the functions Fmax : [0,∞) → [0,∞) and F̃ : [0,∞) → [0,∞) as follows:

Fmax(x) = (N + 1− x) max
1≤n≤N

F (n) + (x−N) max
1≤n≤N+1

F (n)

(N ∈ N ∪ {0}, N ≤ x < N + 1),

F̃ (x) = xex(Fmax(x) + 1),

where max1≤n≤x F (n) = 0 for all 0 ≤ x < 1. Note that Fmax is continuous and satisfies
Fmax(N) = max1≤n≤N F (n). Thus F̃ is continuous and satisfies the following properties:

1. F (N) + 1 ≤ F̃ (N) for all N ∈ N;

2. F̃ (x) ≥ ex for all x ≥ 1;

3. F̃ (2x) ≥ 2F̃ (x) for all x ≥ 0;

4. F̃ : [0,∞) → [0,∞) is a homeomorphism and satisfies F̃ (0) = 0 and limx→∞ F̃ (x) = ∞.

Using this function, we define the function h : [0,∞) → [0,∞) as

h(x) =

∫ x

0

F̃−2(y) dy,

where F̃−2 := F̃−1◦F̃−1, and F̃−1 denotes the inverse function of F̃ . Since F̃−2 is continuous,
the function h is continuously differentiable. Also, h satisfies (H1) and (H2).
Step 2. To prove that h satisfies (H3), we show the following facts:

1. h(2x) ≤ 4h(x) for all x ≥ 0;

2. h(x) ≤ x log x for every sufficiently large x;

3. xh′(x) ≤ 4h(x) for all x ≥ 0;

4. h−1(x) ≤ x for all x ≥ F̃ 2(2),

11



where F̃ 2 := F̃ ◦ F̃ . First, thanks to property 3 in Step 1, every y ≥ 0 satisfies 2F̃−1(y) ≥
F̃−1(2y). Therefore, every x ≥ 0 satisfies

h(2x) =

∫ 2x

0

F̃−2(y) dy = 2

∫ x

0

F̃−2(2y) dy ≤ 4

∫ x

0

F̃−2(y) dy = 4h(x),

which is just fact 1. Second, thanks to property 2 in Step 1, every y ≥ F̃ (1) satisfies
F̃−1(y) ≤ log y. Therefore, every sufficiently large x satisfies

h(x) =

∫ x

F̃ 2(1)

F̃−2(y) dy +O(1) ≤
∫ x

F̃ 2(1)

log log y dy +O(1) ≤ x log log x ≤ x log x,

which is just fact 2. Third, fact 3 is verified as follows:

xh′(x) ≤
∫ 2x

x

h′(y) dy ≤ h(2x) ≤ 4h(x),

where the last inequality follows from fact 1. Fourth, every x ≥ F̃ 2(2) satisfies

h(x) ≥
∫ x

F̃ 2(2)

F̃−2(y) dy ≥
∫ x

F̃ 2(2)

2 dy = 2(x− F̃ 2(2)) ≥ x,

which implies fact 4.
Step 3. We show that h satisfies (H3) for every α > 0. Facts 1 and 3 and (H2) imply

h′(x+ 1)2

h(x)α
≤ h′(2x)2

h(x)α
≤

(4h(2x)

2x

)2 1

h(x)α
≤

(8h(x)

x

)2 1

h(x)α
=

82h(x)2−α

x2
. (9)

If α ≥ 2, the right-hand side in (9) goes to zero as x → ∞. If 0 < α < 2, fact 2 in Step 2
implies

h(x)2−α

x2
≤ (x log x)2−α

x2
=

(log x)2−α

xα

x→∞−−−→ 0.

Therefore, the function h satisfies (H3).
Step 4. Assuming

lim sup
x→∞

|A ∩ (h(x), h(x+ 1)]|
|N ∩ (h(x), h(x+ 1)]| = 0,

we now deduce a contradiction. This assumption implies that for every 0 < ε < 1/4 there
exists x0 > 0 such that every x ≥ x0 satisfies

|A ∩ (h(x), h(x+ 1)]| ≤ ε|N ∩ (h(x), h(x+ 1)]|.

12



We consider only the case when N is sufficiently large below. If F (N) + 1 ≤ h(x0), letting
l = ⌈h−1(F (N) +N)− x0⌉, we have

|A ∩ [F (N) + 1, F (N) +N ]|

≤ |A ∩ [F (N) + 1, h(x0)]|+
l

∑

j=1

|A ∩ (h(x0 + j − 1), h(x0 + j)]|

≤ h(x0)− F (N) + ε|N ∩ (h(x0), h(x0 + l)]| ≤ εh(x0 + l)− F (N) +O(1)

≤ εh
(

h−1(F (N) +N) + 1
)

− F (N) +O(1) ≤ εh
(

2h−1(F (N) +N)
)

− F (N) +O(1)

(i)

≤ 4ε(F (N) +N)− F (N) +O(1) = 4εN − (1− 4ε)F (N) +O(1) ≤ 4εN +O(1), (10)

where (i) follows from fact 1 in Step 2. If F (N) + 1 > h(x0), taking a positive number x1

and a positive integer l with h(x1) = F (N) +N and h(x1 − l) < F (N) + 1 ≤ h(x1 − l + 1),
we have

|A ∩ [F (N) + 1, F (N) +N ]| ≤ |A ∩ (h(x1 − l), h(x1)]|

≤
l

∑

j=1

|A ∩ (h(x1 − j), h(x1 − j + 1)]|

≤ ε|N ∩ (h(x1 − l), h(x1)]| ≤ ε{h(x1)− h(x1 − l)}
≤ ε

{

F (N) +N − h
(

h−1(F (N) + 1)− 1
)}

(ii)

≤ ε
{

F (N) +N − (F (N) + 1) + h′
(

h−1(F (N) + 1)
)}

≤ ε
{

N + h′
(

h−1(F (N) + 1)
)} (iii)

= εN + o(N). (11)

We verify the above (ii) and (iii). First, the mean value theorem and (H2) imply

h(x− 1) ≥ h(x)− h′(x)

for every x ≥ 1. Putting x = h−1(F (N) + 1), we obtain the inequality (ii). Next, in order
to prove (iii), we show

lim
x→∞

(h′ ◦ h−1 ◦ F̃ ◦ h′)(x)

h′(x)
= 0. (12)

Using h′(x) = F̃−2(x), we obtain

(h′ ◦ h−1 ◦ F̃ ◦ h′)(x)

h′(x)
=

(h′ ◦ h−1 ◦ F̃−1)(x)

h′(x)

(iv)

≤ (h′ ◦ F̃−1)(x)

h′(x)
=

F̃−3(x)

F̃−2(x)

(v)

≤ log F̃−2(x)

F̃−2(x)

x→∞−−−→ 0,
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where (iv) and (v) follow from fact 4 in Step 2 and property 2 in Step 1, respectively. From
property 1 in Step 1, (H2), and (12), it follows immediately that

h′
(

h−1(F (N) + 1)
)

N
≤ h′

(

h−1(F̃ (N))
)

N

N→∞−−−→ 0,

which is just (iii).
Summarizing the above two cases (10) and (11), we have

lim sup
N→∞

maxn≥0 |A ∩ [n+ 1, n+N ]|
N

= lim sup
N→∞

|A ∩ [F (N) + 1, F (N) +N ]|
N

≤ 4ε.

Since 0 < ε < 1/4 is arbitrary, the set A does not have positive upper Banach density, which
is a contradiction.

Proof of Theorem 4. Thanks to Proposition 9, it is enough to show that every set A ⊂ N

with positive upper Banach density satisfies (C). Let k ≥ 3 be an integer. Lemma 10 implies
that there exist a function h = hα (to be independent of α) satisfying (H1)–(H4) and a
positive number δ ≤ 1 such that

lim sup
x→∞

|A ∩ (h(x), h(x+ 1)]|
|N ∩ (h(x), h(x+ 1)]| = δ.

This equation implies that there exists a strictly increasing sequence {xn}∞n=1 ⊂ R
+ which

diverges such that every integer n > 0 satisfies

|A ∩ (h(xn), h(xn + 1)]| ≥ δ

2
|N ∩ (h(xn), h(xn + 1)]|.

We can take an integer n0 > 0 satisfying h′(xn0
) ≥ N(δ/2, k) due to (H4). Since the mean

value theorem implies h(xn+1)−h(xn) ≥ h′(xn) for all n ∈ N, every integer n ≥ n0 satisfies

h(xn + 1)− h(xn) ≥ h′(xn) ≥ h′(xn0
) ≥ N(δ/2, k).

Thus Proposition 1 implies that the set A ∩ (h(xn), h(xn + 1)] with n ≥ n0 contains an AP
of length k. Therefore, every A ⊂ N with positive upper Banach density satisfies (C).

6 Future work

Question 11. Suppose that a twice differentiable function f : R+ → R satisfies (1). If a
strictly increasing sequence {a(n)}∞n=1 ⊂ N can be written as

a(n) = f(n) +O(f ′(n)),

then does the sequence {a(n)}∞n=1 contain arbitrarily long arithmetic progressions?

14



We do not know the answer to this question, but it is affirmative when the coefficients of
the error term O(f ′(n)) are contained in a finite set {c1, c2, . . . , cm}. See Appendix C. Hence
Question 11 is probably affirmative. As a question related to Question 11, we are interested
in how large the error term can be taken. In particular, we do not know whether the error
term O(f ′(n)) is best or not.

Next, we remark that the sequence of all primes is a slightly curved sequence: the asymp-
totic expansion [17]

pn = f(n) + o
( n

log n

)

holds. Here pn is the n-th prime and the function f(x) is

x{log x+ log log x− 1 + (log log x− 2)/ log x},

which satisfies f ′′(x) = O(1/x). Thus {pn}∞n=1 is a slightly curved sequence with error
o(n/ log n). If we can improve the error term O((log log n)1/ck) in Theorem 2 to o(n/ log n),
the set of all primes contains arbitrarily long arithmetic progressions, which was shown by
Green and Tao [8]. If assuming the Riemann hypothesis, the evaluation

|pn − li−1(n)| ≤ 1

π

√
n(log n)5/2

holds [18, Theorem 6.1], where li−1(x) is the inverse function of the logarithmic integral
function li(x). Thus {pn}∞n=1 is a slightly curved sequence with error O(

√
n(log n)5/2) if

assuming the Riemann hypothesis.

Question 12. Does the set of all primes satisfy (C)? In particular, does the graph of
{a(p)}p prime contains arbitrarily long arithmetic progressions if {a(n)}∞n=1 is a slightly curved
sequence with error O(1)?

Since the set of all primes does not have positive upper Banach density [12, Corollary 3.4],
we can not apply Theorem 4 to {a(p)}p prime. Nevertheless, we can answer this question if
replacing p with li−1(n) +O(1). See Theorem 17.

Question 13. Is it true that

sup { a ≥ 1 | the sequence {⌊na⌋}∞n=1 contains arbitrarily long APs } = 2?

Instead of answering this question, we show that the graph of {⌊na⌋}∞n=1 with a ≥ 1
contains an AP of length 3 if and only if 1 ≤ a < 2. The if part follows from Corollary 6.
We show the only if part, i.e., the graph of {⌊na⌋}∞n=1 with a ≥ 2 does not contain any APs
of length 3 by contradiction. Suppose that a sequence {⌊(e+ dj)a⌋}2j=0 is an AP for some
two integers d, e > 0 and some a ≥ 2. Then the inequality |(e + 2d)a + ea − 2(e + d)a| < 2
holds. The mean value theorem implies that

(e+ 2d)a + ea − 2(e+ d)a = d2a(a− 1)(e+ dθ + dη)a−2,
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where θ and η are real numbers satisfying θ, η ∈ (0, 1). Thus it follows that

2 > |(e+ 2d)a + ea − 2(e+ d)a| = d2a(a− 1)(e+ dθ + dη)a−2 ≥ 2,

which is a contradiction.
The above argument implies

sup { a ≥ 1 | the graph of {⌊na⌋}∞n=1 contains an AP of length 3 } = 2,

but we do not achieve the answer to Question 13.
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A Slightly curved sequences without the assumption

f ′′(x) = O(1/xα)

As stated in Section 1, Theorem 2 requires the assumption f ′′(x) = O(1/xα) for some α > 0.
This appendix addresses a slightly curved sequence with error O(1) without this assumption.
First, the following theorem holds:

Theorem 14. Let f be a twice differentiable function satisfying limx→∞ f ′′(x) = 0 and
{a(n)}∞n=1 ⊂ N be a strictly increasing sequence satisfying a(n) = f(n) + O(1). Then the
graph of {a(n)}∞n=1 contains arbitrarily long APs.

Of course, Theorem 2 does not completely contain Theorem 14. For example, the function
f(x) =

∫ x

2
Li(t) dt satisfies the assumption in Theorem 14 but does not satisfy the assumption

in Theorem 2 because f ′′(x) = 1/ log x. Here Li(t) is the offset logarithmic integral function,
i.e., Li(t) :=

∫ t

2
(1/ log s) ds. Theorem 14 is derived from Theorem 15 below immediately,

which is more exact. For example, when length k is given, Theorem 15 implies that the
graph of {⌊c2n2 + c1n+ c0⌋}∞n=1 with a sufficiently small c2 > 0 contains an AP of length k,
but Theorem 14 does not imply this statement.

Theorem 15. Let k ≥ 3 and r ≥ 1 be integers, f be a twice differentiable function, R(n)
be a bounded function satisfying M1 ≤ R(n) ≤ M2 for some two real numbers M1 and M2,
and {a(n)}∞n=1 ⊂ N be a strictly increasing sequence satisfying a(n) = f(n) + R(n). If the
inequality

lim sup
x→∞

|f ′′(x)| <
( k − 1

W (r, k)− 1

)2( 1

k − 2
− 2(M2 −M1)

r

)

(13)

holds, then the graph of {a(n)}∞n=1 contains an AP of length k.
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In general, the van der Waerden number W (r, k) is large and thus the effect of the factor
W (r, k) is larger than that of the other factors of the right-hand side in (13). Hence W (r, k)
should be small in order to make the right-hand side in (13) large. To make W (r, k) smallest,
we should make r smallest. If the right-hand side in (13) is positive, the smallest integer
r > 0 is

r = ⌊2(M2 −M1)(k − 2)⌋+ 1 > 2(M2 −M1)(k − 2). (14)

Thus the integer r with (14) makes W (r, k) smallest. Let us use (14). When M2 −M1 = 1
and k = 3, the right-hand side in (13) with (14) equals 1/(3 · 132) because r = 3 and
W (3, 3) = 27 [19].

Proof. Thanks to (13), there exists an integer n0 > 0 such that every x ≥ n0 satisfies

|f ′′(x)| <
( k − 1

W − 1

)2( 1

k − 2
− 2M

r

)

,

where W = W (r, k) and M = M2 −M1. Then we define the following sets:

Ij =
[

M1 +
M

r
j,M1 +

M

r
(j + 1)

]

(0 ≤ j ≤ r − 1),

A = N ∩ [n0, n0 +W − 1],

Aj = {n ∈ A | R(n) ∈ Ij } (0 ≤ j ≤ r − 1).

It can be easily checked that the interval [M1,M2] is the union of all the small intervals Ij and
the set A is the union of all the small sets Aj. Hence, there exists an integer 0 ≤ q ≤ r − 1
such that Aq contains an arithmetic progression P = {b(j)}k−1

j=0 . Here b(j) is expressed as
b(j) = dj+ e with two integers d, e > 0. The inequalities (k−1)d ≤ W −1 and e ≥ n0 imply

NP (f) =
k−3
∑

j=0

∣

∣∆2[f ◦ b](j)
∣

∣ =
k−3
∑

j=0

d2 |f ′′(d(j + θj + ηj) + e)|

<
k−3
∑

j=0

(W − 1

k − 1

)2( k − 1

W − 1

)2( 1

k − 2
− 2M

r

)

= 1− 2(k − 2)
M

r
,

(15)

where θj = θj(d, e) and ηj = ηj(d, e) are real numbers satisfying θj, ηj ∈ (0, 1). Moreover,
the relation P ⊂ Aq implies

NP (R) =
k−3
∑

j=0

∣

∣∆2[R ◦ b](j)
∣

∣ ≤
k−3
∑

j=0

(|∆[R ◦ b](j + 1)|+ |∆[R ◦ b](j)|) ≤ 2(k − 2)
M

r
. (16)

Hence the inequality NP (a) < 1 follows from (15) and (16). Since NP (a) is a non-negative
integer, the equation NP (a) = 0 follows: a(P ) is an AP of length k. Therefore, the graph of
{a(n)}∞n=1 contains an AP of length k.
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Remark 16. As proved above, van der Waerden’s theorem implies Theorem 15 and then
Theorem 15 implies Theorem 14, i.e., van der Waerden’s theorem implies Theorem 14. Sur-
prisingly, the converse also holds, and thus Theorem 14 is equivalent to van der Waerden’s
theorem. Let us verify the converse. Here it is well-known that van der Waerden’s theo-
rem is equivalent to the statement that if the set of all positive integers is partitioned into
finitely many sets then at least one set must contain arbitrarily long APs. We now show
that Theorem 14 implies this statement. Suppose that N = C1 ∪ C2 ∪ · · · ∪ Cr, where Ci

and Cj are disjoint for every 1 ≤ i < j ≤ r. We define R(n) = j if n ∈ Cj and also define
a(n) = rn + R(n) for all n ∈ N. Then {a(n)}∞n=1 is a strictly increasing sequence. Due to
Theorem 14, the graph of {a(n)}∞n=1 contains arbitrarily long APs. Fix an arbitrary integer
k > r. Then there exists an arithmetic progression P = {b(j)}k−1

j=0 such that

0 = NP (a) =
k−3
∑

j=0

|∆2[a ◦ b](j)| =
k−3
∑

j=0

|∆2[R ◦ b](j)| = NP (R).

Since the inequalities 1 ≤ R(n) ≤ r and k > r hold, the set R(P ) is not an AP of length
k: R(P ) = {j(k)} for some 1 ≤ j(k) ≤ r, which implies that Cj(k) contains an AP of length
k. From the finiteness of the range 1 ≤ j(k) ≤ r, there exist 1 ≤ j0 ≤ r and a sequence
k1 < k2 < · · · such that

Cj0 = Cj(k1) = Cj(k2) = · · ·
Note that j0 does not depend on k. Thus Cj0 contains arbitrarily long APs. From the above
discussion, Theorem 14 is equivalent to van der Waerden’s theorem.

We use the proof of Theorem 15 to prove the next theorem. As stated in Section 6, we
cannot answer Question 12, but the following theorem holds:

Theorem 17. Let {a(n)}∞n=1 be a slightly curved sequences with error O(1) and g be a
function satisfying the following properties:

(G1) g is a twice differentiable function defined on the interval (x0,∞) for some x0 > 0;

(G2) there exists a positive number x1 ≥ x0 such that g and g′ increase on the interval
(x1,∞);

(G3) limx→∞ g′(2x)/g(x)α = 0 for all α > 0;

(G4) limx→∞ g′′(x) = 0.

If A = {ã(n)}∞n=n0
with n0 > x1 is a strictly increasing sequence satisfying ã(n) = g(n)+O(1),

then the graph of {a(n)}n∈A contains arbitrarily long APs.

Proof. Thanks to Proposition 9, it is enough to show that the set A = {ã(n)}∞n=n0
satisfies

(C). Let k ≥ 3 be an integer and α be a positive number. We choose the function hα as
hα(x) = xβ with β = 1 + α/2, which satisfies (H1)–(H4). Hence all we need is to show that
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there exists a strictly increasing sequence {xn}∞n=1 ⊂ R
+ which diverges such that for every

n > 0 the set A ∩ (hα(xn), hα(xn + 1)] contains an AP of length k.
Take two real numbers M1 and M2 satisfying M1 ≤ ã(n)− g(n) ≤ M2 and the integer r

with (14), and let W = W (r, k) and M = M2 −M1. Since g satisfies (G4), Theorem 15 can
be applied to A = {ã(n)}∞n=n0

. More precisely, the proof of Theorem 15 implies that there
exists an integer n1 ≥ n0 such that for every n ≥ n1 the set A∩ [ã(n), ã(n+W −1)] contains
an AP of length k. Thus (C) can be reduced to the inclusion relation

A ∩ (hα(xn), hα(xn + 1)] ⊃ A ∩ [ã(n), ã(n+W − 1)]. (17)

Let us show (17). Put xn = (g(n) +M1 − 1)1/β < ã(n)1/β. Then hα(xn) = g(n) +M1 − 1 <
ã(n). The mean value theorem implies

ã(n+W − 1) ≤ g(n+W − 1) +M2 ≤ g(n) + (W − 1)g′(n+W − 1) +M2

= hα(xn)− (M1 − 1) + (W − 1)g′(n+W − 1) +M2

= hα(xn) + (W − 1)g′(n+W − 1) +M + 1, (18)

hα(xn + 1) ≥ hα(xn) + h′
α(x) = hα(xn) + βxβ−1

n (19)

due to (G2). Using (G2), (G3), and limx→∞ g(x) = ∞ (this limit follows from the fact that
{ã(n)}∞n0

is a strictly increasing sequence), we have

lim
x→∞

(W − 1)g′(x+W − 1) +M + 1

β(g(x) +M1 − 1)1−1/β
≤ lim

x→∞

(W − 1)g′(2x) +M + 1

(g(x)/2)1−1/β
= 0,

whence (W − 1)g′(n +W − 1) +M + 1 = o(βxβ−1
n ). Thus there exists an integer n2 ≥ n1

such that every n ≥ n2 satisfies

(W − 1)g′(n+W − 1) +M + 1 ≤ βxβ−1
n . (20)

The equations (18), (19), and (20) yield hα(xn + 1) ≥ ã(n + W − 1) for every n ≥ n2.
Therefore, the inclusion relation (17) holds for every n ≥ n2.

Remark 18. The function g(x) = li−1(x) satisfies (G1)–(G4). (The definition of li−1(x) is in
Section 6.) Moreover, when ã(n) = li−1(n)+O(1), the sequence A = {ã(n)}∞n=n0

for some n0

is a strictly increasing sequence. Therefore, if {a(n)}∞n=1 is a slightly curved sequence with
error O(1), the graph of {a(n)}n∈A contains arbitrarily long APs.

B Result similar to Theorem 15

This appendix states a result similar to Theorem 15, which is not completely contained by
Theorem 15. Indeed, Theorem 21 below implies that the graph of {⌊c2n2 + c1n+ c0⌋}∞n=1

with 0 < c2 < 1/18 contains an AP of length 4, which is better evaluation than that of
Theorem 15.
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Σ = {0, 1} Σ = {0, 1, 2} Σ = {0, 1, 2, 3} Σ = {0, 1, 3, 4}
k = 2 n = 4 n = 8 n = 51
k = 3 n = 10 (S3) does not hold [20].

Table 1: Integers n in the statement (Sk) for several alphabets Σ. The case when k = 2
and Σ = {0, 1, 2, 3} was computed by a personal computer. If the statement (S2) for Σ =
{0, 1, 2, 3, 4} holds, then n > 152 by computing. If the statement (S3) for Σ = {0, 1, 2} holds,
then n > 1288 [20].

Theorem 19. If a function f : N → R
+ satisfies ∆f > 0, ∆2f ≥ 0, and

sup
x>0

N(x)2/x = ∞, (21)

then the graph of {⌊f(n)⌋}∞n=1 contains an AP of length 4. Here N(x) denotes the number
of positive integers satisfying f(n) ≤ x, i.e., N(x) := |{n ∈ N | f(n) ≤ x }|.

Remark 20. Theorem 19 does not assume that the sequence {⌊f(n)⌋}∞n=1 strictly increases,
but when the function f satisfies ∆f(n0) ≥ 1 for some n0 > 0, the sequence {⌊f(n)⌋}∞n=n0

strictly increases due to the assumption ∆2f ≥ 0.

Let Σ be a nonempty finite set of non-negative integers. In order to show Theorem 19, we
address words over the alphabet Σ. Here we allow words to continue infinitely on the right
side such as 000 · · · , and to be the empty word. The length of a word w (i.e., the number of
all letters of w) is denoted by |w| and the sum of all letters of a word w is denoted by

∑

w.
Then we focus on the following condition (Ck) for a word w: there exist k + 1 finite length
words w0, . . . , wk and a word wk+1 such that

w = w0 · · ·wkwk+1, |w1| = · · · = |wk| > 0, and
∑

w1 = · · · =
∑

wk.

We also focus on the following statement: there exists an integer n > 0 such that every word
w with |w| ≥ n satisfies the condition (Ck). We call it the statement (Sk). The statement
(Sk) depends on the alphabet Σ. Table 1 summarizes integers n in the statements (S2)
and (S3) for several alphabets Σ. The proof of Theorem 19 uses the statement (S3). The
statement (S3) for Σ = {0, 1} can be checked by taking n = 10. Cassaigne et al. [20] proved
that the statement (S3) did not hold for Σ = {0, 1, 3, 4}. For details, see [20].

Proof of Theorem 19. We show that for every integer k > 0 there exists an integer n0 > 0
such that the function ⌊∆f(n)⌋ takes a constant value for every n0 ≤ n ≤ n0 + k, by
contradiction. Suppose that our assertion does not hold, namely, for some integer k > 0,
there exists no positive integer n0 such that the function ⌊∆f(n)⌋ takes a constant value
for every n0 ≤ n ≤ n0 + k. Putting the function λ(x) := ⌈N(x)/k⌉ − 1, we find N(x) =
kN(x)/k > kλ(x). Hence the inequality N(x) ≥ kλ(x) + 1 holds. Then the assumption
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∆2f(n) ≥ 0 yields ⌊∆f(n+ 1)⌋ ≥ ⌊∆f(n)⌋. Using this inequality and the assumption of the
proof by contradiction to obtain the following (i), we have

x > f(kλ(x) + 1)− f(1) =

kλ(x)
∑

j=1

∆f(j) ≥
kλ(x)
∑

j=1

⌊∆f(j)⌋
(i)

≥ k

λ(x)−1
∑

j=0

j

=
k

2
λ(x)(λ(x)− 1) ≥ k

2

(N(x)

k
− 1

)(N(x)

k
− 2

)

,

that is, (N(x)−k)(N(x)−2k) < 2kx. This inequality implies that N(x)2/x is upper bounded
by a constant, which contradicts the assumption (21).

Putting k = 9, we can take two integers n0 > 0 and c ≥ 0 satisfying ⌊∆f(n)⌋ = c for all
n0 ≤ n ≤ n0 + 9. Thus ∆ ⌊f(n)⌋ − c ∈ {0, 1} for all n0 ≤ n ≤ n0 + 9. Since the statement
(S3) holds for Σ = {0, 1}, there exist two integers d, e > 0 such that

e+d−1
∑

j=e

(∆ ⌊f(j)⌋ − c) =
e+2d−1
∑

j=e+d

(∆ ⌊f(j)⌋ − c) =
e+3d−1
∑

j=e+2d

(∆ ⌊f(j)⌋ − c).

Thus the equation

⌊f(e+ d)⌋ − ⌊f(e)⌋ = ⌊f(e+ 2d)⌋ − ⌊f(e+ d)⌋ = ⌊f(e+ 3d)⌋ − ⌊f(e+ 2d)⌋

holds: {⌊f(e+ dj)⌋}3j=0 is an AP of length 4. That is, the graph of {⌊f(n)⌋}∞n=0 contains an
AP of length 4.

Theorem 21. If a function f : N → R
+ satisfies ∆f > 0, ∆2f ≥ 0, and

lim sup
x→∞

N(x)2/x > 18, (22)

then the graph of {⌊f(n)⌋}∞n=1 contains an AP of length 4.

Proof. If the function N(x)2/x is not bounded, our assertion follows from Theorem 19.
Hence we assume that the function N(x)2/x is bounded. We show that there exists an
integer n0 > 0 such that the function ⌊∆f(n)⌋ takes a constant value for every n0 ≤ n ≤
n0 + 9, by contradiction. In the same way as the proof of Theorem 19, the inequality
(N(x)− 9)(N(x)− 18) < 18x holds. Moreover, since the function N(x)2/x is bounded, the
limit

N(x)

x
=

N(x)

x1/2

1

x1/2

x→∞−−−→ 0

holds. Thus the inequality lim supx→∞N(x)2/x ≤ 18 follows, which contradicts the as-
sumption (22). Therefore, there exists two integers n0 and c such that ⌊∆f(n)⌋ = c for
every n0 ≤ n ≤ n0 + 9. The remaining can be shown in the same way as the proof of
Theorem 19.
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Remark 22. Theorem 21 implies that the graph of {⌊c2n2 + c1n+ c0⌋}∞n=1 with 0 < c2 < 1/18
contains an AP of length 4. However, Theorem 15 only implies that the same graph with
0 < c2 < 1/(6 · 132) contains an AP of length 3.

The following propositions provide alternative conditions of (21) and (22).

Proposition 23. If a function f : N → R
+ satisfies ∆f > 0 and ∆2f ≥ 0, then for every

c > 0 the following three conditions are equivalent:

(i) lim sup
x→∞

N(x)2/x > c, (ii) lim sup
n→∞

n2/f(n) > c, and (iii) lim inf
n→∞

f(n)/n2 < 1/c.

Proof. First, note that the limit f(n) ≥ f(1) + (n − 1)∆f(1) → ∞ holds as n → ∞.
The implication (ii)⇒(i) follows from the definition of N(x). Next, we show the implication
(i)⇒(ii) by contradiction. Suppose that the condition (i) holds and the condition (ii) does not
hold, i.e., lim supx→∞N(x)2/x > c and lim supn→∞ n2/f(n) ≤ c. The assumption ∆f > 0
and the limit f(n) → ∞ imply that for every x > 0 we can take only one positive integer
n = n(x) satisfying f(n) ≤ x < f(n+ 1). Hence every x > 0 satisfies

N(x)2/x < (n+ 1)2/f(n) = n2/f(n) + 2n/f(n) + 1/f(n), (23)

where n = n(x). Now, the assumption lim supn→∞ n2/f(n) ≤ c yields lim supn→∞ n/f(n) =
0 and lim supn→∞ 1/f(n) = 0. Thus, noting n = n(x) → ∞ as x → ∞ and taking the limit
in (23) as x → ∞, we have

c < lim sup
x→∞

N(x)2/x ≤ lim sup
n→∞

n2/f(n) ≤ c,

which is a contradiction. Therefore, the implication (i)⇒(ii) holds. The remaining, i.e., the
equivalence (ii)⇔(iii) is trivial.

Proposition 24. If a function f : N → R
+ satisfies ∆f > 0 and

∑∞
n=1 1/f(n)

s = ∞ for
some s > 1/2, then the condition supx>0 N(x)2/x = ∞ holds.

Proof. Let ζ be the Riemann zeta function. We show our assertion by contradiction. Sup-
pose that the function N(x)2/x is bounded. Then the inequality N(x)2/x ≤ M holds for
some M > 0. Thus the inequality n2/f(n) ≤ M also holds and every s > 1/2 satisfies
∑∞

n=1 1/f(n)
s ≤ Mζ(2s) < ∞, which is a contradiction.

C Partial answer to Question 11

This section proves that Question 11 is affirmative when the coefficients of the error term
O(f ′(n)) are contained in a finite set {c1, c2, . . . , cm}.
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Theorem 25. Let f : R+ → R be a twice differentiable function satisfying (1), and R̃ : N →
{c1, c2, . . . , cm} be a bounded function. If a strictly increasing sequence {a(n)}∞n=1 ⊂ N can
be written as

a(n) = f(n) + R̃(n)f ′(n) +O(1),

then the sequence {a(n)}∞n=1 contains arbitrarily long APs.

Proof. Fix an integer k ≥ 3. First, the assumption (1) implies

a(n) = f(n) + R̃(n)f ′(n) +O(1) = f(n+ R̃(n)) +O(1). (24)

We define ã(n) = n+ R̃(n), W = W (m,W (r, k)), and the following sets:

Ã = N ∩ [⌊W 3/α⌋, ⌊W 3/α⌋+W − 1],

Ãj = {n ∈ Ã | R̃(n) = cj } (1 ≤ j ≤ m).

Since the union of all the small sets Ãj is Ã, a small set Ãq̃ contains an arithmetic progression
P̃ of length W (r, k). Thus it follows that

NP̃ (ã) ≤ NP̃ (idN) +NP̃ (R̃) = 0.

In other words, the sequence ã(P̃ ) (of real numbers) is also an AP of length W (r, k).
Noting that the sequence ã(P̃ ) is a strictly increasing sequence, we define the function

R : ã(P̃ ) → R as
R(ã(n)) = a(n)− f(ã(n)) (n ∈ P̃ ). (25)

Then the function R is bounded. Thanks to (24), we can take two real numbers M1 and
M2 satisfying M1 ≤ R(x) ≤ M2 such that M1 and M2 are independent of r. We define
M = M2 −M1 and the following sets:

Ij =
[

M1 +
M

r
j,M1 +

M

r
(j + 1)

]

(0 ≤ j ≤ r − 1),

Aj = {x ∈ ã(P̃ ) | R(n) ∈ Ij } (0 ≤ j ≤ r − 1).

Since the union of all the small sets Aj is ã(P̃ ), a small set Aq contains an arithmetic
progression P = {b(j)}k−1

j=0 of length k. Here b(j) is expressed as b(j) = dj + e with two
integers d, e > 0. Moreover, the inequalities

d ≤ ã(⌊W 3/α⌋+W − 1)− ã(⌊W 3/α⌋) ≤ W − 1 +M,

e ≥ ã(⌊W 3/α⌋) ≥ ⌊W 3/α⌋+M1

hold. These inequalities imply that

NP (R) ≤ 2(k − 2)
M

r
= o(1),

NP (f) =
k−3
∑

j=0

d2 |f ′′(d(j + θj + ηj) + e)| = O
( (W − 1 +M)2

(⌊W 3/α⌋+M1)α

)

= O(1/W ) = o(1)
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as r → ∞, where θj = θj(d, e) and ηj = ηj(d, e) are real numbers satisfying θj, ηj ∈ (0, 1).
Thus every sufficiently large r satisfies NP (f) +NP (R) < 1.

Recall (25). The domains of f and R are the same, but the domain of a is different from
them. Hence we must take a set like the inverse image of P under ã. Now, the restricted
function ã|P̃ is injective. When we denote by P ′ the inverse image of P ⊂ ã(P̃ ) under
this restricted function, the sequence P ′ is also an AP of length k. Then the inequality
NP ′(a) ≤ NP (f) + NP (R) < 1 holds. Since NP ′(a) is a non-negative integer, the equation
NP ′(a) = 0 follows: a(P ′) is an AP of length k.
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