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Abstract

In this paper, we study the number of designated parts in three types of composi-

tions with restricted parts. We find new combinatorial interpretations of some known

sequences, and establish two identities concerning these known sequences.

1 Introduction

A composition of an integer n is a way of expressing n as an ordered sum of integers. More
precisely, a composition of n is a sequence α = (α1, α2, . . . , αk) of positive integers satisfying
α1+α2+ · · ·+αk = n. The summands αi are called the parts of α, and the number of parts
is called the length of α. For example, there are eight compositions of 4; namely,

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

If α = (α1, α2, . . . , αk) is a composition of n with k parts, then we define a (k− 1)-subset Sα

of [n− 1] := {1, 2, . . . , n− 1} by

Sα = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1}.

The correspondence α → Sα gives a bijection from all compositions of n with k parts to all
(k − 1)-subsets of [n − 1]. Thus, there are

(

n−1
k−1

)

compositions of n with k parts and 2n−1
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compositions of n. Furthermore, a subset S ⊆ [n− 1] can be encoded by a binary sequence
of length n − 1 whose ith component is 1 if i ∈ S and 0 otherwise. Therefore, we have a
bijection between compositions of n and binary sequences of length n− 1.

In this paper, we consider the following three types of compositions with restricted parts.
Let A(n), B(n), and C(n) denote, respectively, the set of compositions of n in which only the
last part may be equal to 1, compositions of n into parts greater than 1, and compositions
of n with only odd parts. There is a trivial bijection from the set A(n) to B(n + 1). More
precisely, given a composition α ∈ A(n), increasing the last part of α by one, then we obtain
a composition β in B(n+ 1). We can uniquely recover α from β by decreasing the last part
of β by one.

There is a known identity concerning the cardinality of B(n) and C(n).

Theorem 1. For n ≥ 1, we have |B(n+ 1)| = |C(n)|.

Both numbers in Theorem 1 are equal to the nth Fibonacci number Fn, defined by F0 = 0,
F1 = 1, and for n ≥ 2,

Fn = Fn−1 + Fn−2.

See Cayley [1] and Stanley [7, Exercise 1.35] for more details. Sills [5] provided a bijective
proof of Theorem 1 relying on the binary sequence encoding of compositions. Recently, Li
and Wang [4] found a simple bijection defined directly on the parts to prove Theorem 1.

In this paper, we study the number of designated parts among all compositions in A(n),
B(n+ 1), and C(n) respectively. In Section 2, we find a simple combinatorial interpretation
of the sequence A102702 in the On-Line Encyclopedia of Integer Sequences (OEIS) [6]. The
sequence A102702 was proposed in 2005 by Creighton Dement, stated as a floretion-generated
sequence. But there are no further clues about the floretion definition. In Section 3, we give a
new combinatorial object counted by the sequence A006367 and establish an identity relating
the sequences A006367 and A010049. In Section 4, we present a relationship concerning the
number of three types of designated parts in compositions.

2 Compositions in which only the last part may be one

In this section, we mainly focus on the number of parts not greater than 2 among all com-
positions in A(n), denoted by An.

It is easy to see that A0 = 0, A1 = 1, A2 = 1, and A3 = 2. We now present a recurrence
relation for An.

Theorem 2. For n ≥ 4, we have

An = An−1 + An−2 + Fn−4. (1)

Proof. Given a composition α, let ℓ≤2(α) count the number of parts less than or equal to 2
of α. Then,

An =
∑

α∈A(n)

ℓ≤2(α).
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Define A1(n) and A2(n) to be the subset of A(n) consisting of the compositions with the
first part equal to 2 and greater than 2 respectively. It is clear that

A(n) = A1(n) ∪ A2(n)

is a disjoint set theoretic partitioning of A(n).
For any composition α ∈ A1(n), deleting the first part of α produces a composition in

A(n− 2), which gives a bijection ρ between A1(n) and A(n− 2) such that

ℓ≤2(α) = ℓ≤2(ρ(α)) + 1.

Given a composition β ∈ A2(n), we decrease the first part of β by 1 to obtain a composi-
tion in A(n− 1), and vice versa. Hence, there is a bijection τ between A2(n) and A(n− 1).
Moreover, ℓ≤2(β) = ℓ≤2(τ(β)) if and only if the first part of β is greater than 3. If β has
its first part equal to 3, then ℓ≤2(β) = ℓ≤2(τ(β))− 1. Similarly to the above bijection ρ, we
know that such compositions correspond to those in A(n− 3).

Recall that |A(n)| = Fn for n ≥ 0. Therefore, we have

∑

α∈A(n)

ℓ≤2(α) =
∑

α∈A1(n)

ℓ≤2(α) +
∑

α∈A2(n)

ℓ≤2(α)

=
∑

α∈A(n−2)

(ℓ≤2(α) + 1) +





∑

α∈A(n−1)

ℓ≤2(α)−
∑

α∈A(n−3)

1





=
∑

α∈A(n−2)

ℓ≤2(α) + Fn−2 +
∑

α∈A(n−1)

ℓ≤2(α)− Fn−3

=
∑

α∈A(n−2)

ℓ≤2(α) +
∑

α∈A(n−1)

ℓ≤2(α) + Fn−4,

which yields the desired result.

We now establish the generating function of An.

Theorem 3. The generating function of An is given by

A(x) :=
∑

n≥0

Anx
n =

x− x2 − x3 + x5

(1− x− x2)2
. (2)

Proof. To find A(x), multiply both sides of the recurrence relation (1) by xn and sum over
n ≥ 4. Then try to relate these sums to the unknown generating function A(x). If we do
this first to the left side of (1), we have

∑

n≥4

Anx
n = A(x)− x− x2 − 2x3.
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We next deal with the right side of (1). The result is

∑

n≥4

(

An−1 + An−2 + Fn−4

)

xn =
∑

n≥4

An−1x
n +

∑

n≥4

An−2x
n +

∑

n≥4

Fn−4x
n

= x
(

A(x)− x− x2
)

+ x2
(

A(x)− x
)

+
x5

1− x− x2
,

wherein we have used the familiar generating function for the Fibonacci numbers

∑

n≥0

Fnx
n =

x

1− x− x2
. (3)

If we equate the results of operating on the two sides of (1), we find that

A(x)− x− x2 − 2x3 = x
(

A(x)− x− x2
)

+ x2
(

A(x)− x
)

+
x5

1− x− x2
,

which is trivial to solve for the unknown generating function A(x), in the form

A(x) =
x− x2 − x3 + x5

(1− x− x2)2
.

The proof is complete.

We now seek the relationship between the sequence (An)n≥0 and the sequence (an)n≥0 in
OEIS [6, A102702]. It is routine to check that

A(x)− x− x2 =
x− x2 − x3 + x5

(1− x− x2)2
− x− x2

= x3 ·
2− x− 2x2 − x3

(1− x− x2)2
,

where the second factor of the last identity above is the generating function of an. Therefore,
an is the total number of parts not greater than 2 among all compositions of n+ 3 in which
only the last part may be equal to 1. This is a new and simple combinatorial interpretation
of the sequence A102702.

We next derive an explicit formula for An in terms of the Fibonacci numbers by expanding
A(x) in a series.

Theorem 4. For n ≥ 2, we have

An =
(3n− 3)Fn − (4n− 10)Fn−1

5
. (4)
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Proof. It follows from (3) that

∑

n≥0

Fn+1x
n =

1

1− x− x2
.

Therefore, the coefficient Pn of xn in 1/(1− x− x2)2 is

F1Fn+1 + F2Fn + · · ·+ Fn+1F1.

By induction on n and using the fact Fn = Fn−1 + Fn−2, it is easy to see that

Pn = F1Fn+1 + F2Fn + · · ·+ Fn+1F1 =
(n+ 1)Fn+2 + (2n+ 4)Fn+1

5
, (5)

which can be found in [3, Eq. (32.13), p. 375] or [8, Nr. (98), p. 183]. Combining (2) and
(5), we conclude that for n ≥ 5,

An = Pn−1 − Pn−2 − Pn−3 + Pn−5

=
nFn+1 + (2n+ 2)Fn

5
−

(n− 1)Fn + 2nFn−1

5

−
(n− 2)Fn−1 + (2n− 2)Fn−2

5
+

(n− 4)Fn−3 + (2n− 6)Fn−4

5

=
(2n+ 3)Fn − (2n− 2)Fn−1 − (2n− 2)Fn−2 + (n− 4)Fn−3 + (2n− 6)Fn−4

5

=
(2n+ 3)Fn − (2n− 2)Fn−1 − 4Fn−2 − (n− 2)Fn−3

5

=
(2n+ 3)Fn − (3n− 4)Fn−1 + (n− 6)Fn−2

5

=
(3n− 3)Fn − (4n− 10)Fn−1

5
.

One can readily check that An for each n = 2, 3, 4 also satisfies the formula (4).

As a consequence, we can express an in OEIS [6, A102702] as

an =
(3n+ 6)Fn+3 − (4n+ 2)Fn+2

5
=

(2n+ 10)Fn+1 − (n− 4)Fn

5

for n ≥ 0.
To end this section, we consider the number of parts among all compositions in A(n),

denoted by An. Obviously, A0 = 0 and A1 = 1. Applying arguments similar to those when
dealing with An, we can show that for n ≥ 2,

An = An−1 + An−2 + Fn−2,
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which implies the generating function

A(x) :=
∑

n≥0

Anx
n =

x− x2

(1− x− x2)2
.

Based on A(x), we derive the following simple formula

An =
(2n+ 3)Fn − nFn−1

5
, n ≥ 1.

The number An appears in OEIS [6, A010049], which counts the total number of parts in all
compositions of n+ 1 with no 1’s.

3 Compositions with no ones

Let Bn be the number of parts among all compositions in B(n+1). Since the trivial bijection
between A(n) and B(n+ 1) preserves the length of compositions, we have Bn = An.

Define Bn to be the number of parts equal to 2 among all compositions in B(n + 1). It
is clear that B0 = 0, B1 = 1, B2 = 0, and B3 = 2. Using the arguments similar to those in
the proof of Theorem 2, we obtain that for n ≥ 4,

Bn = Bn−1 + Bn−2 + Fn−4.

The sequence (Bn)n≥0 satisfies the same recurrence relation as (An)n≥0 but with different
initial conditions.

Similarly, we can find that

∑

n≥0

Bnx
n =

x(1− x)2

(1− x− x2)2
,

and for n ≥ 1,

Bn =
(3n+ 2)Fn − 4nFn−1

5
.

The number Bn relates to the sequence A006367 in OEIS [6], which is interpreted as the
number of compositions of n containing exactly one 1. We now give a combinatorial proof
of this equality.

Theorem 5. The number Bn equals the number of compositions of n with exactly one 1.

Proof. Assume that α = (α1, α2, . . . , αl) ∈ B(n+ 1) have j parts equal to 2, say

αi1 = αi2 = · · · = αij = 2,

6

https://oeis.org/A010049
https://oeis.org/A006367


where 1 ≤ i1 < i2 < · · · < ij ≤ l. For each 1 ≤ r ≤ j, define

αr = (α1, α2, . . . , αir − 1, . . . , αl).

It is easy to see that α1, α2, . . . , αj are j different compositions of n with exactly one 1.
Conversely, given a composition of n containing only one 1, we increase the unique part

equal to 1 by one to obtain a composition counted by Bn.

We have a new combinatorial interpretation of the sequence (Bn)n≥0.

Theorem 6. The number Bn counts the number of parts in all compositions of n + 1 with

no 1’s and the last part being 2.

Proof. Let α ∈ B(n+ 1) in which i (for i ≥ 2) occurs ci times as a part. Then we define the
type of α to be the nonnegative sequence (c2, c3, . . . , cn+1). By the standard combinatorial
analysis used to enumerate the permutations of a multiset, we know that there are

l!

c2!c3! · · · cn+1!

compositions in B(n+ 1) with length l and type (c2, c3, . . . , cn+1). The part 2 appears

l!

c2!c3! · · · cn+1!
· c2 =

l!

(c2 − 1)!c3! · · · cn+1!

times totally in these compositions.
On the other hand, there are

(l − 1)!

(c2 − 1)!c3! · · · cn+1!

compositions in B(n+1) with length l, the last part being 2, and type (c2, c3, . . . , cn+1). The
total number of parts in these compositions is

(l − 1)!

(c2 − 1)!c3! · · · cn+1!
· l =

l!

(c2 − 1)!c3! · · · cn+1!
.

The above combinatorial analysis shows the desired equality.

Remark 7. In fact, we can prove the following more general result. For fixed k ≥ 2, the
number of appearances of k in all compositions of n with no 1’s is equal to the number of
parts in all compositions of n in which each part is at least 2 and the last part is k.

We now give a relationship between Bn and Bn.

Theorem 8. For n ≥ 1, we have

Bn = Bn − Bn−1.
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Proof. Let α ∈ B(n + 1) with the last part greater than 2. Then we decrease the last part
of α by one to produce a composition α′ in B(n). The map α → α′ defines a bijection from
the subset of B(n+ 1) consisting of compositions with the last part greater than 2 to B(n),
which preserves the length.

Hence, the remaining compositions in B(n+1) have their last part equal to 2. It follows
from Theorem 6 that the total number of parts in such compositions is equal to B(n).

4 Compositions into odd parts

Let Cn be the number of parts among all compositions in C(n). By OEIS [6, A029907], we
know that

• C0 = 0, C1 = 1, and Cn = Cn−1 + Cn−2 + Fn−1 for n ≥ 2.

• for n ≥ 1,

Cn =
(n+ 4)Fn + 2nFn−1

5
.

• the number Cn equals the number of compositions of n+1 with exactly one even part.

Recently, Huang [2] found an identity concerning Cn and Bn.

Theorem 9. For n ≥ 1, we have

Cn = Bn +Bn−1.

Proof. See [2, Proposition 6.3] for a proof.

Let Cn denote the number of 1’s among all compositions in C(n). The numbers C(n)
form the sequence A239342 in OEIS [6]. Applying similar arguments used in Section 2, we
can obtain the recurrence relation and an explicit formula satisfied by C(n). More precisely,
we have

• C0 = 0, C1 = 1, C2 = 2, C3 = 3, and Cn = Cn−1 + Cn−2 + Fn−2 for n ≥ 4.

• for n ≥ 2,

Cn =
(2n− 2)Fn − (n− 10)Fn−1

5
.

Finally, we present an identity involving the number of designated parts in the composi-
tions under study in this paper.

Theorem 10. The number of parts not greater than 2 among all compositions in A(n) equals
the difference between the number of parts of compositions in B(n + 1) and the number of

parts greater than 1 among the compositions in C(n).
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Proof. We first recall the bijection ϕ introduced by Li and Wang [4] between B(n + 1) and
C(n). Given a composition α = (α1, α2, . . . , αl), define

α̂ = (α1, α2, . . . , αl−1, αl − 1).

It is clear that α̂ ∈ A(n).
For each even part 2k of α̂, we split it into the pair of parts 1, 2k − 1. Let ϕ(α) be the

yielded composition. Clearly, ϕ(α) ∈ C(n). Moreover, every odd part of ϕ(α) which is at
least 3 either appears as a part of α̂ or is produced by splitting an even part of α̂. Therefore,
every odd part of ϕ(α) which is at least 3 corresponds to a part of α̂ which is at least 3.

Now we can conclude that the difference between the number of parts of compositions in
B(n + 1) and the number of parts greater than 1 among the compositions in C(n) is equal
to the number of parts not greater than 2 among all compositions in A(n).

Remark 11. The statement is equivalent to

An = Bn − (Cn − Cn),

which can be easily proved by employing the formula of An, Bn, Cn, and Cn.
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