
23 11

Article 20.2.1
Journal of Integer Sequences, Vol. 23 (2020),2

3

6

1

47

Combinatorial Interpretation of Generalized

Pell Numbers

Jhon J. Bravo1 and Jose L. Herrera
Departamento de Matemáticas
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Abstract

In this note we give combinatorial interpretations for the generalized Pell sequence

of order k by means of lattice paths and generalized bi-colored compositions. We also

derive some basic relations and identities by using Riordan arrays.

1 Introduction

There are many integer sequences that are used in many fields of modern science. For
instance, the Fibonacci sequence F = (Fn)

∞
n=0 is one of the most famous and curious numer-

ical sequences in mathematics, and has been widely studied in the literature. The Fibonacci
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numbers can be interpreted combinatorially as the number of ways to tile a board of length
n and height 1 using only squares (length 1, height 1) and dominoes (length 2, height 1).
They also count the number of binary sequences with no consecutive zeros, the number of
sequences of 1’s and 2’s that sum to a given number, and the number of independent sets of
a path graph, among others.

The Fibonacci sequence has been generalized in many ways, some by preserving the
initial conditions, and others by preserving the recurrence relation. Cooper and Howard
[3] and Dresden and Du [5] investigated a generalization of the Fibonacci sequence given
by a recurrence relation of a higher order. They considered, for an integer k ≥ 2, the k-
generalized Fibonacci sequence, which is like the Fibonacci sequence but starts with the terms
0, 0, . . . , 0, 1 (a total of k terms), and each term afterwards is the sum of the k preceding
terms. These numbers can also be interpreted combinatorially as the number of ways to
tile a board of length n and height 1 using tiles of length at most k. This combinatorial
interpretation has been used to provide simple and intuitive proofs of several identities
involving k-generalized Fibonacci numbers (see [7]). Other generalizations of the Fibonacci
sequence have also been studied (see, for example, [2, 8, 14, 17]).

Also, there is the Pell sequence, which is as important as the Fibonacci sequence. The
Pell sequence P = (Pn)

∞
n=0 is defined by the recurrence Pn = 2Pn−1 + Pn−2 for all n ≥ 2

with P0 = 0 and P1 = 1 as initial conditions. For the beauty and rich applications of these
numbers and their relatives one can see Koshy’s books [10, 11]. The Pell sequence appears
in OEIS as A000129. The first few terms of this sequence are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, . . .

This sequence has many interesting combinatorial and arithmetical properties; see, e.g., [11].
For example, it is possible to prove that Pn+1 counts the number of bi-colored compositions
of a positive integer n. By a bi-colored composition of a positive integer n we mean a sequence
of positive integers σ = (σ1, σ2, . . . , σℓ) such that σ1 + σ2 + · · ·+ σℓ = n, σi ∈ {1, 2}, and the
summand 1 can come in one of 2 different colors. The colors of the summand 1 are denoted
by subscripts 11 and 12. For example, the bi-colored compositions of 3 are

2+ 11, 2+ 12, 11 + 2, 12 + 2, 11 + 11 + 11, 12 + 11 + 11, 11 + 12 + 11,

11 + 11 + 12, 11 + 12 + 12, 12 + 11 + 12, 12 + 12 + 11, 12 + 12 + 12.

This combinatorial interpretation can be translated into the language of tilings. As men-
tioned before, it is well-known that the Fibonacci number Fn+1 can be interpreted as the
number of tilings of a board of length n with cells labeled 1 to n from left to right with only
squares and dominoes [1]. If we use white and black squares and non-colored dominoes we
obtain a different combinatorial interpretation for the Pell numbers. For example, Figure 1
shows the different ways to tiling a 3-board.
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Figure 1: Different ways to tile 3-boards.

In this paper, we are interested in a generalization of the Pell sequence called the k-
generalized Pell sequence or, for simplicity, the k-Pell sequence P (k) = (P

(k)
n )∞n=−(k−2) defined

by the recurrence

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + · · ·+ P

(k)
n−k for all n ≥ 2,

with the initial values P
(k)
−(k−2) = P

(k)
−(k−3) = · · · = P

(k)
0 = 0 and P

(k)
1 = 1. We refer to P

(k)
n

as the nth k-Pell number. In particular, we introduce new combinatorial interpretations for
the k-Pell sequence by means of lattice paths and generalized bi-colored compositions. We
also use Riordan arrays to derive possibly new combinatorial identities and relations for the
k-Pell numbers.

2 A combinatorial interpretation: lattice paths

Let S be a fixed subset of Z × Z. A lattice path Γ of length ℓ with steps in S is a ℓ-
tuple of directed steps of S. That is Γ = (s1, . . . , sℓ) where si ∈ S for 1 ≤ i ≤ ℓ. Let
a(n,m) be the number of lattice paths from the point (0, 0) to the point (n,m) with step set
S = {H = (1, 0), V = (0, 1)}. It is clear that a(n,m) =

(
n+m

n

)
. Let A be the infinite lower

triangular matrix defined by A := [a(n−m,m)]n,m≥0 =
[(

n

m

)]

n,m≥0
. The matrix A coincides

with the Pascal matrix. Among the many properties of the Pascal matrix, it is known that
the sum of the elements on the rising diagonal is the Fibonacci sequence A000045, i.e., for
n ≥ 1

Fn =

⌊n−1

2
⌋

∑

i=0

(
n− i− 1

i

)

.

From this combinatorial interpretation, we conclude that Fn counts the number of lattice
paths from (0, 0) to (n− 2i− 1, i) for i = 0, 1, . . . , ⌊(n− 1)/2⌋. For example, Figure 2 shows
the paths for n = 5, i.e., the paths counted by the Fibonacci number F5 = 5.

(0; 0) (0; 0) (0; 0) (0; 0) (0; 0)(4; 0)

(2; 1) (2; 1) (2; 1)

(0; 2)

Figure 2: Lattices paths counted by the Fibonacci number F5.
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The goal of this section is to generalize the above results for the k-Pell numbers. In
particular, we introduce a family of matrices Pk from a family of generalized paths. These
matrices satisfy that the row sum coincides with the k-Pell numbers; see Corollary 5.

Let Pk(n,m) denote the set of lattice paths from the point (0, 0) to the point (n,m) with
step set

Sk := {H = (1, 0), V = (0, 1), D1 = (1, 1), D2 = (1, 2), . . . , Dk = (1, k)}.

In Figure 3, we show all lattice paths of the set P2(1, 3).

Figure 3: Lattices paths in P2(1, 3).

Let pk(n,m) be the number of lattice paths of Pk(n,m), i.e., pk(n,m) := |Pk(n,m)|.
Since the last step on any path from Pk(n,m) is one of Sk, we obtain the recurrence relation:

pk(n,m) = pk(n− 1,m) + pk(n,m− 1) + pk(n− 1,m− 1)

+ pk(n− 1,m− 2) + · · ·+ pk(n− 1,m− k), (1)

with n ≥ 1,m ≥ k, and the initial conditions pk(0,m) = 1 = pk(n, 0). For example, for
k = 2 the first few values of the sequence p2(n,m) are

1

1

1

1

1

1

1 1 1 1 1

3
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5

9

12

33

15 28

7 9

n

m

Let P
(k)
n (x) be the ordinary generating function of the sequence {pk(n,m)}m. That is,

P (k)
n (x) =

∑

i≥0

pk(n, i)x
i.

In Theorem 1 we find an expression for the generating function P
(k)
n (x).
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Theorem 1. We have

P (k)
n (x) =

(1 + x+ x2 + · · ·+ xk)n

(1− x)n+1
.

Proof. From equation (1), we obtain the relation

P (k)
n (x) = P

(k)
n−1(x) + xP (k)

n (x) + xP
(k)
n−1(x) + x2P

(k)
n−1(x) + · · ·+ xkP

(k)
n−1(x).

Thus

P (k)
n (x) =

1 + x+ x2 + · · ·+ xk

1− x
P

(k)
n−1(x).

Since P0 = 1/(1− x), we obtain the desired result.

Corollary 2. The number of lattice paths pk(n,m) is given by

pk(n,m) =
∑

ℓ0+ℓ1+···+ℓk=n

(
n

ℓ0, ℓ1, . . . , ℓk

)(
n+m− t

n

)

,

where t =
∑k

s=0 sℓs and
(

n

n1, . . . , nm

)

=
n!

n1! · · · nm!

is the multinomial coefficient.

Proof. From the multinomial theorem, the generating function

1

(1− x)n+1
=
∑

i≥0

(
n+ i

i

)

xi,

and Theorem 1, we have that

pk(n,m) = [xm]P (k)
n (x) = [xm]

(1 + x+ x2 + · · ·+ xk)n

(1− x)n+1

= [xm]
∑

ℓ0+ℓ1+···+ℓk=n

(
n

ℓ0, ℓ1, . . . , ℓk

) k∏

s=0

xsℓs
∑

i≥0

(
n+ i

i

)

xi

= [xm]
∑

ℓ0+ℓ1+···+ℓk=n

∑

i≥0

(
n

ℓ0, ℓ1, . . . , ℓk

)(
n+ i

i

)

xt+i,

where t =
∑k

s=0 sℓs. By comparing the m-th coefficient we obtain the desired result.
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For example,

p2(1, 3) =
∑

ℓ0+ℓ1+ℓ2=1

(
1

ℓ0, ℓ1, ℓ2

)(
1 + 3− (ℓ1 + 2ℓ2)

1

)

=

(
1

1, 0, 0

)(
4

1

)

+

(
1

0, 1, 0

)(
3

1

)

+

(
1

0, 0, 1

)(
2

1

)

= 4 + 3 + 2 = 9.

In Figure 3, we show the corresponding lattice paths.
Let Pk := [qk(n,m)]n,m≥0 be the array defined by

qk(n,m) =

{

pk(m,n−m), if n ≥ m;

0, if n < m.

For example, the first few rows of the array P2 are as follows (see also A102036).

P2 =


















1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0
1 6 5 1 0 0 0 0
1 9 15 7 1 0 0 0
1 12 33 28 9 1 0 0
1 15 60 81 45 11 1 0
1 18 96 189 161 66 13 1
...

...
...


















This new family of matrices Pk are an example of a Riordan array. Remember that an
infinite lower triangular matrix is called a Riordan array [18] if its kth column satisfies the
generating function g(x) (f(x))k for k ≥ 0, where g(x) and f(x) are formal power series with
g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0. The matrix corresponding to the pair f(x), g(x) is denoted
by (g(x), f(x)). If we multiply (g, f) by a column vector (c0, c1, . . . )

T with the generating
function h(x), then the resulting column vector has generating function g(x)h(f(x)). This
property is known as the fundamental theorem of Riordan arrays or summation property.

The product of two Riordan arrays (g(x), f(x)) and (h(x), l(x)) is defined by

(g(x), f(x)) ∗ (h(x), l(x)) = (g(x)h (f(x)) , l (f(x))) .

We recall that the set of all Riordan matrices is a group under the operator “ ∗ ” [18]. The
identity element is I = (1, x), and the inverse of (g(x), f(x)) is

(g(x), f(x))−1 =
(
1/
(
g ◦ f

)
(x), f(x)

)
,

where f(x) is the compositional inverse of f(x). For example, the Pascal matrix is given by
the Riordan array (

1

1− x
,

x

1− x

)

.
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Several authors have used Riordan arrays to study lattice paths; see for example [4, 6, 13,
15, 16, 19, 20, 21, 22, 23].

From the definition of Riordan array and Theorem 1 we obtain the following theorem.

Theorem 3. The matrix Pk is a Riordan array given by

Pk =

(
1

1− x
, x

1 + x+ x2 + · · ·+ xk

1− x

)

.

Proof. The (n,m)-th entry of the Riordan array is given by

[xn]
1

1− x

(

x
1 + x+ x2 + · · ·+ xk

1− x

)m

= [xn−m]
(1 + x+ x2 + · · ·+ xk)m

(1− x)m+1

= [xn−m]P (k)
m (x)

= pk(m,n−m) = qk(n,m).

Hence the matrices are the same.

Let Rk(x) be the generating function for the rows sums of the matrix Pk. In Theorem 4
we give an expression for this generating function.

Theorem 4. The generating function Rk(x) is given by

Rk(x) =
1

1− 2x− x2 − · · · − xk+1
.

Proof. From the summation property for the Riordan arrays we have

Rk(x) = Pk

(
1

1− x

)

=
1

1− x

(

1

1− x1+x+x2+···+xk

1−x

)

=
1

1− 2x− x2 − · · · − xk+1
.

By using standard methods, it is possible to prove that the ordinary generating function
of the k-Pell sequence is

∑

n≥0

P (k)
n xn =

1

1− 2x− x2 − · · · − xk
.

Thus we have the following corollary.

Corollary 5. The k-Pell numbers P
(k)
n coincide with the row sum of the matrix Pk−1.

For example, the row sum of the matrix P2 coincides with the 3-Pell numbers A077939:

1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, · · ·

In Corollary 6 we deduce a possibly new combinatorial identity for the k-Pell numbers.
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Corollary 6. The k-Pell numbers P
(k)
n are given by the combinatorial identity

P (k)
n =

n∑

i=0

∑

ℓ0+ℓ1+···+ℓk−1=i

(
i

ℓ0, ℓ1, . . . , ℓk−1

)(
n− t

i

)

,

where t =
∑k−1

j=0 jℓj.

Proof. From Corollaries 2 and 5 we have

P (k)
n =

n∑

i=0

qk−1(n, i) =
n∑

i=0

pk−1(i, n− i) =
n∑

i=0

∑

ℓ0+ℓ1+···+ℓk−1=i

(
i

ℓ0, ℓ1, . . . , ℓk−1

)(
n− t

i

)

.

Finally, from the relation P
(k)
n =

∑n

i=0 pk−1(i, n−i) we deduce the following combinatorial
interpretation.

Theorem 7. The k-Pell number P
(k)
n+1 counts the number of lattice paths from the point (0, 0)

to (n− i, i) for i = 0, 1, . . . , n, with step set

Sk = {H = (1, 0), V = (0, 1), D1 = (1, 1), D2 = (1, 2), . . . , Dk = (1, k)}.

For example, the 3-Pell number P
(3)
4 = 13 counts the paths of Figure 4.

Figure 4: Lattices paths counted by P
(3)
4 .

We recall that the Fibonacci numbers are equal to the sum on the rising diagonal in the
Pascal matrix. In Theorem 8 we give an analogue of this result for the k-Pell sequence.

Theorem 8. The k-Pell numbers P
(k)
n coincide with the sum of the elements on rising

diagonal lines in the Riordan array

Qk :=

(
1

1− 2x
, x

1 + x+ x2 + · · ·+ xk−2

1− 2x

)

.
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Proof. The generating function of the sum of the elements on rising diagonal lines in the
above Riordan array is

1

1− 2x




1

1− x2
(

1+x+x2+···+xk−2

1−2x

)



 =
1

1− 2x− x2 − · · · − xk
=
∑

n≥0

P (k)
n xn.

For example, the diagonal sum of the Riordan array Q2 (see also A038207) coincides with
the classical Pell numbers

Q2 =

(
1

1− 2x
,

x

1− 2x

)

=


















1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
4 4 1 0 0 0 0 0
8 12 6 1 0 0 0 0
16 32 24 8 1 0 0 0
32 80 80 40 10 1 0 0
64 192 240 160 60 12 1 0
128 448 672 560 280 84 14 1
...

...
...


















.

The diagonal sum of the Riordan array Q3 coincides with the 3-Pell numbers

Q3 =

(
1

1− 2x
, x

1 + x

1− 2x

)

=


















1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
4 5 1 0 0 0 0 0
8 16 8 1 0 0 0 0
16 44 37 11 1 0 0 0
32 112 134 67 14 1 0 0
64 272 424 305 106 17 1 0
128 640 1232 1168 584 154 20 1
...

...
...


















.
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1 50 100 150

1

50

100

150

1 50 100 150

1

50

100

150

Figure 5: Matrix P2 (mod 2).

The Riordan arrays obtained in this section show interesting patterns if you evaluated
their entries mod 2. In Figure 5 we show the fractal structure of the matrix P2. Notice that
Merlini and Nocentini [12] have studied some relations between Riordan arrays and fractal
patterns. In a forthcoming paper we will study the p-adic valuation for the k-Pell sequence.

3 The generalized bi-colored compositions

The goal of this section is to consider a generalization of the concept of a bi-colored compo-
sition in order to give another combinatorial interpretation of the k-Pell numbers. Here and
below, n denotes a positive integer. In fact, we defined a generalized bi-colored composition

of n as a sequence of positive integers σ = (σ1, σ2, . . . , σℓ) such that σ1 + σ2 + · · · + σℓ = n,
and the summand 1 can take two colors. The colors of the summand 1 are denoted by
subscripts 11 and 12. Further, the positive integers σi are called parts of the composition.
We let An denote the set of all generalized bi-colored compositions of n and let C(n) denote
the number of elements in An, i.e., C(n) := |An|. We also use Ck(n) to denote the number
of generalized bi-colored compositions of n with parts in the set {1, 2, . . . , k}.

For example,

A3 = {3, 2+ 11, 2+ 12, 11 + 2, 12 + 2, 11 + 11 + 11, 11 + 11 + 12, 11 + 12 + 11,

11 + 12 + 12, 12 + 11 + 11, 12 + 11 + 12, 12 + 12 + 11, 12 + 12 + 12}.

Therefore, C(3) = 13. Finally, let Fn denote the set of classical compositions of n with parts
in {1, 2}. It is well-know that

|Fn| = Fn+1 for all n ≥ 1.
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With the above notation, we have the following theorem.

Theorem 9. There is a bijection from An to F2n. So

|An| = |F2n| = F2n+1 for all n ≥ 1.

Proof. The result clearly holds for n = 1, so we assume that n ≥ 2. We shall define the map
ϕ from An to F2n as follows:

(11) 7−→ (1, 1), (12) 7−→ (2),

(2) 7−→ (1, 2, 1), (3) 7−→ (1, 2, 2, 1), . . . , (n) 7−→ (1, 2, . . . , 2
︸ ︷︷ ︸

(n−1)-times

, 1)

For every composition σ = (σ1, σ2, . . . , σℓ) in An, we define

ϕ(σ) = (ϕ(σ1), ϕ(σ2), . . . , ϕ(σℓ)).

For example,

ϕ(3, 12, 2, 2, 11, 4) = (1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1).

Note that if σ ∈ An, then ϕ(σ) is a composition of 2n with parts in {1, 2}, i.e., ϕ(σ) ∈ F2n

for all σ ∈ An. Thus ϕ is well defined.
Let (α1, . . . , αm), (β1, . . . , βs) ∈ An and suppose that ϕ(α1, . . . , αm) = ϕ(β1, . . . , βs). By

definition, we get that m = s and ϕ(αi) = ϕ(βi) for all i ∈ {1, 2, . . . ,m}. Hence αi = βi for
all {1, 2, . . . ,m} and so (α1, . . . , αm) = (β1, . . . , βs). Thus ϕ is injective.

It remains to prove that ϕ is surjective. In order to do so, let β = (β1, . . . , βℓ) ∈ F2n.
Notice that β1 = 1 or β1 = 2. Suppose first that β1 = 1. In this case, since β ∈ F2n, we have
that βi = 1 for some i ∈ {2, . . . , ℓ}. Let j ∈ {2, . . . , ℓ} be the lowest index such that βj = 1.
If j = ℓ, then β = ϕ(ℓ− 1). If j = 2, then we get that β = (ϕ(11), β

′) for some β′ ∈ F2n−2.
Now, if 2 < j < ℓ, then β = (ϕ(j−1), β′) for some β′ ∈ F2n−2j+2. If, on the contrary, β1 = 2,
then we have that β = (ϕ(12), β

′) for some β′ ∈ F2n−2.
We conclude from the previous analysis that β = ϕ(ℓ − 1) or β = (ϕ(α1), β

′) for some
α1 ∈ {11, 12, j-1} and β′ ∈ F2n−2α1

. If β = ϕ(ℓ − 1), then we are through. Otherwise, we
repeat the argument given above with β replaced by β′. Repeating the above argument,
as many times as needed, we finally obtain that β = ϕ(α1, . . . , αm) for some m ≥ 2 and
αi ∈ {11, 12, 2, . . . , ℓ − 1} for all i ∈ {1, . . . ,m}. Thus ϕ is surjective, and so the proof of
Theorem 9 is complete. For example, if β = (2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2), then

β = (ϕ(12), ϕ(2), ϕ(11), ϕ(3), ϕ(12)).

By using the above theorem and taking into account that the compositions of n use parts
at most n, we have the following corollary.
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Corollary 10. Let k ≥ 2 an integer. Then

Ck(n) = |An| = F2n+1 holds for all n, 1 ≤ n ≤ k.

The following result establishes a relationship between compositions with parts in the set
{11, 12, 2, . . . , k} and the k-generalized Pell numbers.

Theorem 11. The generalized Pell number P
(k)
n+1 counts the number of compositions of n

with parts in the set {1, 2, . . . , k} such that the summand 1 can take two colors. Namely,

Ck(n) = P
(k)
n+1, for all n ≥ 1. (2)

Proof. Let σ be a generalized bi-colored composition of n with parts in the set {1, 2, . . . , k}.
If σ starts with 1, then it must be followed by a bi-colored generalized composition of n− 1
with parts in the set {1, 2, . . . , k}. Since the summand 1 can take two colors, we have
2Ck(n − 1) possibilities for σ in this case. Now, if σ starts with σ1 ∈ {2, 3, . . . , k}, then σ
must be followed by a composition of n − σ1. Thus, by the addition principle, the number
of generalized bi-colored compositions of n with parts in the set {1, 2, . . . , k} is given by
Ck(n) = 2Ck(n − 1) + Ck(n − 2) + · · · + Ck(n − k). Finally, note that Ck(n) satisfies the

k−generalized Pell recurrence with Ck(1) = 2 = P
(k)
2 and Ck(2) = 5 = P

(k)
3 . This proves

(2).

Finally, from Corollary 10 we deduce the following statement, which was also proved by
Kiliç [9] by using arithmetic arguments.

Corollary 12. Let k ≥ 2 be an integer. Then

P
(k)
n+1 = F2n+1 holds for all 1 ≤ n ≤ k.
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