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Abstract

When all the elements of the multiset {1, 1, 2, 2, 3, 3, . . . , k, k} are placed in the
cells of a 2 × k rectangular array, in how many configurations are exactly v of the
pairs directly over top one another, and exactly h directly beside one another — thus
forming 1× 2 or 2× 1 dominoes? We consider the sum of matching numbers over the
graphs obtained by deleting h horizontal and v vertical vertex pairs from the 2×k grid
graph in all possible ways, providing a generating function for these aggregate matching
polynomials. We use this result to derive a formal generating function enumerating
the domino matchings, making connections with linear chord diagrams.

1 Introduction

The game of memory consists of the placement of a set of distinct pairs of cards in a rectan-
gular array. The present author [1] considered the enumeration of the configurations in which
exactly p of the pairs are placed directly beside, or over top of one another, thus forming
1 × 2 or 2 × 1 dominoes. In this paper we consider the case of 2 × k arrays in more detail.
In Figure 1 we show a configuration of the case k = 4 with h = 1 horizontal dominoes, and
v = 1 vertical dominoes. The enumeration of these configurations always carries a factor of
k!, which counts the orderings of the k distinguishable pairs. It is therefore easier to drop
this factor, and thus treat the pairs as indistinguishable. We can then think of the domino
enumeration problem in different ways: as a Brauer diagram1, as a chord diagram (cf. Krasko

1Terada [2] and Marsh and Martin [3] have considered Brauer diagrams in the context of combinatorics.
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Figure 1: A configuration for the 2 × 4 array with one horizontal and one vertical domino
is shown in four different representations. From left to right: a placement of paired cards in
a game of memory, a Brauer diagram whose links correspond to the pairs, a chord diagram,
and finally as a linear chord diagram resulting from breaking the circle in the chord diagram
at its Westernmost point.

and Omelchenko [4]), or unfolded as a linear chord diagram (cf. Cameron and Killpatrick
[8]). In the present paper we provide a generating function for the numbers Dk,v,h which
count, considering the pairs to be indistinguishable, the number of configurations with h
horizontal, and v vertical dominoes. It is clear that Dk,v,h = 0 for h+ v > k; considering the
Dk,v,h as matrices with v ≥ 0 indexing rows, and h ≥ 0 indexing columns, the entries below
the anti-diagonal are therefore all zero. The first few values are as follows:

D0,v,h = 1, D1,v,h =

(
0 0
1

)
, D2,v,h =



1 0 1
0 0
1


 , D3,v,h =




2 4 2 0
4 0 2
0 0
1


 ,

where we have omitted the aforementioned zero entries. The sum of the numbers on the
anti-diagonal are the Fibonacci numbers, which count the domino tilings of the 2×k array2.
The sum of all numbers in the matrix3 is (2k − 1)!!, which is the number of ways of placing
the cards, modulo re-labelling of the pairs.

The strategy we will employ is to consider the matching numbers of the 2×k grid graph,
whose vertices represent the 2×k array of cards, and whose edges define the possible domino
matchings. In Figure 2 we show this grid graph for the case k = 4. The present author [1,
Section 3, Theorem 4] provided a method for computing the number of 0-domino configu-
rations (i.e., configurations without any matched pairs) on any analogous graph G. Let ρj
be the number of j-edge matchings4 on G. Then the number of 0-domino configurations is
given by

n∑

j=0

(−1)j(2n− 2j − 1)!! ρj ,

2Graham, Knuth, and Patashnik [6, p. 320] give an account.
3We recall that the double factorial is given by n!! :=

∏⌈n

2
⌉−1

k=0 (n− 2k), and we define 0!! = (−1)!! = 1.
4A j-edge matching is defined as a set of j pairwise non-adjacent edges, none of which are loops.
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Figure 2: The 2× 4 grid graph is shown on the left, while the corresponding board is shown
on the right. The mapping of the edges of the graph to the cells of the board is also displayed.

where n is the number of pairs. We may therefore compute the Dk,v,h by computing the
matching numbers for the graphs which arise from removing v vertical, and h horizontal
vertex pairs (and their incident edges), from the 2× k grid graph in all possible ways.

2 Preliminaries

The board associated with the grid graph is defined as follows (cf. Riordan [10, p. 163]). In
Figure 2, we show the board for the case k = 4. We color the vertices of the grid graph
black and white, in a checkerboard pattern. The columns (rows) of the board represent the
black (white) vertices. The cells of the board represent the edges of the graph. The vertical
edges correspond to the cells on the central diagonal, while the horizontal edges correspond
to the upper and lower diagonals. The rook or matching polynomial g(x) =

∑
gjx

j encodes
the number gj of j-edge matchings on the graph and enjoys two important properties. The
first comes from partioning the set of all matchings into two sets: those which contain a
specific edge, and those which do not. One can then develop the associated board using
the property that the rook polynomial of a board B is equal to that of B with a given
cell removed (corresponding to the absence of the specific edge in the matching), plus x
times the rook polynomial of B with the entire row and column containing that cell removed
(corresponding to the presence of the specific edge in the matching). An example is shown in
Figure 3. The second property stems from graphs consisting of disconnected components; the
disconnectedness implies that the number of matchings of each component are independent
of one another. We then have that if a board can be separated into regions whose cells share
no common row or column with another region (as in the right hand side of Figure 3), the
rook polynomial factorizes into a product of the polynomials for the regions.

Riordan ([9], [10, p. 230]) (McQuistan and Lichtman [11] give connections to dimer models
in physics) provided the generating function for the rook polynomials of the 2× k grids

T (x, y) :=
1− xy

1− y − 2xy − xy2 + x3y3
=

∞∑

k=0

Tk(x)y
k,
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Figure 3: The board on the left is developed using the black cell. The cells in the row and
column containing the black cell are shown in dark grey. The boards on the right hand side
both factorize into the product of two rook polynomials.
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Figure 4: On the bottom row, the four configurations counted by D3,0,1 are shown as Brauer
diagrams. On the top row, the set of graphs G3,0,1 corresponding to the removal of the vertex
pair corresponding to the domino, along with their matching polynomials, are shown. The
sum of these polynomials yields T3,0,1(x) = 4(1 + 3x+ x2).

where Tk(x) are the rook polynomials. Riordan also provided similar generating functions
for several related grids, whose boards are shown in Figure 5,

s(x, y) :=
T (x, y)

(1− xy)2
, r(x, y) := (1− xy) s(x, y), R(x, y) := y r(x, y),

S(x, y) :=
(
1− 2xy − xy2 + x3y3

)
s(x, y).

For example, the rook polynomial corresponding to the board on the left hand side of Figure 3
is R3(x) r3(x) + xT3(x)T2(x).

3 Generating functions for matching numbers

We now turn our attention to the set Gk,v,h of graphs which arise when h horizontal, and v
vertical vertex pairs are removed, in all possible ways, from the 2× k grid graph. The four
graphs belonging to G3,0,1 are displayed in Figure 4. Each of the graphs g ∈ Gk,v,h will have
an associated matching polynomial, which with a slight abuse of notation, we will denote
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= S(x, y)

= = r(x, y) = = R(x, y)

= s(x, y)= T (x, y) =

Figure 5: The boards which arise when the calculus of the rook polynomial is applied to the
boards shown in Figure 6.

g(x). The combinatorial object of interest will be the sum of these polynomials

Tk,v,h(x) :=
∑

g∈Gk,v,h

g(x).

Theorem 1. The generating function for the Tk,v,h(x) is given by5

T (x, y, w, z) :=
∑

k,h,v≥0

Tk,v,h(x) y
k−v−hwvzh

=
1− xy − z

1− (1 + 2x)y − z − w(1− xy − z) + (xy + z)(x2y2 − (1− z)z − y(1− 2xz))
, (1)

where the power of the variable w (respectively z) corresponds to the number of removed
vertical (respectively horizontal) vertex pairs, while the power of the variable y corresponds
to the number of remaining vertex pairs after these removals have taken place. The power j
of the variable x corresponds to j-edge matchings in the resulting graphs.

Proof. The removal of a horizontal vertex pair from the grid graph corresponds to the deletion
of a cell on the lower or upper diagonal of the board, together with its entire row and
column. In Figure 6, boards resulting from the deletion of two horizontal vertex pairs are
shown. When the boards are developed using the black cells in Figure 6, various shapes arise;
these are shown in Figure 5. For example, the configuration shown on the left in Figure 6
corresponds to

R(x, y) · S(x, y) · r(x, y) + xy T (x, y) ·R(x, y) · r(x, y)
+R(x, y) · r(x, y) · xy T (x, y) + x2y2 T (x, y) · T (x, y) · T (x, y)
= yr2S + 2xy2Tr2 + x2y2T 3, (2)

5The power of y is taken to be k − v − h; this is a useful parameterization for computing the generating
function for the Dk,v,h.
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Figure 6: Boards corresponding to removing two horizontal vertex pairs from the grid graph.
On the left both removed pairs correspond to cells on the upper diagonal. On the right, one
upper, and one lower diagonal pair have been removed. The black cells are used in further
developing the boards using the calculus of the rook polynomial, in the same way as shown
in the example in Figure 3.

where the · denotes ordinary multiplication, and has been included to aid in the following
explanation. The first term corresponds to the removal of both the black cells, the second
(third) term to the additional removal of the row and column containing the first (second)
black cell, and the last term to the removal of the rows and columns containing both black
cells. The multiplication also accounts6 for the ordered sum over all possible positions
of the removed horizontal vertex pairs7. When the row and column containing a black
cell is removed, the overall board is shortened, and hence earns a factor of y; this is why
the expression xy appears for each such removal. It is straightforward to see that the
corresponding expression for the board shown on the right in Figure 6 differs from the above
only in the first term, which becomes R(x, y) · s(x, y) ·R(x, y) = y2r2s.

We now focus on generalising to the removal of an arbitrary number h̃ of non-coincident
(see Footnote 7) horizontal vertex pairs from the grid graph. In keeping with previous

notation, we call this set of graphs G̃k,0,h̃. We begin by accounting for the terms which arise
from the first step in the development of the associated boards, i.e. when the black cells are
removed from the boards. For the time being, we exclude the terms which arise when any
rows and columns containing those black cells are also removed. We introduce the variable
z, the power of which corresponds to the number of horizontal vertex pairs removed from the
grid graph. When h̃ = 0, we have simply T . When h̃ = 1, we have 2zyr2, where the factor of
2 arises as the removed horizontal vertex pair can correspond to a cell on the upper, or the
lower diagonal of the board. As we have seen in the previous paragraph, for h̃ = 2, we have
2z2(yr2S + y2r2s) = 2z2yr2(S + ys), where again the factor of 2 accounts for swapping the
diagonals which the two cells (corresponding to the removed vertex pairs) are taken from.

It follows that the general term for h̃ > 0 is 2yzr2 (z(S + ys))h̃−1. Performing a sum over

6The reader is referred to Flajolet and Sedgewick [5, p. 16] for an account of the basic symbolic method.
7The exception is when the two removed horizontal vertex pairs are directly over top of one another in

the grid graph; these coincident configurations will be accounted for below.
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h̃ ≥ 0 we obtain the expression

T +
2yzr2

1− z(S + ys)
. (3)

We now account for those terms which arise in the development of the boards whenever
the row and column containing a black cell are further removed. As was explained above,
the calculus of the rook polynomial implies that we gain a factor of xy for each such a
removal. In fact, we gain a factor of 2xyz; the 2 since the black cell could be on the upper,
or lower diagonal, and the z to account for the corresponding removal of the vertex pair from
the grid graph. Once one row and column have been removed, the board is split into two
independent boards. If we remove the columns and rows of q − 1 different black cells, we
will have q independent boards; the corresponding terms are then given by

(2xyz)q−1

(
T +

2yzr2

1− z(S + ys)

)q

.

We can also interpret this expression from the point of view of the grid graph itself. The
factor (2xyz)q−1 corresponds to the removal of q − 1 horizontal vertex pairs, where the
coincident edge below or above is chosen in the matching. The factor 2 comes from choosing
either the upper or the lower vertex pair to remove. This leaves us to deal with q separate
and independent grids. Each of these q grids is enumerated by a factor of Equation (3),
where T corresponds to the case where no further horizontal vertex pairs are removed. The
fraction, on the other hand, corresponds to the case where at least one further horizontal
vertex pair is removed (but the coincident edge is not chosen in a matching).

Taking the sum over q > 0, we obtain

X :=
∑

k,h̃≥0

yk−h̃zh̃



∑

g∈G̃
k,0,h̃

g(x)


 =

T + 2yzr2

1−z(S+ys)

1− 2xyz
(
T + 2yzr2

1−z(S+ys)

) .

It remains to account for the removal of vertical vertex pairs, and coincident horizontal
vertex pairs, from the grid graph. The removal of a single pair of coincident horizontal
vertex pairs is equivalent to the removal of two neighboring vertical vertex pairs. The effect
of either of these removals on the board is again to break it into two independent boards.
Thus we find that the removal of coincident horizontal and vertical vertex pairs is accounted
for as follows:

∞∑

j=0

(w + z2)jX j+1 =
T + 2yzr2

1−z(S+ys)

1− (2xyz + z2 + w)
(
T + 2yzr2

1−z(S+ys)

) ,

where the coefficient of wv corresponds to the removal of v vertical vertex pairs. Simplifying
this expression, we obtain Equation (1).

7



4 From matching numbers to domino-counting gener-

ating functions

We now use the result of Theorem 1 to compute the number of configurations with exactly
h horizontal, and v vertical dominoes. Let the ρj(k, v, h) be defined8 as follows:

ρj(k, v, h) := [xj]Tk,v,h(x).

We remind the reader the combinatorial significance of this quantity. The set Gk,v,h of graphs
is obtained from removing v vertical, and h horizontal vertex pairs from the 2×k grid graph
in all possible ways. Each graph g ∈ Gk,v,h has a number gj of j-edge matchings. We then
have that

ρj(k, v, h) =
∑

g∈Gk,v,h

gj. (4)

As mentioned in the Introduction, the number Dk,h,v of configurations with exactly h hori-
zontal, and v vertical dominoes is given by

Dk,v,h =
n∑

j=0

(−1)j(2n− 2j − 1)!! ρj(k, v, h), (5)

where n = k − h− v. We define the corresponding generating function in the usual way,

D(y, w, z) :=
∑

k,h,v≥0

Dk,v,h y
kwvzh.

We now translate Equation (5) into an operation on T (x, y, w, z).

Theorem 2. The generating function D(y, w, z) may be obtained using the following integral
representation:

D(y, w, z) =

∫ ∞

0

dt e−t 1

2πi

∮

Cǫ

dx

x
√
1 + 2x

T
(
x

t
,
−yt

x
, yw, yz

)
,

where the contour integral with respect to x is taken around a small circle containing the
origin.

Proof. We consider the coefficient of yn in the Taylor expansion of T (x, y, w, z), and define
Ωj,n(w, z) := [xjyn] T (x, y, w, z). We have

[yn] T (x, y, w, z) =
n∑

j=0

Ωj,n(w, z) x
j =

n∑

j=0

(
∑

h,v≥0

ρj(n+ h+ v, v, h)wvzh

)
xj.

8We use the notation [yn] f(y) to represent the coefficient of yn in the Taylor expansion of f(y).
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Under the integration in t, the replacements x → xt−1 and y → yt dress this result by a
factor of

∫∞
0

dt tn−je−t = (n− j)!

[yn]

∫ ∞

0

dt e−t T (xt−1, yt, w, z) =
n∑

j=0

(n− j)! Ωj,n(w, z) x
j . (6)

We now consider the coefficient of xn in the expression obtained by multiplying Equation (6)
with (1 + 2x)−1/2

[xn]

( ∞∑

q=0

(−1)q
(2q − 1)!!

q!
xq

)(
n∑

j=0

(n− j)! Ωj,n(w, z) x
j

)

= (−1)n
n∑

j=0

(−1)j(2n− 2j − 1)!! Ωj,n(w, z).

We may, therefore, compute this quantity by further scaling y → y/x and taking the residue
at the origin after an overall multiplication by x−1. The factor of (−1)n is absorbed by a
final replacement y → −y. The variables w and z are also scaled by y, so that the unnatural
parameterization discussed in Footnote 5 is rectified.

Corollary 3. The generating function D(y, w, z) is given by

D(y,w, z) =
∫ ∞

0

dt
e−t

(1 + (1− w)y − (1− z)2y2)
√
1− 2ty(1−(1−z)y)

(1+(1−z)y)(1+(1−w)y−(1−z)2y2)

=
∞∑

j=0

(2j − 1)!!
yj(1− (1− z)y)j

(1 + (1− z)y)j(1 + (1− w)y − (1− z)2y2)j+1
.

Proof. We note from Equation (1) that T
(
x
t
, −yt

x
, yw, yz

)
= Ax/(Bx+Ct), where A,B, and

C are functions of y, w, and z. The contour integration replaces x → −Ct/B in the factor
(1 + 2x)−1/2. The integration over t is interpreted as acting on the Taylor expansion of the
resulting expression.

This is not a convergent series9, and hence we cannot benefit from an analytic generating
function, with which questions about asymptotic behavior could easily be answered. In order
to convert this formal generating function into a convergent series, we could take an inverse
Laplace transform in y to form an exponential generating function

E(y, w, z) := L−1
{
y−1D(y−1, w, z)

}
.

9It may be interpreted as the real part (taking y, w, and z ∈ R) of the expansion of the following

expression, asymptotic in y−1:
√

2(1+(1−z)y)
y(1−(1−z)y)(1+(1−w)y−(1−z)2y2)F

(√
(1+(1−z)y)(1+(1−w)y−(1−z)2y2)

2y(1−(1−z)y)

)
, where

F is Dawson’s integral; Nijimbere [7] gives a modern account of the asymptotic expansion of this function
and its relatives.

9



Performing this transform is not straightforward, however in the simple case of counting only
vertical dominoes, it is feasible, and yields a well-known result A055140,

D(y, w, 1) =
∞∑

j=0

(2j − 1)!! yj

(1 + (1− w)y)j+1
→ E(y, w, 1) =

ey(w−1)

√
1− 2y

, (7)

which counts the number of matchings of 2k people with partners (of either sex) such that
exactly v couples are left together. Unfortunately, we have been unable to perform the
transform for the case of counting only horizontal dominoes A325754

D(y, 1, z) =
1

(1− (1− z)y)

∞∑

j=0

(2j − 1)!! yj

(1 + (1− z)y)2j+1 ,

but in the next section we derive the exponential generating function by appealing to known
results for the 1× 2k problem.

It is also interesting to consider the case where vertical and horizontal dominoes are not
distinguished, i.e., D(y, z, z). The present author [1, Section 4] considered this sequence
previously. We can now provide a generating function for these numbers A325753

D(y, z, z) =
∞∑

j=0

(2j − 1)!! yj (1− (1− z)y)j

(1 + (1− z)y)j (1 + (1− z)y − (1− z)2y2)j+1 .

The present author [1, Section 4.2] also made several conjectures10 for generating functions
for the so-called (k − ℓ)-domino configurations, when the number of dominoes is ℓ less than
the maximum value k. These can now be readily calculated as follows:

Fℓ(y) :=
∑

k≥0

(
∑

h,v≥0
h+v=k−ℓ

Dk,v,h

)
yk = [z−ℓ] lim

z→∞
D
(y
z
, z, z

)
.

The first few such generating functions are

F0 =
1

1− y − y2
, F1 =

2y3

(1− y)(1− y − y2)2
, F2 =

y2(1 + 3y + 6y2 + y3 + 3y4)

(1− y)2(1− y − y2)3
.

The function F0 is the generating function for the Fibonacci numbers, giving the number of
domino tilings. The function F1 is that for the path length of the Fibonacci tree of order
k, A178523. The sequences corresponding to the cases ℓ = 2, . . . , 5 appear as A318267 to
A318270, respectively; before the results presented here were available these were obtained
by using data produced by a computer program to fix the coefficients in the numerators of
the generating functions, based on a guess for the pattern of the denominators. Hence only
a small range of values of ℓ were achieved.

10A. Howroyd [12] has proven several of these.
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Figure 7: The 2 × k grid graph is unfolded to produce the 1 × 2k grid graph. The vertices
marked in red comprise a vertical domino, which becomes horizontal upon unfolding.

5 Connections to linear chord diagrams

Kreweras and Poupard [13] solved the problem of counting the h-domino configurations on
the 1 × 2k grid graph (i.e., a path of length 2k). Cameron and Killpatrick [8] recently
revisited this case in the context of linear chord diagrams, and provided a derivation of
the corresponding exponential generating function. Let Lk,h be the number of h-domino
configurations on the 1 × 2k grid graph. We seek to establish a correspondence with the
number Dk,h of h horizontal domino configurations on the 2× k grid graph, where we allow
any number of vertical dominoes.

Theorem 4. The numbers Lk,h and Dk,h are related by the following recursion relation:

Dk,h = Dk−1,h + Lk,h −Dk−1,h−1.

Proof. We begin by unfolding the the vertices of the 2× k grid graph, as shown in Figure 7,
to give the vertices of the 1× 2k grid graph. We then note that the central pair of vertices
does not correspond to a horizontal domino in the 2× k graph, but rather to a vertical one.
The configurations counted by Lk,h may be divided into two sets: those with a domino on
the central pair and those without. Those configurations with a domino on the central pair
are counted by Dk−1,h−1, as the central pair is effectively deleted, leaving the 2 × (k − 1)
grid graph with h−1 horizontal dominoes. In Figure 8, we provide a pictorial interpretation
of this relation. The configurations counted by Dk,h can be similarly divided, but since the
central pair this time represents a vertical domino, those configurations with this vertical
domino are equal in number to Dk−1,h.

Jovovic [14], and Cameron and Killpatrick [8], provide the exponential generating function

L(y, z) :=
∑

k,h≥0

Lk,h
yk

k!
zh =

e(
√
1−2y− 1)(1−z)

√
1− 2y

.

Translating the recursion relation from Theorem 4 into a differential equation for the expo-
nential generating function, we obtain

∂E(y, 1, z)

∂y
− (1− z)E(y, 1, z) =

∂L(y, z)

∂y
. (8)
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b b b b b b b bb b b b b b b bDk,1 = +
Dk−1,1

Dk−1,0

Figure 8: The relationship between the numbers, Lk,h and Dk,h, of h-horizontal-domino
configurations on the 1×2k, and 2×k grid graphs, respectively, is shown for the case h = 1.

This elementary, non-homogeneous, first-order ODE may be solved using an integrating
factor.

Corollary 5. The exponential generating function for Dk,h is as follows:

E(y, 1, z) =
e(

√
1−2y− 1)(1−z)

√
1− 2y

(9)

− e(y−2)(1−z)

√
π

2

√
1− z

(
Erfi

(
(
√
1− 2y + 1)

√
1− z√

2

)
− Erfi(

√
2
√
1− z)

)
,

where we have expressed the result in terms of the imaginary error function Erfi.

Proof. The method of an integrating factor may be used to solve Equation (8).

6 Asymptotic growth and distributions

The asymptotics of the exponential generating functions E(y, w, 1) and E(y, 1, z), given in
Equations (7) and (9), respectively, can be analyzed using the usual machinery of analytic
combinatorics. Let Vk be the random variable defined as the number of vertical dominoes in
a random configuration on the 2×k grid. Similarly, let Hk be the analogous random variable
counting horizontal dominoes. The probability distribution functions Vk,v := P (Vk = v) and
Hk,h := P (Hk = h) are computed as follows:

Vk,v =
1

(2k − 1)!!

∑

h≥0

Dk,v,h, Hk,h =
1

(2k − 1)!!

∑

v≥0

Dk,v,h.

Taking derivatives of E(y, w, 1) by w, we can compute the factorial moments of Vk,v. We
note that

[
yk
] ∂mE(y, w, 1)

∂wm

∣∣∣∣
w=1

=
[
yk
] ym√

1− 2y
∼
(
1

2

)m
(2k − 1)!!

k!
,

where ∼ indicates asymptotic growth in k, and so the mth factorial moment of Vk,v is asymp-
totically (1/2)m, consistent with a Poisson distribution of mean 1/2. A similar argument
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can be made for Hk,h, where the corresponding mean is found to be 1. Indeed, Kreweras
and Poupard [13] (see also Cameron and Killpatrick [8]) proved that the asymptotic factorial
moments for the distribution of dominoes on the 1× 2k grid graph are all equal to one; the
case of horizontal dominoes on the 2×k grid graph must have the same asymptotic behavior,
since the matchings differ only at a single site: the vertices shown in red in Figure 7.

We expect, in the k → ∞ limit, the occurrences of vertical and horizontal dominoes to
be independent, and so the distribution Pk,p := P (Hk + Vk = p) of dominoes (vertical or
horizontal) should also be Poisson with mean 1/2 + 1 = 3/2. We calculate Pk,p as follows:

Pk,p =
1

(2k − 1)!!

∑

v,h≥0
v+h=p

Dk,v,h.

The present author [1, Section 2, Theorem 1] proved that the mean of this distribution, exact
in k, is given by ∑

p≥0

pPk,p =
3k − 2

2k − 1
,

which gives the expected result of 3/2 in the k → ∞ limit. We do not have an expression
for the exponential generating function for the Dk,v,h, and so cannot follow the same line
of reasoning used above to establish the equality of the remaining factorial moments. A
different strategy11 may be used, however, to prove that, indeed,

Theorem 6.

lim
k→∞

Pk,p ≃
e−3/2

p!

(
3

2

)p

.

Proof. We begin by noting that Pk,p is (up to the denominator (2k − 1)!!) the coefficient of
ykzp in D(y, z, z), i.e.

Pk,p =[ykzp]
∞∑

j=0

(2j − 1)!!

(2k − 1)!!

yj (1− (1− z)y)j

(1 + (1− z)y)j (1 + (1− z)y − (1− z)2y2)j+1

=
k∑

j=0

(2j − 1)!!

(2k − 1)!!
[yk−jzp]

(1− (1− z)y)j

(1 + (1− z)y)j (1 + (1− z)y − (1− z)2y2)j+1 .

We now define the coefficients aj,n as follows:

aj,n := [xn]
(1− x)j

(1 + x)j(1 + x− x2)j+1
.

We then have that

Pk,p =
k∑

j=0

(2j − 1)!!

(2k − 1)!!
[yk−jzp]

∑

n≥0

aj,n(1− z)nyn =
k∑

j=0

(2j − 1)!!

(2k − 1)!!
[zp]aj,k−j(1− z)k−j.

11The author thanks Stephan Wagner for providing this proof.
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Let Pk(z) be defined as follows:

Pk(z) :=
∑

p≥0

Pk,pz
p =

k∑

j=0

(2j − 1)!!

(2k − 1)!!
aj,k−j(1− z)k−j =

k∑

ℓ=0

(2k − 2ℓ− 1)!!

(2k − 1)!!
ak−ℓ,ℓ(1− z)ℓ.

We now proceed to prove
lim
k→∞

Pk(z) = e3(z−1)/2,

which is equivalent to the statement of the theorem. We accomplish this by placing bounds
on the ak−ℓ,ℓ. Note that

ak−ℓ,ℓ = [xℓ]
1

1 + x− x2

(
1− x

(1 + x)(1 + x− x2)

)k−ℓ

= (−1)ℓ[xℓ]
1

1− x− x2

(
1 + x

(1− x)(1− x− x2)

)k−ℓ

.

The following inequalities hold coefficient-by-coefficient:

1 ≤ 1

1− x− x2
≤ 1

1− 3x
, and 1 + 3x ≤ 1 + x

(1− x)(1− x− x2)
≤ 1

1− 3x
.

It then follows that

[xℓ](1 + 3x)k−ℓ ≤ (−1)ℓak−ℓ,ℓ ≤ [xℓ](1− 3x)−(k−ℓ+1),

or, equivalently

3ℓ
(
k − ℓ

ℓ

)
≤ (−1)ℓak−ℓ,ℓ ≤ 3ℓ

(
k

ℓ

)
.

In the k → ∞ limit these bounds become equal. In order to establish the form of Pk(z) in
this limit, we consider

(2k − 2ℓ− 1)!!

(2k − 1)!!
3ℓ
(
k − ℓ

ℓ

)
≤ (2k − 2ℓ− 1)!!

(2k − 1)!!
(−1)ℓak−ℓ,ℓ ≤

(2k − 2ℓ− 1)!!

(2k − 1)!!
3ℓ
(
k

ℓ

)
,

and note that the bounds in this inequality are equal to (3/2)ℓ/ℓ! in the limit, thus

lim
k→∞

(2k − 2ℓ− 1)!!

(2k − 1)!!
(−1)ℓak−ℓ,ℓ =

3ℓ

2ℓℓ!
.

It remains to show that (the limit of) the sum in the definition of Pk(z) is convergent. For
this we note that

∣∣∣∣
(2k − 2ℓ− 1)!!

(2k − 1)!!
(−1)ℓak−ℓ,ℓ(z − 1)ℓ

∣∣∣∣ ≤
(2k − 2ℓ− 1)!!

(2k − 1)!!
3ℓ
(
k

ℓ

)
|z − 1|ℓ

=
3ℓ|z − 1|ℓ

ℓ!

ℓ−1∏

j=0

k − j

2k − 2j − 1
≤ 3ℓ|z − 1|ℓ

ℓ!
,
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and, further,
∑

ℓ≥0

3ℓ|z − 1|ℓ
ℓ!

= e3|z−1|

is a convergent series; by dominated convergence it follows that

lim
k→∞

Pk(z) =
∑

ℓ≥0

lim
k→∞

(2k − 2ℓ− 1)!!

(2k − 1)!!
(−1)ℓak−ℓ,ℓ(1− z)ℓ =

∑

ℓ≥0

3ℓ

2ℓℓ!
(z − 1)ℓ = e3(z−1)/2.
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