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Abstract

Associated with each lattice simplex ∆ is a poset encoding the additive structure of

lattice points in the fundamental parallelepiped for ∆. When this poset is an antichain,

we say ∆ is antichain. For each partition λ of n, we define a lattice simplex ∆λ

having one unimodular facet, and we investigate their associated posets. We give a

number-theoretic characterization of the relations in these posets, as well as a simplified

characterization in the case where each part of λ is relatively prime to n − 1. We

use these characterizations to experimentally study ∆λ for all partitions of n with

n ≤ 73. Further, we experimentally study the prevalence of the antichain property

among simplices with a restricted type of Hermite normal form, suggesting that the

antichain property is common among simplices with this restriction. Finally, we explain

how this work relates to Poincaré series for the semigroup algebra associated with ∆,

and we prove that this series is rational when ∆ is antichain.

1 Introduction

Given a lattice simplex ∆, the structure of the lattice points in the fundamental paral-
lelepiped of the cone over ∆ reflects a wealth of arithmetic and combinatorial properties of
∆. In this work, we study a partial order on these lattice points that encodes the additive
relations among these points. Thus, our main results are primarily arithmetic in nature, and
will hopefully be of interest to those working in areas where fundamental parallelepipeds
play a role, e.g., Ehrhart theory, partition identities, coding theory, optimization, etc. Our
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motivation for this investigation comes from questions regarding rationality of Poincaré se-
ries for infinite graded resolutions of graded algebras, where it is of particular interest when
the partial order associated with ∆ has no relations. Thus, after developing our main results
using number-theoretic techniques, we explain their algebraic implications.

More precisely, in Section 2 we define the fundamental parallelepiped poset P (∆) associ-
ated with ∆, where we say ∆ is antichain if P (∆)r {0} has no relations. For each partition
λ of n, we define a lattice simplex ∆λ having one unimodular facet, and we investigate the
posets for these simplices in depth. In Theorem 15 we give a number-theoretic characteriza-
tion of the relations in P (∆λ), and in Corollary 16 we give a simplified characterization in
the case where each part of λ is relatively prime to n− 1. In Section 3 we use these charac-
terizations to generate empirical data, experimentally studying those ∆λ for all partitions of
n with n ≤ 73. These experiments reveal that a substantial fraction of those λ satisfying the
relatively prime condition appear to have ∆λ that are antichain. Further, we experimentally
study the prevalence of the antichain property among simplices with a restricted type of
Hermite normal form, suggesting that the antichain property is common among simplices
with this restriction. Finally, in Section 4 we explain the algebraic implications of our work
to Poincaré series of semigroup algebras associated with ∆. Specifically, we prove that if ∆
is antichain, then the associated Poincaré series is rational.

2 Fundamental parallelepiped posets and their struc-

ture

2.1 Lattice simplices and associated posets

Details regarding polytopes, cones, Hilbert bases, etc. as discussed in the following can
be found in standard references [3, 13]. For a collection V = {v0, . . . , vm} of points in
R

d, we let conv(V) denote the convex hull of V . In the case that m = d and the set
V◦ := {(v1 − v0), . . . , (vd − v0)} is a vector space basis of Rd, then we call ∆ := conv(V) a
d-simplex. We call the vi’s the vertices of ∆, and if each vi is an integer point, i.e., lies in
Z

d, we call ∆ a lattice simplex . We define the conical hull of V to be the set

cone(V) :=

{

m
∑

i=0

γivi such that 0 ≤ γi

}

⊂ R
d.

Notice that the conical hull is unbounded, as in particular it contains the rays R≥0 · vi for
0 ≤ i ≤ m.

We are particularly interested in conical hulls of the following kind. Let V = {v0, . . . , vd}
with ∆ a lattice d-simplex. Then the cone over ∆ is

cone{(1, v0), . . . , (1, vd)} ⊂ R
d+1 ,

and is denoted cone(∆). We next recall the fundamental parallelepiped, a distinguished
subset of cone(∆).
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Definition 1. For a lattice d-simplex ∆ with vertices v0 through vd, the fundamental par-
allelepiped Π∆ is the set

Π∆ :=

{

d
∑

i=0

γi(1, vi) such that 0 ≤ γi < 1

}

⊂ cone(∆).

Interest in the fundamental parallelepiped Π∆ arises mainly from the following well-
known fact: every lattice point in cone(∆) can be written uniquely as a non-negative integer
combination of the (1, vi)’s and a lattice point in Π∆. To see this, note that because any
element z of cone(∆) ∩ Z

d+1 lies in cone(∆), it is a non-negative linear combination of the
(1, vi)’s, i.e., there exist non-negative real coefficients gi such that

z =
d
∑

i=0

gi(1, vi) =

(

d
∑

i=0

⌊gi⌋ (1, vi)

)

+

(

d
∑

i=0

{gi}(1, vi)

)

where {gi} means the fractional part of gi. By setting γi equal to {gi}, we see that any point
z may be written as a non-negative integral combination of the (1, vi)’s and an integer point
in Π∆ ∩Z

d+1. In particular, it is well-known that the set cone(∆)∩Zd+1 has a unique finite
minimal additive generating set.

Definition 2. The unique minimal additive generating set of cone(∆) ∩ Z
d+1 is called the

Hilbert basis H of cone(∆). It consists of the (1, vi)’s and some lattice points h1 through hm

in Π∆ such that

cone(∆) ∩ Z
d+1 =

{(

d
∑

i=0

ri(1, vi)

)

+

(

m
∑

j=1

si hi

)

such that ri , sj ∈ Z≥0

}

.

The Hilbert basis consists of the cone generators (1, vi) together with the additively
minimal elements hj of Π∆ ∩ Z

d+1. If the matrix whose columns are given by (1, vi) has
determinant ±v, we say that the simplex ∆ has normalized volume v. Since v is precisely
the index of the sub-lattice generated by (1, v0) through (1, vd), we see that the normalized
volume is equal to the number of lattice points in Π∆. If the normalized volume of ∆ is
equal to one, then we call ∆ a unimodular simplex.

The set of lattice points Z
d+1 ∩ Π∆ can be equipped with the following partial order,

inherited from a well-known partial order on the lattice points in Z
d+1 ∩ cone(∆).

Definition 3. The set Zd+1 ∩ Π∆ is partially ordered by letting σ ≺ µ if and only if µ− σ
is an element of Zd+1 ∩ Π∆. We call this poset the fundamental parallelepiped poset P(∆).

Observe that the zero element of Zd+1 ∩ Π∆ is below every other element of P(∆), and
that the minimal elements of P(∆)r{0} are precisely the elements h1, . . . , hm of the Hilbert
basis of cone(∆). Our interest is in the case where the Hilbert basis contains all the elements
of P(∆)r {0}, leading to the following definition.
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Definition 4. If ∆ is a simplex such that P (∆)r{0} is an antichain, we call ∆ an antichain
simplex and say ∆ is antichain.

Example 5. Recall that an empty simplex is one whose only lattice points are its vertices.
It is known that any 2-dimensional empty simplex is unimodularly equivalent to the convex
hull of the origin and the standard basis vectors; this is easily verified to be antichain. Let
∆ be a 3-dimensional empty simplex, for which a classification of such simplices was given
by G. K. White [20]. Since ∆ is empty, no lattice points of Π∆ have 0-th coordinate equal to
one, and thus the only possible 0-th coordinates of lattice points in Π∆ are 2 or 3. However,
sums of pairs of such lattice points have 0-th coordinate equal to 4, 5, or 6, and hence P(∆)
has no relations. Thus, every 3-dimensional empty simplex is antichain.

When attempting to determine whether or not ∆ is antichain, the first problem encoun-
tered is to enumerate the elements of Π∆ ∩ Z

d+1. As an initial attempt in this direction,
let the matrix A have columns given by {(1, vi)}0≤i≤d, where the vi’s are the vertices of ∆.
Recall that the normalized volume v, the number of elements of Π∆, may be computed by
v = | detA|. Recall also that the set Π∆ is the image of [0, 1)d+1 under the linear transforma-
tion A, so that the preimage of a lattice point of Π∆ must be a rational point of [0, 1)d+1 with
denominator v. We may therefore compute the set of points in Π∆ ∩ Z

d+1 by considering
each element of the form

{

A ·

(

b0
v
, · · · ,

bd
v

)T

such that 0 ≤ bi < v

}

,

throwing out the ones which are not integer points. Unfortunately, this test set grows as
v
d+1, and there is no easy way to describe the lattice points among them.
The software Normaliz [7] gives a more efficient implementation based on the fact that

(possibly after a lattice translation) the matrix A has a representation A = UH where U
is a unimodular matrix and H is in Hermite normal form. Bruns et al. [8] show that, for
{ci,i}0≤i≤d given by the diagonal entries of the matrix H, lattice points in

[0, c0,0)× · · · × [0, cd,d)

are representatives of the quotient classes (in Z
d+1 modulo the (1, vi)’s) of the elements of

Π∆ ∩ Z
d+1. It is then sufficient to consider the image under A of the elements (A−1 · x)

mod Z
d+1 for x ∈ [0, c0,0) × · · · × [0, cd,d). This modular arithmetic is implemented in a

computer easily enough, but introduces number theory to any analysis of the poset P (∆).

2.2 Lattice simplices with a unimodular facet and their posets

In this work, we study a restricted class of simplices in order to avoid both of the methods
described above for determining Π∆ ∩ Z

d+1.

Definition 6. We say that a lattice d-simplex has a unimodular facet if there exists a
permutation π in Sd+1 such that conv({vπ1

, . . . , vπd
}) is a unimodular lattice (d−1)-simplex.
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One way to represent these simplices is through their Hermite normal form, which is of
the form















0 1 0 · · · 0 a1
0 0 1 · · · 0 a2
...

...
...

. . .
...

...
0 0 0 · · · 1 ad−1

0 0 0 · · · 0 n















where for i = 1, . . . , d− 1 we have 0 ≤ ai < n. Simplices with Hermite normal form having
only a single non-trivial column, such as the ones given above, were previously considered
by Hibi, Higashitani, and Li [11, Section 3] in the context of Ehrhart theory.

Alternatively, if ∆ has a unimodular facet, then we may define a lattice preserving trans-
formation taking ∆ to conv(e1, . . . , ed, z) where the ei are the standard basis vectors of Rd

and z is a lattice point in Z
d. This is the general approach we will take in this paper, and

we will focus our analysis on those ∆ having z with strictly positive entries. Our goal in this
section is to find a description of the relations in P (∆) in terms of the coordinates of the
point z for such simplices.

Note that in the following definition, we can assume that λ is a partition of n, as permut-
ing the entries of λ corresponds to a unimodular transformation of the ∆λ that is defined.
This provides us with a unique lattice simplex for each integer partition, which is our moti-
vation for this restriction.

Definition 7. Let λ = (λ1, . . . , λd) be a lattice point in N
d such that

∑d

i=1 λi = n. We
define ∆λ := conv(e1, . . . , ed, λ) ⊂ R

d and use the shortened notation Πλ := Π∆λ
and

P (λ) := P (∆λ).

Remark 8. The simplices ∆λ are defined in a similar manner to the simplices ∆(1,q) that
have recently been studied by multiple authors [4, 5, 6, 9, 14, 16, 17]. However, these are
not the same families of simplices. Specifically, the matrix giving the Hermite normal form
of ∆λ (after translating ∆λ by −e1) is















0 1 0 · · · 0 λ2

0 0 1 · · · 0 λ3
...

...
...

. . .
...

...
0 0 0 · · · 1 λd

0 0 0 · · · 0 −1 +
∑

i λi















.

Note that
∑d

i=2 λi ≤ −1 +
∑d

i=1 λi.
Setting Q = 1 +

∑

i qi, the Hermite normal form for ∆(1,q) is














0 1 0 · · · 0 Q− q2
0 0 1 · · · 0 Q− q3
...

...
...

. . .
...

...
0 0 0 · · · 1 Q− qd
0 0 0 · · · 0 Q















.

5



Note that for d ≥ 3, we have
∑d

i=2 Q− qi > Q. Thus, these are distinct classes of simplices.

The following is a straightforward determinant calculation that also follows from the
Hermite normal form given in Remark 8.

Proposition 9. The number of lattice points in Πλ, which is equal to the normalized volume
of ∆λ, is

∑d

i=1 λi − 1 = n− 1.

We can now describe the integer points in Πλ using only the entries of λ.

Proposition 10. For each integer b with 0 ≤ b < n− 1, there is a unique lattice point p(b)
in Πλ given by

p(b) =

((

d
∑

i=1

⌈

bλi

n− 1

⌉

)

− b ,

⌈

bλ1

n− 1

⌉

, . . . ,

⌈

bλd

n− 1

⌉

)

. (1)

Every integer point in Πλ arises in this manner, and thus we identify the integer b with the
lattice point p(b).

Proof. For an element
∑d

i=1 γi(1, ei) + γd+1(1, λ) ∈ Πλ ∩ Z
d+1, we have

((

d+1
∑

i=1

γi

)

, (γ1 + γd+1λ1) , . . . , (γd + γd+1λd)

)

∈ Z
d+1 .

Because of the condition that each γi is strictly less than one, for each i we have

γi = ⌈γd+1λi⌉ − γd+1λi ,

thus
(

γd+1 +
d
∑

i=1

(⌈γd+1λi⌉ − γd+1λi) , ⌈γd+1λ1⌉, . . . , ⌈γd+1λd⌉

)

=

(

γd+1

(

1−
d
∑

i=1

λi

)

+
d
∑

i=1

⌈γd+1λi⌉, ⌈γd+1λ1⌉, . . . , ⌈γd+1λd⌉

)

.

Observe that the first coordinate of this vector is an integer, hence

γd+1

(

1−
d
∑

i=1

λi

)

= γd+1(1− n) ∈ Z .

It follows that γd+1 is a rational number of the form b/(n− 1), and every lattice point arises
in this manner and is of the form

((

d
∑

i=1

⌈

bλi

n− 1

⌉

)

− b ,

⌈

bλ1

n− 1

⌉

, . . . ,

⌈

bλd

n− 1

⌉

)

.

Since there are n− 1 lattice points in Πλ by Proposition 9, there must be one unique lattice
point for each 0 ≤ b < n− 1.
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Using the notation from (1), for 0 ≤ b < n− 1 we have that the zeroth coordinate of p(b)
is

p(b)0 :=

(

d
∑

i=1

⌈

bλi

n− 1

⌉

)

− b .

Recall that we freely identify the integer b with the lattice point p(b). The following lemma
provides a connection between the parameterization of the integer points in Πλ and the order
in P (λ).

Lemma 11. For i, j ∈ P (λ) with i 6= j, we have i ≺ j if and only if i < j and p(i)+p(j−i) =
p(j).

Proof. For the forward direction, if i ≺ j, then by Proposition 10 there exists a point
p(ℓ) ∈ P (λ) such that p(i) + p(ℓ) = p(j). Note that ℓ > 0 since p(0) = 0. It follows that for
all 1 ≤ t ≤ d, we have

⌈

iλt

n− 1

⌉

+

⌈

ℓλt

n− 1

⌉

=

⌈

jλt

n− 1

⌉

.

Given this, we have that p(i)1 + p(ℓ)1 = p(j)1 reduces to i+ ℓ = j, forcing ℓ = j − i > 0, as
desired.

For the reverse direction, if i < j and p(i) + p(j − i) = p(j), then we have i ≺ j by
definition.

We now give two propositions demonstrating how Lemma 11 can be used in practice.

Proposition 12. If 0 6= i ≺ j in P (λ), then also j − i ≺ j in P (λ).

Proof. By Lemma 11, we have 0 6= i ≺ j if and only if 0 6= i < j and p(i) + p(j − i) = p(j)
if and only if 0 6= j − i < j and p(i) + p(j − i) = p(j) if and only if 0 6= j − i ≺ j.

Proposition 13. Let λ = (n− 2, 2). Then P (n− 2, 2) is equal to the following poset on the
elements {1, 2, . . . , n − 2}: The minimal elements of P (n − 2, 2) are {1, 2, . . . ,

⌊

n−1
2

⌋

} and
the maximal elements are {

⌊

n−1
2

⌋

+ 1, . . . , n− 2}. The cover relations are that the maximal
element

⌊

n−1
2

⌋

+ j covers {j, j + 1, . . . ,
⌊

n−1
2

⌋

}.

5 6 7 8

1 2 3 4

Figure 1: The poset P (6, 2).
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Proof. By Lemma 11, we see that i ≺ j if and only if i < j and the following hold:

⌈

2i

n− 1

⌉

+

⌈

2(j − i)

n− 1

⌉

=

⌈

2j

n− 1

⌉

(2)

⌈

i(n− 2)

n− 1

⌉

+

⌈

(j − i)(n− 2)

n− 1

⌉

=

⌈

j(n− 2)

n− 1

⌉

(3)

It is straightforward to verify that these equations hold for the values claimed in the propo-
sition statement.

To show that no other pairs i < j lead to relations i ≺ j, suppose that 1 ≤ i < j ≤
⌊

n−1
2

⌋

.
Then in (2), we obtain 1 + 1 = 1, which is false. Similarly, if

⌊

n−1
2

⌋

+ 1 ≤ i < j ≤ n − 2,
then in (2) we obtain 2 + 2 = 2, which is again false.

2.3 Characterizing the relations in P (λ)

While Lemma 11 is a reasonable first tool, as Propositions 12 and 13 illustrate, in general it
is difficult to compute these relations directly. Thus, we need to create a more sophisticated
mechanism through which to study P (λ). In this section, we establish in Theorem 15 a
number-theoretic characterization of the relations in P (λ). Further, Corollary 16 provides a
particularly simple characterization in the case where each part of λ is relatively prime to
n− 1.

For 0 ≤ i < n− 1, define the non-negative integers rt,i and 0 ≤ st,i < n− 1 by

iλt = rt,i(n− 1) + st,i . (4)

Lemma 14. We have i ≺ j in P (λ) if and only if i < j and for every t ∈ {1, . . . , d} we
have

st,i + st,j−i − st,j
n− 1

=

⌈

st,i
n− 1

⌉

+

⌈

st,j−i

n− 1

⌉

−

⌈

st,j
n− 1

⌉

(5)

Proof. After adding and subtracting (4) for the values i, j − i, and j, we obtain

rt,i + rt,j−i − rt,j =
−st,i − st,j−i + st,j

n− 1
. (6)

By dividing both sides of (4) by n− 1 and taking the ceiling of both sides, we see that

⌈

ℓλt

n− 1

⌉

= rt,ℓ +

⌈

st,ℓ
n− 1

⌉

. (7)

Adding (7) with itself for ℓ equal to i and j − i, then subtracting the equation with ℓ = j,
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and further applying (6), we obtain

⌈

iλt

n− 1

⌉

+

⌈

(j − i)λt

n− 1

⌉

−

⌈

jλt

n− 1

⌉

= rt,i + rt,j−i − rt,j +

⌈

st,i
n− 1

⌉

+

⌈

st,j−i

n− 1

⌉

−

⌈

st,j
n− 1

⌉

=
−st,i − st,j−i + st,j

n− 1
+

⌈

st,i
n− 1

⌉

+

⌈

st,j−i

n− 1

⌉

−

⌈

st,j
n− 1

⌉

.

Recall that i ≺ j in P (λ) if and only if p(i) + p(j − i) = p(j) if and only if for all t, we have
that

⌈

iλt

n− 1

⌉

+

⌈

(j − i)λt

n− 1

⌉

−

⌈

jλt

n− 1

⌉

= 0 ,

which by our computation above holds if and only if

st,i + st,j−i − st,j
n− 1

=

⌈

st,i
n− 1

⌉

+

⌈

st,j−i

n− 1

⌉

−

⌈

st,j
n− 1

⌉

.

Theorem 15. Let λ be a partition of n. We have i ≺ j in P (λ) if and only if i < j and for
each t ∈ {1, . . . , d}, one of the following holds:

1. st,i > st,j > 0,

2. st,i = 0 and st,j = st,j−i, or

3. st,j = st,i > 0 and sj−i = 0.

Proof. Forward implication: Suppose that i ≺ j in P (λ), and thus by Lemma 14 the s-values
satisfy (5). We consider five cases:

• st,i = 0

• st,i > st,j = 0

• st,i = st,j > 0

• st,i > st,j > 0

• st,j > st,i > 0

Case 1: st,i = 0. If st,i = 0, then by (5) we have that

st,j−i − st,j
n− 1

=

⌈

st,j−i

n− 1

⌉

−

⌈

st,j
n− 1

⌉

.
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Thus
st,j−i − st,j

n− 1
is equal to an integer, and the fact that 0 ≤ st,ℓ < n − 1 implies that

st,j−i − st,j = 0. Thus, we must have st,j−i = st,j. This establishes the second condition in
the theorem statement.

Case 2: st,i > st,j = 0. In this case, (5) implies

st,i + st,j−i

n− 1
=

⌈

st,i
n− 1

⌉

+

⌈

st,j−i

n− 1

⌉

.

Thus
st,i + st,j−i

n− 1
is an integer, and again since 0 ≤ st,ℓ < n− 1 and 0 < st,i < n− 1 we have

that Thus, it is impossible to have st,i > st,j = 0.
Case 3: st,i = st,j > 0. In this case, (5) implies

st,j−i

n− 1
=

⌈

st,j−i

n− 1

⌉

.

This forces st,j−i = 0, resulting in the third condition in the theorem statement.

Case 4: st,i > st,j > 0. In this case, (5) implies
st,i + st,j−i − st,j

n− 1
is equal to an integer,

and the fact that every 0 ≤ st,ℓ < n−1 implies this integer is 0 or 1. Since n−1 > st,i−st,j > 0,

we must have
st,i + st,j−i − st,j

n− 1
= 1, and also the right-hand side of (5) is equal to 1. Thus,

the first condition in the theorem statement is possible if i ≺ j.
Case 5: st,j > st,i > 0. Following the same logic as in the previous case, we must have

st,i + st,j−i − st,j
n− 1

= 0 and thus st,j−i 6= 0. But then the right-hand side of (5) is equal to 0

while the right-hand side is equal to 1, a contradiction.
Reverse implication: We verify that each of the three conditions listed in the theorem

statement imply that (5) is valid.

First, by equation (6) we have
st,i + st,j−i − st,j

n− 1
∈ Z. Combining n − 1 > st,i > st,j > 0

and the general bounds 0 ≤ st,ℓ < n− 1 for all ℓ, it follows that
st,i + st,j−i − st,j

n− 1
= 1. Thus,

st,i+st,j−i−st,j = n−1. Since n−1 > st,i−st,j > 0, we have st,j−i = n−1− (st,i−st,j) > 0,
and thus

⌈

st,i
n− 1

⌉

+

⌈

st,j−i

n− 1

⌉

−

⌈

st,j−i

n− 1

⌉

= 1 .

We conclude that equation (5) holds.
Second, if st,i = 0 and st,j = st,j−i, then it is immediate that (5) holds.
Finally, if st,j = st,i > 0 and sj−i = 0, then again it is immediate that (5) holds.

The following corollary illustrates a special case of Theorem 15 that we will focus on in
the remainder of this paper.

Corollary 16. Let λ be a partition of n where each coordinate is coprime to n − 1, i.e.,
gcd(n− 1, λt) = 1. Then i ≺ j in P (λ) if and only if st,i > st,j > 0 for every t.

10



Proof. If gcd(n− 1, λt) = 1, then st,i 6= 0 for all i. Thus, the second and third conditions in
Theorem 15 do not apply.

Remark 17. Ehrhart-theoretic properties of simplices ∆λ that satisfy the relatively prime
condition in Corollary 16 have been previously studied by Hibi, Higashitani, and Li [11,
Section 3].

We can use Corollary 16 to prove the following structural result regarding P (λ) in the
case where each part of λ is coprime to n− 1.

Theorem 18. Let λ be a partition of n such that each λt is coprime to n − 1. Then P (λ)
is self-dual.

Proof. We claim that φ : x→ n−1−x for x ∈ [n−2] is an order-reversing poset isomorphism.
It is clear that φ is a bijection. To see that φ is order-reversing, observe that by Corollary 16,
we have that i ≺ j if and only if

st,i > st,j for all t . (8)

Due to the fact that gcd(n − 1, λt) = 1, we have that st,i + st,n−i−i = n − 1 for all i and t,
and thus (8) holds if and only if

st,n−1−j > st,n−1−i for all t . (9)

This final condition holds if and only if n− 1− j ≺ n− 1− i, as desired.

2.4 Partitions with one distinct part

As an example of how these results can be applied, we consider the case where λ =
(x, x, . . . , x) has v occurrences of x. In this case, it is immediate that x is coprime to
n − 1 = vx − 1. The following theorem shows that P (λ) has a direct interpretation as a
subposet of Z2.

Theorem 19. For λ = (x, x, . . . , x) with v occurrences of x, we have that P (λ) is isomorphic
to the poset with elements

{(r, p) : 0 ≤ r < x, 0 ≤ p < v} \ {(0, 0), (x− 1, v − 1)}

and order relation (r, p) ≺ (r′, p′) if both p > p′ and r′ > r.

Proof. For 1 ≤ i ≤ vx− 2, write
i = riv + pi

11



where 0 ≤ ri < x and 0 ≤ pi < v, but we do not have simultaneously ri = x − 1 and
pi = v − 1. Then

si = ix−

⌊

ix

xv − 1

⌋

(xv − 1)

= x(riv + pi)−

⌊

(riv + pi)x

xv − 1

⌋

(xv − 1)

= xriv + xpi −

⌊

xriv − ri + ri + pix

xv − 1

⌋

(xv − 1)

= xriv + xpi −

(

ri +

⌊

ri + pix

xv − 1

⌋)

(xv − 1)

= ri + xpi −

⌊

ri + pix

xv − 1

⌋

(xv − 1)

= ri + xpi,

where the final equality is a result of the bounds on ri and pi forcing the floor function to be
zero. Thus, if i = riv + pi and j = rjv + pj, then we have i ≺ j in P (λ) if and only if i < j
and si > sj, which happens if and only if the following two conditions simultaneously occur:

• pi > pj or pi = pj with ri > rj

• rj > ri or rj = ri with pj > pi

The only way for both conditions to simultaneously occur is to have pi > pj and rj > ri,
and thus our proof is complete.

The following corollary follows immediately.

Corollary 20. The posets for λ = (x, x, . . . , x) where x occurs v times and λ′ = (v, v, . . . , v)
where v occurs x times are isomorphic.

Corollary 20 is interesting because the two lattice simplices corresponding to λ and λ′ are
in different dimensions. As an aside, we remark that the order on the lattice points within
a rectangular grid given in Theorem 19 corresponds to the reflexive closure of the direct
product of two strict total orders.

Example 21. Figures 2 and 3 show the Hasse diagrams of the posets P (4, 4, 4, 4, 4, 4) and
P (6, 6, 6, 6), respectively, embedded in Z

2 as described in Theorem 19. This illustrates the
isomorphism obtained by switching the roles of x and v.

12



Figure 2: P (4, 4, 4, 4, 4, 4).

Figure 3: P (6, 6, 6, 6).

3 Experimental results

3.1 Exhaustive search of ∆λ over all partitions of n

The results in Section 2, particularly Theorem 15 and Corollary 16, provide explicit tools
for studying the relations in P (λ). Also, Corollary 16 and Theorem 18 demonstrate that the
condition that the parts of λ be relatively prime to

∑

i λi − 1 imposes additional structure
on P (λ), leading us to the following definition.

Definition 22. Given a partition λ of n, if gcd(λi, n− 1) = 1 for all i, we say λ satisfies the
relatively prime condition. Let Part(n) denote the set of partitions of n, and let part(n) :=
|Part(n)|. Let Relprime(n) denote the set of partitions of n that satisfy the relatively prime
condition, and set relprime(n) := |Relprime(n)|. Finally, let Rpac(n) denote the subset of
Relprime(n) for which ∆λ is an antichain simplex, and set rpac(n) := |Rpac(n)|.

Using SageMath [18] via CoCalc.com [12], we computed part(n), relprime(n), and rpac(n)
for all 1 ≤ n ≤ 73; the results are given in Table 1. Figure 4 plots relprime(n)/part(n) for
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these values, and Figure 5 plots the ratio rpac(n)/relprime(n).
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Figure 4: The ratio relprime(n)/part(n) for 1 ≤ n ≤ 73.
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Figure 5: The ratio rpac(n)/relprime(n) for 1 ≤ n ≤ 73.

What follows are some observations regarding this experimental data.

1. Figure 5 shows that regardless of the total value of relprime(n), rpac(n)/relprime(n) is
generally above 0.8 and as n grows it is clustering between 0.85 and 0.95. Thus, these
experiments suggest that when λ satisfies the relatively prime condition, it is likely
that ∆λ is antichain.

2. Figure 4 shows that when n − 1 is not prime or the square of a prime, the ratio
relprime(n)/part(n) appears to be small, and thus our consideration of the relatively
prime condition does not broadly apply to partitions in this case. However, it is
immediate that when n−1 is prime, every partition of n except for 1+(n−1) satisfies
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the relatively prime condition, and thus rpac(n)/relprime(n) = rpac(n)/(part(n)− 1).
Thus, it appears that one likely source of antichain simplices are those ∆λ for which
n− 1 is prime.

3. In Figure 5, the values of rpac(n)/relprime(n) for n ≥ 13 that lie on the upper hull of the
data plot arise from n in {13, 19, 31, 43, 61, 67, 73}. These are all prime numbers, and
an OEIS [19] search finds that these values arise in three known sequences, including
the sequence A040047 of those primes p such that x3 = 6 has no solution mod p.

4. Again in Figure 5, the values of rpac(n)/relprime(n) for 70 ≥ n ≥ 20 that lie on the
lower hull of the data plot arise from n in {20, 26, 32, 38, 44, 50, 62, 68}. These values
are all of the form 6k+2, though whether due to coincidence or mathematics it is not
clear.

5. When n − 1 is a superabundant A004394 or highly composite A002182 number, one
might expect to see particularly low numbers of relatively prime antichain simplices,
which is supported by the data given in Table 1.

At this time, the authors do not have an explanation for why the ratio rpac(n)/relprime(n)
appears to be clustering as n grows, leading to the following problems.

Problem 23. Determine if there is a limiting value to which the sequence rpac(n)/relprime(n)
converges as n increases. Alternatively, determine if there are any connections between a
liminf or limsup value for rpac(n)/relprime(n) and the values of n corresponding to subse-
quences achieving those values, as hinted at in the observations above.

3.2 Random sampling of simplices with one non-trivial column in

Hermite normal form

It is worthwhile to compare the results for our restricted ∆λ simplices to arbitrary simplices
with Hermite normal form given by















0 1 0 · · · 0 a1
0 0 1 · · · 0 a2
...

...
...

. . .
...

...
0 0 0 · · · 1 ad−1

0 0 0 · · · 0 n















where for i = 1, . . . , d − 1 we have 0 ≤ ai < n. We will call a simplex of this form a one-
column (n,d) Hermite normal form simplex. Let OCH(n, d) denote the family of one-column
(n, d) Hermite normal form simplices, and let

OCH+(n, d) := {A ∈ OCH(n, d) : 1 ≤ ai < n for all i} .
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n rpac(n) relprime(n) part(n)

1 1 1 1
2 2 2 2
3 2 2 3
4 3 4 5
5 3 3 7
6 7 10 11
7 3 3 15
8 15 21 22
9 7 8 30
10 17 22 42
11 8 8 56
12 58 76 77
13 7 7 101
14 103 134 135
15 18 21 176
16 45 56 231
17 33 38 297
18 316 384 385
19 15 16 490
20 513 626 627
21 36 41 792
22 180 215 1002
23 78 89 1255
24 1317 1574 1575
25 31 34 1958
26 1169 1414 2436
27 148 170 3010
28 750 874 3718
29 143 162 4565
30 4779 5603 5604
31 26 28 6842
32 7050 8348 8349
33 392 448 10143
34 1675 1951 12310
35 478 539 14883
36 4850 5625 17977
37 115 126 21637
38 22109 26014 26015
39 816 918 31185
40 4410 5047 37338

n rpac(n) relprime(n) part(n)

41 433 481 44583
42 45819 53173 53174
43 104 112 63261
44 64731 75174 75175
45 1362 1522 89134
46 4192 4747 105558
47 2202 2468 124754
48 129242 147272 147273
49 365 399 173525
50 106948 123165 204226
51 1233 1362 239943
52 24641 27874 281589
53 3597 3986 329931
54 339300 386154 386155
55 623 679 451276
56 128590 145176 526823
57 3426 3781 614154
58 54230 60927 715220
59 8575 9496 831820
60 864231 966466 966467
61 302 324 1121505
62 1146930 1300155 1300156
63 13151 14458 1505499
64 55541 61850 1741630
65 16496 18200 2012558
66 522255 586074 2323520
67 1012 1091 2679689
68 2761384 3087734 3087735
69 20580 22503 3554345
70 234794 261034 4087968
71 3040 3287 4697205
72 4875893 5392782 5392783
73 2715 2931 6185689

Table 1: Experimental data

16



Thus, OCH+(n, d) contains those simplices in OCH(n, d) that are not obviously arising as
lattice pyramids over simplices of smaller dimension.

There are (n− 1)d−1 simplices in OCH+(n, d). For 67 random choices (uniform without
replacement) of (n, d) ∈ {3, . . . , 20} × {3, . . . , 20}, we selected n3 random samples from
OCH+(n, d) and computed the resulting fraction f(n, d) of antichain simplices in this sample.
We plotted the points (n/d, f(n, d)) in Figure 6. It is particularly interesting that when d
is large relative to n, the percentage of antichain simplices among those sampled appears to
be close to 1, leading to the following problem.

Problem 24. Fix n ≥ 2. Is it true that the fraction of antichain simplices in OCH+(n, d)

goes to 1 as d→∞? Alternatively, let acn(d) denote the fraction of
d
⋃

j=3

OCH+(n, j) that are

antichain simplices; what is the liminf of acn(d) as d→∞?

1 2 3 4 5 6
n/d

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fraction antichain

Figure 6: For 67 random choices (uniform without replacement) of (n, d) ∈ {3, . . . , 20} ×
{3, . . . , 20}, we plot the point (n/d, f(n, d)) where f(n, d) is the fraction of antichain simplices
among n3 random samples from OCH+(n, d).

4 Algebraic implications

In this section, we discuss the algebraic implications of our analysis of the fundamental
parallelepiped poset. Our main result is Theorem 32 showing that the Poincaré series for the
semigroup algebra associated with an antichain simplex is rational. Unlike previous work
of the authors [4] establishing rationality of Poincaré series for lattice simplex semigroup
algebras, our proof technique in this work involves the bar resolution.
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4.1 A review of resolutions and Poincaré series

For all background regarding graded resolutions of algebras, see the book by Peeva [15].
Recall that the semigroup (Λ,+) associated with a d-simplex ∆ is the intersection Λ :=
cone(∆)∩Zd+1 with + given by the usual coordinate-wise addition on Z

d+1. The semigroup
algebra K[Λ] associated with a semigroup Λ ⊂ Z

d+1 is the K-vector space with basis {eα}α∈Λ
equipped with the product eα · eβ = eα+β. For K a field, a K-algebra R is called graded
with respect to Z

n if it can be written as a direct sum

R =
⊕

α∈Zn

Rα,

where for x ∈ Rα and y ∈ Rβ, we have that x · y ∈ Rα+β. It is immediate that K[Λ] is a
Z

d+1-graded K-algebra. It is common to “coarsen” the grading of K[Λ] by considering it to
be a Z-graded algebra with grading given by the zeroth coordinate of its Zd+1-grading.

In this context, the seemingly arbitrary definition of the cone over a simplex ∆ is shown
to be natural and helpful by the following observation. For a point x = (x0, x1, . . . , xd) in
R

d+1, we define the height of x to be height(x) = x0. Letting Xn denote the collection of
points x ∈ R

d+1 with height equal to n, we have the set equality

Xn ∩ cone(∆) = {(n, n · x) ∈ R
d+1 such that x ∈ ∆}.

Observe that the set Zd+1 ∩Xn ∩ cone(∆) is in bijection with the set of lattice points of n∆
(by dropping the zeroth coordinate). Thus, the coarsened grading of K[Λ] corresponds to
the height function in the cone.

We need to consider complexes of vector spaces in order to define free resolutions of
K-algebras. Given a collection of vector spaces {Fi}i∈Z≥0

, together with linear maps ∂i from
Fi to Fi−1, we call the sequence

F : F0
∂1←− F1

∂2←− · · ·
∂i←− Fi

∂i+i
←−− Fi+1

∂i+2

←−− · · ·

a complex of vector spaces if the image of ∂i+1 is contained in the kernel of ∂i for all i ≥ 1.
The ith homology of the complex F is the quotient vector space Hi(F ) := ker ∂i/im∂i+1.
Let M be a finitely generated graded module over R, Fi be a free R-module and ∂i be a
graded R-module homomorphism such that the image of ∂i+1 is equal to the kernel of ∂i for
all i ≥ 1. Then the complex F is a free resolution of M over R if M ∼= F0/im∂1. Because it
is graded, we may split the free resolution F into a direct sum of K-vector space complexes
by writing each Fi as a direct sum

⊕

α∈Zn Fi,α.
For (F, ∂) a complex of free R-modules, we can define a tensor complex (M ⊗F, Id⊗∂).

If F is a graded free resolution of M , the Betti number βR
i,α(M) of a graded R-module M is

the vector space dimension of the ith homology of the graded component of K⊗F of degree
α. This leads to our primary object of interest.
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Definition 25. The Poincaré series PM
R (z; t) is the ordinary generating function for the

Betti numbers of the R-module M , i.e.,

PM
R (z; t) =

∑

α∈Zn

∑

i≥0

βR
i,α(M)zitα.

In the case that R is a polynomial ring in n variables, the Hilbert Syzygy Theorem says
that the Poincaré series PM

R (z; t) is a polynomial for any finitely generated R-module M .
However, when R is not a polynomial ring, the growth of the Betti numbers is not so simple.

4.2 Rational Poincaré series

We call a Z
n-graded algebra R connected if R0

∼= K (as in the case of a semigroup ring K[Λ]
associated with a lattice simplex ∆). By a slight abuse of notation, we write

m :=
⊕

α∈Λ\0

Rα and K ∼= R/m

as R-modules. It has been shown [10] that if the Poincaré series for the ground field K as an
R-module is rational for all R, then the Poincaré series is rational for any finitely generated
module, leading to the question of Serre-Kaplansky:

Question 26. Is the Poincaré series of the ground field K over R rational for all K-algebras
R?

This question was answered in the negative by Anick [1], and much subsequent work
has focused on determining the properties of R that lead to rationality or irrationality. Our
interest is in the rationality of the Poincaré series for K[Λ], which leads us to define a related
algebra as follows.

Because K[Λ] is finitely generated (by its Hilbert basis H given in Definition 2) it has a
presentation

0→ kerϕ→ K[V0, . . . , Vd, x1, . . . , xm]
ϕ
−→ K[Λ]→ 0, (10)

where the map ϕ is defined by the image of variables: the image of Vi is the vector space
basis element e(1,vi) associated with the Hilbert basis element (1, vi) in Λ, and the image of xi

is ehi
where the hi are the remaining elements of the Hilbert basis. This defines a surjective

degree map deg(·) from the set of monomials of K[V1, . . . , Vd+1, x1, . . . , xm] onto Λ by

deg
(

∏

V si
i ·
∏

x
rj
j

)

=
∑

si(1, vi) +
∑

rjhj .

Extending deg(·) K-linearly, we see that kerϕ is the toric ideal I generated by all binomials

VuV xux −VwV xwx

such that deg (VuV xux) = deg(VwV xwx).
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Definition 27. The Fundamental Parallelepiped Algebra FPA(∆) associated with the sim-
plex ∆ may be constructed in two ways; firstly as the quotient

K[V0, . . . , Vd, x1, . . . , xm] / kerϕ+
(

V0, . . . , Vd

)

,

and secondly as the algebra with K-vector space basis
{

eσ such that σ ∈ Z
d+1 ∩ Π∆

}

and with multiplication given by

eσ · eµ =

{

eσ+µ, if σ + µ ∈ Z
d+1 ∩ Π∆;

0, otherwise.

One inspiration for defining this algebra is the fact that, due to an argument presented
earlier, every element of Λ may be written uniquely as a non-negative sum of points (1, vi)
and a single point in Π∆. Because the generators e(1,vi) form a linear system of parameters
for K[Λ], we have the following result [2, Prop. 3.3.5].

Theorem 28. For the Z-graded algebra K[Λ], we have the following equality:

PK
K[Λ](z; t) =

∏

i

(

1 + zt(1,vi)
)

· PK
FPA(∆)(z; t)

= PK
K[V0,...,Vd]

(z; t) · PK
FPA(∆)(z; t).

4.3 Bar resolutions and antichain simplices

We will use the Bar resolution of K, with K as a module over a graded K-algebra, which is a
standard construction. We will define the Bar resolution in the special case of a fundamental
parallelepiped algebra. In the following, we use the bar symbol | to mean a tensor over K,
and reserve the tensor symbol ⊗ to mean a tensor over the ring under consideration.

Definition 29. Consider the Z
n-graded K-algebra FPA(∆). The Bar resolution B of the

module K over FPA(∆) is a sum of graded components, where the component [Bi]α has a
formal vector space basis given by all eδ0 | eδ1 | · · · | eδi such that

• δ0 is in Π∆,

• δj is in Π∆ r {0} for j ≥ 1, and

•
∑i

j=0 δj = α.

The differential map ∂i acts by sending eδ0 | · · · | eδi ∈ Bi to the sum

i−1
∑

j=0

(−1)j eδ0 | · · · | eδj−1
| eδjeδj+1

| eδj+2
| · · · | eδi

in Bi−1.

20



Example 30. For a unimodular simplex ∆, the FPA(∆) is one-dimensional as a K-vector
space, and has basis e0. Consequently, [Bi]α has empty basis (and dimension zero) unless α
is equal to zero in Λ and i = 0. It follows that the complex B is given by

0← K ← 0← 0← · · ·

and that

βi,α =

{

1 if i = 0 and α = 0,

0 otherwise.

Thus, PK
FPA(∆)(z; t) = 1. The result is consistent with the fact that K[Λ] is a polynomial

ring in the case that ∆ is unimodular.

Example 31. Consider ∆λ for λ = (2, 2, 3, 5). It can be checked using Theorem 15 that
P (∆λ) \ {0} has 10 elements and no relations. Thus, for any pair of non-zero elements
δi, δj ∈ Π∆λ

, we have δi + δj /∈ Π∆λ
, hence eδieδj = 0. Thus, in the Bar resolution for

FPA(∆λ), the differential maps are uniformly equal to zero.

Recall from the paragraph prior to Definition 25 that in order to compute the Betti
number βi,α, we must compute homology in the tensor complex B := K ⊗ B. Because we
identify K with the quotient R0

∼= R/m with basis e0, we see that [Bi]α is generated as a
vector space by the collection {e0 ⊗ eδ0 | eδ1 | · · · | eδi}. Observe that unless δ0 is equal to the
point 0 ∈ Λ, the product e0⊗ δ0 is equal to zero, since for σ not equal to zero, e0 · eσ is equal
to zero in the module K, and hence

e0 ⊗ eσ = e0 · eσ ⊗ e0 = 0⊗ e0 = 0 .

Consequently, for i ≥ 1, [Bi]α has a vector space basis in bijection with the collection of
eδ1 | · · · | eδi such that each δj ∈ Π∆ r {0} and

∑i

j=1 δj = α. We further have that [B0]α is
the trivial vector space unless α is zero in Λ, and that [B0]0 is isomorphic to K.

We are now ready to prove our final result.

Theorem 32. For an antichain simplex ∆, we have

PK
FPA(∆)(z; t) =









1−
∑

σ∈P(∆)
σ 6=0

ztσ









−1

,

and thus the Poincaré series is rational.

Proof. As illustrated by Example 31, for an antichain simplex the differential map is uni-
formly zero, since eδj · eδj+1

equals zero for all j. Therefore, βi,α is equal to the dimension of
[Bi]α. From the description of the basis of [Bi]α in the Bar resolution, it follows that there
is a recurrence

dimK [Bi]α =
∑

σ∈P(∆)
σ 6=0

dimK [Bi]α−σ ,

from which our result follows.
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