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Abstract

We propose an algorithm for enumerating diagonal Latin squares. It relies on

specific properties of diagonal Latin squares to employ symmetry breaking techniques.
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Furthermore, the algorithm employs several heuristic optimizations and bit arithmetic

techniques. We use the algorithm to enumerate diagonal Latin squares of order at most

9.

1 Introduction

By a Latin square of order N , we mean an N ×N table that is filled with elements from the
set S = {0, . . . , N − 1} such that all elements from S appear in each row and column. If its
main diagonal and main anti-diagonal contain every element from S, then we refer to such
a square as a diagonal Latin square. Typically, it is unrealistic to explicitly enumerate every
possible Latin square of a specific order. However, considering various intrinsic symmetries
enables the construction of algorithms that allow outstanding results to be achieved. In
particular, Latin squares of order up to 11 can be enumerated [12, 13]. The corresponding
numbers are presented in the On-Line Encyclopedia of Integer Sequences (OEIS) [17, 18] as
sequence A002860. However, to the best of our knowledge, diagonal Latin squares of small
order were not studied until the end of 2016. Hence, in this study, we develop an approach
for the enumeration of diagonal Latin squares of small order.

From the enumeration perspective, diagonal Latin squares differ significantly from ordi-
nary Latin squares. The uniqueness constraints on diagonals restrict most transformations
used to form equivalent Latin squares (primarily arbitrary row and column permutations),
resulting in much smaller isotopy classes. In this study, we first design a fast algorithm
for the explicit generation of diagonal Latin squares, augment it with symmetry breaking
techniques that utilize equivalence classes of diagonal Latin squares, and then apply it to
enumerate diagonal Latin squares of order up to 9.

The two main contributions of the present study are as follows: The first one is the
optimized brute-force algorithm for the enumeration of diagonal Latin squares and related
designs, such as Latin rectangles. Essentially, the algorithm represents a Latin square as an
integer array and uses ≤ N2 nested loops to traverse all possible variants of Latin square
cell values. We improve it through several heuristic-based optimizations. In particular, the
order in which the algorithm fills the cells affects its performance significantly. Additionally,
the necessary checks and assignments, the organization of each loop, etc. are important.
Bit arithmetic techniques enhance the performance of these operations substantially. The
resulting version of the algorithm enables an enumeration of up to 7 million of diagonal Latin
squares of order 9 per second on one central processing unit (CPU) core. We further enhance
the performance of the algorithm by augmenting it with symmetry breaking techniques
that are based on the class of transformations, which convert diagonal Latin squares into
diagonal Latin squares. These techniques allow the size of the search space to be reduced by
several orders of magnitude. Subsequently, we use the constructed algorithm for the second
contribution, i.e., to enumerate diagonal Latin squares of orders 8 and 9 and to estimate the
number of diagonal Latin squares of order 10.

A brief outline of the paper is as follows. In the next section, we discuss possible methods
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to generate Latin squares. Subsequently, we describe the basic structure of our algorithm that
we use as a basis for further optimizations. In Section 3, we describe how the bit arithmetic
techniques enable the performance of the algorithm to be enhanced significantly in practice
and experimentally evaluate different algorithm versions. In Section 4, we describe how the
isotopy classes of diagonal Latin squares can be constructed and use this information to
introduce the symmetry breaking techniques into the proposed algorithm. Subsequently, we
present the results of our computational experiments with and without symmetry breaking.
Finally, we discuss related studies and present the conclusions.

2 Algorithm description

Hereinafter, without the loss of generality, generation and enumeration are assumed as the
same; hence, these terms are treated as interchangeable. Within the context of enumeration,
it is sensible to consider only algorithms that are deterministic and complete, i.e., those that
can generate all possible representatives of the desired species that satisfy fixed constraints.
As we do not intend to store generated diagonal Latin squares, the enumeration should
proceed in a fixed order and randomization should not be applied at any stage. Consequently,
we process the whole search space and do not enumerate some diagonal Latin square more
than once.

In the next subsection, we consider several algorithmic concepts that fit the description
above. As our main goal is to enumerate diagonal Latin squares of order 9, we primarily
evaluate possible algorithms in the context of this problem. Unless stated otherwise, in all
performance evaluations, we used one core of Intel Core i7-6770 CPU and 16 GB RAM.
To implement all the algorithms proposed herein, we used the C++ programming language
(Microsoft Visual Studio 2015 compiler for Windows or gcc for Linux).

2.1 Approaches for generating diagonal Latin squares

Each row and each column of a Latin square is a permutation of N elements. This implies
that for a small N , one can generate all possible permutations and construct Latin squares
by combining them. A square can be filled by row while verifying that different rows do not
have equal elements in the same positions. However, in this case, once several rows are filled,
the number of available variants for the remaining rows decreases significantly. For example,
if we consider Latin squares of order 10, we have 10! = 3628800 possible permutations. We
can put each of them in the first row; subsequently, for the second row, we loop through the
list and test if a permutation number i does not violate the Latin square constraints. For
rows after the 5th, the number of such permutations (that we can put as the next row) is
in the range of hundreds at the most. Thus, if we cycle through all available permutations
to put into, say, the 8th row, even if we can test if they fit very quickly, the process is still
ineffective.

In this context, it is sensible to represent the original problem as an exact cover instance
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and employ relatively sophisticated algorithms, such as DLX [7], which can restrict the
search space “on-the-fly”. If we are interested only in diagonal Latin squares, then two more
uniqueness constraints must be considered. In our preliminary evaluations, we established
that bit arithmetic-aided exhaustive search and DLX enable approximately 5 · 105 diagonal
Latin squares of order 9 per second to be enumerated on one CPU core.

In the present study, we follow another simple approach for generating Latin squares.
Within it, we represent a Latin square of order N as an array of N2 integer values corre-
sponding to its cells and fill their values in a fixed order. In the most basic variant, we
implement this enumeration procedure in the form of N2 nested loops. Initially, it appears
that this approach is crude and will not be comparable to those mentioned above. Indeed,
if we fill square elements from left to right from top to bottom, then the generation speed is
extremely slow: approximately 6 · 103 diagonal Latin squares of order 9 per second on one
CPU core. However, after several optimizations, as will be described below, this approach
significantly outperforms the competitors.

2.2 Algorithm design

Assume that the enumeration of diagonal Latin squares of order N is considered. Hence,
our algorithm uses several auxiliary constructs:

1. Integer array LS[i, j], i, j ∈ {0, . . . , N − 1} that contains a Latin square;

2. Integer arrays Rows[i, j] and Columns[i, j], i, j ∈ {0, . . . , N − 1} where we reflect
elements that are already “occupied” in each row/column;

3. Integer arrays MD[i] and AD[i], i ∈ {0, . . . , N − 1} where we reflect elements that are
“occupied” on the main diagonal and main anti-diagonal;

4. Integer value SquaresCnt, in which we accumulate the number of squares.

As mentioned above, the order in which we fill cells affects the performance of the al-
gorithm significantly. However, we now introduce the general outline of the algorithm for
enumerating diagonal Latin squares with simple order when we fill the square from the first
(topmost leftmost) element to the last. Its pseudocode is presented as Algorithm 1. Initially,
the implementation in the form of N2 nested loops appears error-prone and inefficient: the
same algorithm can be implemented as a recursive procedure with a much cleaner code.
However, in this case, during the algorithm’s runtime, it will be forced to spend more re-
sources to analyze the position of a currently filled cell and filter out irrelevant constraints.
In the implementation with nested loops, every action is explicitly specified. In our experi-
ments, recursive implementation was typically approximately twice less effective compared
with nested loops. It is noteworthy that we used a special generator to construct the source
code of Algorithm 1-like procedures, as handwriting them would likely induce errors.

4



Data: LS[·, ·], Rows[·, ·]), Columns[·, ·], MD[·], AD[·], SquaresCnt
{All variables are initialized by 0. }
{Iterate over all possible values of cell LS[0, 0] }
LS[0, 0] = 0;
while LS[0, 0] < N do

{If the value is not occupied within the row, column, or diagonals

mark it as occupied and proceed }
if Rows[0,LS[0, 0]] = Columns[0,LS[0, 0]] = MD[LS[0, 0]] = 0 then

Rows[0,LS[0, 0]] := Columns[0,LS[0, 0]] := MD[LS[0, 0]] := 1;
LS[0, 1] := 0;
while LS[0, 1] < N do

if Rows[0,LS[0, 1]] = Columns[1,LS[0, 1]] = 0 then
Rows[0,LS[0, 1]] := Columns[1,LS[0, 1]] := 1;
. . .
{Increment SquaresCnt if it reached the last element }
LS[N − 1, N − 1] := 0;
while LS[N − 1, N − 1] < N do

if Rows[N − 1,LS[N − 1, N − 1]] =
Columns[N − 1,LS[N − 1, N − 1]] = MD[LS[N − 1, N − 1]] = 0
then

SquaresCnt := SquaresCnt+1;
LS[N − 1, N − 1] := LS[N − 1, N − 1] + 1;

end
. . .
Rows[0,LS[0, 1]] := Columns[1,LS[0, 1]] := 0;

LS[0, 1] := LS[0, 1] + 1;

end
{Upon exit from the loop, mark value as ‘‘free’’ }
Rows[0,LS[0, 0]] := Columns[0,LS[0, 0]] := MD[LS[0, 0]] := 0;

LS[0, 0] := LS[0, 0] + 1;

end
Algorithm 1: General outline of the algorithm
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Data: LS[·, ·], Rows[·, ·], Columns[·, ·], MD[·], AD[·], SquaresCnt, i, j
{Iterate over all possible values of cell [i,j] }
LS[i, j] := 0;
while LS[i, j] < N do

{Verify if the value is absent from the current row, column, and

diagonal(s). Omit entries for MD[LS[i, j]] and/or AD[LS[i, j]] if

LS[i, j] does not belong to corresponding diagonal(s). }
bool Conditioni,j := Rows[i,LS[i, j]] = Columns[j,LS[i, j]] = MD[LS[i, j]] =
AD[LS[i, j]] = 0;
if Conditioni,j then

{Mark the value as occupied and proceed }
Rows[i,LS[i, j]] := Columns[j,LS[i, j]] := 1;
{Important: entries for diagonals are included only if i = j
and/or i+ j = N − 1 }
MD[LS[i, j]] := AD[LS[i, j]] := 1;
BODY OF INNER LOOP FOR NEXT CELL LS[i′, j′];
{Mark value as ‘‘free’’ }
Rows[i,LS[i, j]] := Columns[j,LS[i, j]] := 0;
{Important: entries for diagonals are included only if i = j
and/or i+ j = N − 1 }
MD[LS[i, j]] := AD[LS[i, j]] := 0;

LS[i, j] := LS[i, j] + 1;

end
Algorithm 2: Inner loop structure

However, we can perform a simple optimization to Algorithm 1. It is clear that we
can effectively transform any non-diagonal Latin square (using row and column permuta-
tions) into a Latin square, in which the first row and column appear in an ascending order
0, 1, . . . , N − 1. This means that we can safely set the values of corresponding variables in
the array LS[·, ·] and modify the initialization stage. Consequently, we have (N − 1)2 inner
loops instead of N2. For diagonal Latin squares, we have N2−N inner loops because we set
either the first row, first column, or main diagonal to 0, 1, . . . , N − 1.

To make further constructions easier, it is natural to represent the algorithm as a sequence
of loops. The order in which the cells’ values are filled is then reflected by the order of these
loops. The structure of an inner loop is presented as Algorithm 2.

Within an inner loop, we cycle over all possible values from 0 to N − 1 to put into cell
LS[i, j]. We use auxiliary arrays to store information whether the value l is already used
within the row/column/main diagonal/main anti-diagonal. In particular, Rows[i, l] = 1 if
and only if the value l is assigned to a cell within the i-th row, and Columns[j, l] = 1 if the
value l is assigned to a cell within the j-th column. This applies for MD[l] = 1 and AD[l] = 1
for the main diagonal and main anti-diagonal. Once we obtain a value that can be entered
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into LS[i, j] without violating any constraint, we perform that and refresh the information
regarding occupied values within Rows[i], Columns[j], and arrays for diagonals MD, AD, if
applicable. Subsequently, we proceed to the inner loop for the next cell LS[i′, j′]. Upon exit
from the loop, we clear values corresponding to LS[i, j] in Rows[i], Columns[j], MD, and AD
to prepare for the next iteration.

In the body of the loop for the last cell according to the specified order, we only increment
the counter SquaresCnt (if we reached it, it means that we have successfully constructed a
Latin square). Now, we consider the optimal order of cells.

2.3 Optimal order of cells

In our experiments, we observed an interesting pattern: the algorithm performance depends
significantly on the order in which the cells are filled. In particular, when we change only the
order of cells and do not modify any other parameters, the average generation speed may
vary from several thousand to several hundred thousand diagonal Latin squares of order 9
per second. After a detailed empirical evaluation, we determined the best strategy, i.e., we
follow the idea that in a backtrack search, one should narrow the search space as much as
possible on each step [5].

Next, we discuss our implementation of the strategy, which yields the order with which
the proposed algorithm demonstrates the best performance. This is explained through an
example of diagonal Latin squares of order 9. In accordance with the general outline of the
algorithm, we fill the cells of a Latin square LS = {LS[i, j]}. We assume that the first row
of this square is fixed as follows: LS[0, j] = j, j = 0, . . . , 8. We use the iterative process to
select the cell to be assigned next. It is noteworthy that in this process, the only information
used is whether the cell is already assigned, i.e., the exact value stored by any cell is not
important. It is clear that each cell LS[i, j] is involved in at least two and at most four
“uniqueness constraints”: one for the i-th row, one for the j-th column, and two more for
the main diagonal and main anti-diagonal if i = j and/or i = 8−j. Let us consider the value
V k
i,j = rki + ckj +mdki,j + adki,j. Here, k is the iteration number, rki is the number of assigned

cells in the i-th row on the k-th step, ckj is the number of assigned cells in the j-th column
on the k-th step, mdki,j is the number of assigned cells on the main diagonal if i = j and 0
otherwise, and adki,j is the number of assigned cells on the main anti-diagonal if i = 8 − j
and 0 otherwise. The number V k

i,j reflects how “constrained” a cell with indexes i, j is on
the k-th step. At each iteration step, we increment k, recompute the values V k

i,j and select
the cell that has the largest V k

i,j . If several cells have the same value of V , we select the first
among them when ordered in lexicographic order.

Furthermore, an additional simple heuristic should be used: if after selecting a new cell
at some step k′ the number of assigned cells in a row, column, the main diagonal, or the main
anti-diagonal becomes N −1, then the remaining cell is automatically assigned next because
it can be computed directly owing to the corresponding uniqueness constraints. Now, we
return to the case of diagonal Latin squares of order 9. On the 0-th iteration, only the cells
in the first row are assigned. This implies that the most constrained (in the aforementioned
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sense) cell is one that lies on the intersection of the main diagonal and main anti-diagonal,
i.e., its V4,4 = 3. For all other cells, it is 2 at the most. We proceed as outlined above to
obtain the order of cells as presented in Figure 1.

- - - - - - - - -
20 2 16 17 21 18 19 3 22
25 26 6 23 27 24 7 28 29
55 56 57 10 53 11 58 59 60
61 63 65 45 1 47 67 69 70
62 64 66 12 54 14 68 71 72
32 33 8 30 34 31 9 35 36
39 4 42 37 40 38 43 5 41
13 49 50 44 48 46 51 52 15

Figure 1: Order of cells for generation of diagonal Latin squares of order 9 (the first row is
fixed a priori; therefore, it is omitted).

Based on the outlined procedure for diagonal Latin squares of order 9, we start with
diagonal elements and then fill the remaining. When we embed this order into the algorithm,
it can enumerate approximately 1.2 million diagonal Latin squares of order 9 per second on
one CPU core. It is interesting that when applied for constructing the optimal order for
ordinary Latin squares, the proposed heuristic constructs the trivial order of cells: row by
row and column by column. Next, we proceed to other optimizations.

2.4 Optimizations

The following two techniques, while simple, enable the performance of the above algorithm
to be enhanced to approximately 1.8 million squares per second.

2.4.1 Use formula to compute the last element in a row/column/diagonal

At certain points within the algorithm it is possible that N − 1 cells among N are assigned
in some row, column, or the main diagonal/main anti-diagonal. Because these elements are
the subject of the “uniqueness” constraints, in these cases, one can compute the value in a
remaining cell directly, thus eliminating the need to introduce a loop. Without the loss of
generality, we assume that the first N − 1 of N elements are assigned in the i-th row. Then,
the formula for the remaining element is as follows:

LS[j,N − 1] = N(N − 1)/2−
N−2
∑

l=0

LS[i, l].

We must ensure that the obtained value does not violate other uniqueness constraints before
proceeding further into the search space.
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2.4.2 Lookahead heuristic

We borrowed the next technique from the area of combinatorial search. Following Dechter [3,
Chap. 5], we developed a type of a lookahead heuristic. The basic idea is that on some levels
of the search (i.e., in some of the loops) it is possible that once we assign a value to a current
cell, the amount of constraints on the remaining cells within the same row/column/diagonal
may exceed N . Thus, the possibility, that we will not be able to assign any value to these
“over-constrained” cells is high. Therefore, one should look ahead and spend some resources
before branching further to avoid spending much more of them later.

For simplicity, we assume that for non-diagonal element LS[i, j], the following situation
arises (recall that Rows[i, l] = 1 if and only if we have assigned value l to a cell within the
i-th row, and Columns[j, l] = 1 if we have assigned value l to a cell within the j-th column):

N−1
∑

l=0

((Rows[i, l] = 1) ∨ (Columns[j, l] = 1)) = N.

It is clear that in this case, we can stop looking further, as the currently examined portion
of the search space is reduced to the empty set. Thus, we revert the assignment of the most
recent Latin square cell and then proceed.

It is important that we use this heuristic with care. Conditional operators in large
quantities can easily decelerate the search, causing any performance gains to disappear.
Therefore, it is necessary to obtain a tradeoff by selecting the levels on which to apply it.
After empirical evaluation and testing, for the enumeration of diagonal Latin squares of order
9, we discovered that the best performance is obtained when we apply lookahead within the
inner loops from number 51 to 60.

Now, we discuss the application of bit arithmetic techniques to improve the algorithm
performance further.

3 Bit arithmetic implementation

To improve the performance of the suggested algorithm, several actions can be performed:
merge/remove repeated actions, perform the same actions faster, and reduce the number of
conditional operators involved. In this section, we show that these actions can be performed
by employing bit arithmetic techniques. Hereinafter, without the loss of generality, we
assume that all integer values are stored in memory registers containing at least 16 bits and
that a big endian ordering is employed. For most computer architectures it is possible to
store integer variables in registers of size up to 64 bits.

By LEFT-SHIFT(x, y) we mean the result of left arithmetic bit shift of x to y positions.
For example, assume that a = 4210 = 001010102. Then, LEFT-SHIFT(a, 1) = 010101002.
In our case, we know that the value of a Latin square cell can not exceed N − 1, where N
is the order of a Latin square. Thus, for small N it is possible to represent the cells’ values
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in binary form as 000100002 = LEFT-SHIFT(1, 4) instead of 410. Thanks to this, we can
greatly improve the layout and the effectiveness of the proposed algorithm.

Let us denote the bitwise versions of ∨, ∧ and ⊕ as
∨

,
∧

and
⊕

, respectively. So,
we represent the values of Latin square cells as LS[i, j] := LEFT-SHIFT(1, k) instead of
LS[i, j] := k. Thanks to this, we eliminate one dimension from arrays Rows, Columns, MD,
AD, as we fuse it within one integer value with ≥ N bits. Furthermore, we introduce an
array of auxiliary variables CR[i, j], i, j ∈ {0, N − 1} to monitor the number of current
constraints on each Latin square element.

Data: LS[·, ·], CR[·, ·], Rows[·], Columns[·], MD, AD, SquaresCnt, i, j
{Compute vector of possible values for cell [i,j] }
CR[i, j] := Rows[i]

∨

Columns[j]
∨

MD
∨

AD;
{Iterate over all possible values of cell [i,j] }
LS[i, j] := 1;
while LS[i, j] < (LEFT-SHIFT(1, N)) do

{Verify if the value is not occupied }
if CR[i, j]

∧

LS[i, j]) = 0 then
{Mark the value as occupied and proceed }
Rows[i] := Rows[i]

∨

LS[i, j];
Columns[j] := Columns[j]

∨

LS[i, j];
MD := MD

∨

LS[i, j];
AD := AD

∨

LS[i, j];
BODY OF INNER LOOP FOR NEXT CELL {Mark value as

‘‘free’’ }
LS[i′, j′];
Rows[i] := Rows[i]

⊕

LS[i, j];
Columns[j] := Columns[j]

⊕

LS[i, j];
MD := MD

⊕

LS[i, j];
AD := AD

⊕

LS[i, j];

LS[i, j] := LEFT-SHIFT(LS[i, j], 1);

end
Algorithm 3: Inner loop structure with bit arithmetic

We present the modified inner loop structure as Algorithm 3. Without the loss of gen-
erality, we assume that the considered element lies on the intersection of the main diagonal
and main anti-diagonal. Otherwise, we simply remove the corresponding entries (i.e., for the
most simple case CR[i, j] = Rows[i]

∨

Columns[j]) together with the operators marking the
new value occupied/free in MD and AD.

Here, the main performance gain is attributed to the use of an array CR[i, j]. By defini-
tion, the 1-bits in CR[i, j] correspond to all positions in which LS[i, j] can not take the value
of 1. Therefore, we can obtain the spectrum of available values at once instead of verifying
the availability of each cell value by iterating over them. When implemented in the proposed
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manner, the algorithm can generate approximately 2.6 · 106 diagonal Latin squares of order
9 per second even without employing optimizations from the end of the previous section.
However, it can be improved further. Although we compute the vector of possible values for
each particular element only once, we must still iterate over all N values of LS[i, j]. Thus,
the following question arises: is there a method to fully utilize this information?

The answer is yes. In particular, we can reconstruct the loop to iterate over only values
of LS[i, j] that satisfy the condition CR[i, j]

∧

LS[i, j] = 0, thus eliminating the need for
the if block in the inner loop body in Algorithm 3. Hence, we introduce a new constant
AllN = LEFT-SHIFT(1, N)−1 that has exactly N 1-bits. The next version of the algorithm
relies heavily on bit twiddling tricks that enable the rightmost 1-bit (y = x

∧

(−x)) to be
isolated and the rightmost 1-bit (y = x

∧

(x − 1)) to be turned off. Next, we present the
modified inner loop structure in the pseudocode as Algorithm 4.

Data: LS[·, ·], CR[·, ·], LA[·, ·], Rows[·], Columns[·], MD, AD, SquaresCnt, i, j, AllN
{Compute vector of possible values for cell [i,j] }
CR[i, j] := Rows[i]

∨

Columns[j]
∨

MD
∨

AD;
{Iterate over values of cell LS[i, j] that do not violate any uniqueness

constraint. }
LA[i, j] := AllN

⊕

CR[i, j];
while LA[i, j] > 0 do

LS[i, j] := LA[i, j]
∧

(−LA[i, j]);
{Mark the value as occupied and proceed }
Rows[i] := Rows[i]

∨

LS[i, j];
Columns[j] := Columns[j]

∨

LS[i, j];
MD := MD

∨

LS[i, j];
AD := AD

∨

LS[i, j];
BODY OF INNER LOOP FOR NEXT CELL LS[i′, j′];
{Mark value as ‘‘free’’ }
Rows[i] := Rows[i]

⊕

LS[i, j];
Columns[j] := Columns[j]

⊕

LS[i, j];
MD := MD

⊕

LS[i, j];
AD := AD

⊕

LS[i, j];
LA[i, j] := LA[i, j]

∧

(LA[i, j]− 1);

end
Algorithm 4: Optimized inner loop structure with the bit arithmetic

The first significant achievement in the improved inner loop design is that one of the two
conditional operators is eliminated. Therefore, we first compute the value of CR[i, j]. The
result is a bit vector with 1-bits in positions corresponding to values of LS[i, j] that violate
any uniqueness constraints. Then, we use an additional auxiliary integer array LA[i, j]. In
the for cycle, we initialize LA[i, j] with possible values of LS[i, j] that do not violate any
constraint and iterate over them by switching off the rightmost 1 bit until LA[i, j] becomes
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0. For each value of LA[i, j], we generate the value of LS[i, j] by isolating the rightmost
1-bit in LA[i, j]. Once LA[i, j] becomes 0, it means that we have processed all available
alternatives. This improved algorithm version enables approximately 6 · 106 diagonal Latin
squares of order 9 per second to be generated without heuristic optimizations.

In Table 1, we compare three versions of the algorithm. All of them use Algorithm 1 as a
basis. The standard, bit arithmetic, and optimized bit arithmetic versions employ the inner
loop structures from Algorithms 2, 3, and 4, respectively. We compare these versions by
the generation speed for different classes of Latin squares. Here, for diagonal Latin squares,
we set the first row (in an ascending order) and for ordinary Latin squares, we set both the
first row and first column (in an ascending order). Table entry (D)LS followed by a number
represents (diagonal) Latin squares of specific order. The order of cells in each case was
determined according to the heuristic procedure outlined in Subsection 2.3. For DLS9, we
measured the performance of the optimized bit arithmetic version that uses the lookahead
heuristic. For other entries, we did not implement it as the corresponding optimization
requires considerable empirical evaluation and testing.

Version Problem Squares per seconds
Standard DLS9 1.8 · 106

Bit arithmetic DLS9 2.6 · 106

DLS9 6.8 · 106

LS8 9 · 106

Optimized bit arithmetic DLS8 5.8 · 106

LS9 8.0 · 106

LS10 6.3 · 106

DLS10 6.0 · 106

Table 1: Performance of the proposed versions of the algorithm for generation of Latin
squares of small order.

It is clear that bit arithmetic techniques increase the algorithm performance significantly.

4 Equivalence classes of diagonal Latin squares

Latin squares form large equivalence classes constructed by all possible transpositions of
rows/columns/element names. These transformations are critical in the enumeration of
Latin squares of small order [12, 13]. However, for diagonal Latin squares, the vast majority
of such transformations result in the falsification of the constraint on the uniqueness of di-
agonal elements. Meanwhile, a class of symmetric row-column transpositions that transform
diagonal Latin squares into diagonal Latin squares can be determined.

The roots of the transformations presented below belong to the area of magic squares.
Hence, we refer to them as M-transformations. Any M-transformation is a combination of
basic M-transformations. Below, we describe the three types of the latter. Nonetheless,
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it would be more appropriate to refer only to the second and third as M-transformations;
however, for simplicity, we shall group them together with the third type.

• Mirroring a Latin square horizontally or vertically relative to the main diagonal or
main anti-diagonal and then rotating it anticlockwise by 90-degrees multiple times, to
obtain eight transformations.

• Permutations of at least two columns positioned symmetrically with respect to the
middle with simultaneous permutation of two symmetrically positioned rows. An ex-
ample of such a transformation is the permutation of the 0-th and (n− 1)-th columns
with the simultaneous permutation of the 0-th and (n−1)-th rows. For diagonal Latin
squares of order n, 2⌊

n

2
⌋ of such transformations exist.

• Transpositions where we simultaneously transpose ≥ 2 columns in the left half of a
diagonal Latin square and the columns positioned symmetrically with respect to the
middle in the right half of a square with simultaneous similar transposition of rows.
An example of such a transformation is the transposition of the 0-th and 1-th columns,
(n− 2)-th and (n− 1)-th columns, 0-th and 1-th rows, and (n− 2)-th and (n− 1)-th
rows. For diagonal Latin squares of order n, ⌊n

2
⌋! transformations of this type exist.

Each time we apply any basic M-transformation to a diagonal Latin square, the diagonal
elements remain in the corresponding diagonals or the diagonals switch places. Thus, any
M-transformation transforms a diagonal Latin square into a diagonal Latin square.

Let us consider a diagonal Latin square, in which the elements on the main diagonal are
in an ascending order (in contrast to Subsection 2.3, where the first row is ordered). Then,

an equivalence class for such a diagonal Latin square of order N has a size of 4 · ⌊N
2
⌋! · 2⌊

N

2
⌋

at the most (here, the factor 4 instead of 8 is owing to some transformations cancelling each
other).

An interesting fact is that M-transformations can be applied to partially filled diagonal
Latin squares. However, only such classes of incomplete diagonal Latin squares should be
considered, which are closed with respect to all or almost all basic M-transformations.

Next, we introduce three auxiliary structures that will be discussed below. We will refer
to an incomplete diagonal Latin square in which only the entries for the main diagonal and
main anti-diagonal are known as a cross design. For an odd N , if the values in the middle
row are known, then the corresponding design will be referred to as an asterisk design.
Additionally, for an odd N where the values of elements from the main diagonal, main anti-
diagonal, middle row, and middle column are known, then we denote such structure as a
doublecross design. In general, we will refer to them as partial designs. Figure 2 shows
the examples of the introduced designs for N = 9. It is clear that the classes of cross and
doublecross designs are closed with respect to arbitrary M-transformations, while the class of
asterisk designs is closed only with respect to M-transformations that do not mirror partial
diagonal Latin square relative to its main diagonal or main anti-diagonal. This fact allows
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Figure 2: Example of partial designs for N = 9. From left to right: cross, asterisk, double-
cross.

us to split the space of all possible partial designs of order N into equivalence classes. We
now consider the following proposition.

Proposition 1. Assume that C1 and C2 are two examples of one of the introduced designs
(cross, asterisk, or doublecross) of order N and that C2 is the result of applying some M-
transformation µ to C1, i.e., C2 = µ(C1). Then, the number of diagonal Latin squares of
order N that share C1 is equal to the number of diagonal Latin squares of order N that share
C2 = µ(C1).

Proof. When we apply µ to C1, we implicitly apply it to every single diagonal Latin square
that shares cell values with C1. As µ(C1) = C2, it implies that any diagonal Latin square
that shares cell values with C1 will be transformed to a diagonal Latin square that shares
cell values with C2.

By definition, for any M-transformation µ, an inverse transformation µ−1 exists. Thus,
for an arbitrary diagonal Latin square A, the following holds: µ(µ−1(A)) = µ−1(µ(A)) = A.
Hence, it is impossible for two distinct Latin squares A and B to share C1 and µ(A) = µ(B).

Subsequently, it follows that the sets of diagonal Latin squares that share C1 and C2 have
the same cardinality.

In the next subsection, we show the method to embed this technique into the optimized
bit arithmetic version of the enumeration algorithm (see Section 3).

4.1 Embedding symmetry breaking into the algorithm

Proposition 1 enables the enumeration of diagonal Latin squares of order N to be performed
as follows:

1. Generate all possible cross designs of order N .

2. Split cross designs into equivalence classes C1, . . . , Ck.
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3. For each class Ci, select one cross design p ∈ Ci and compute the number of diagonal
Latin squares of order N that share p. Assume that it is equal to Ni.

4. The number of diagonal Latin squares of order N is then equal to N !
∑k

i=1
Ni|Ci|.

Next, we focus on N = 8 and N = 9. To estimate the potential performance gain
attainable by considering equivalence classes, we first generated all possible cross designs
and split them into equivalence classes. Consequently, for both N = 8 and N = 9, there
were 4752 cross designs that formed 20 equivalence classes. Thus, the enumeration algorithm
runtime can be reduced up to 237 times. Indeed, after embedding this information directly
into the optimized bit arithmetic version of the algorithm (see Section 3), the enumeration
of diagonal Latin squares of order N = 8 consumed approximately 5 s on one core of the
Core i7-6770 CPU (vs. 21 min for the optimized bit arithmetic). Hereinafter, we refer to the
proposed version of the enumeration algorithm as the symmetry breaking version.

However, partial designs can be split into equivalence classes during the runtime of the
enumeration algorithm. Recall that the optimized bit arithmetic version fills Latin square
cells individually in a specific order (see Subsection 2.3). However, it can fill the main
diagonal and main anti-diagonal first. Assume that at some moment we construct a cross
design C. We apply all applicable M-transformations to C and construct its equivalence
class. Subsequently, we verify whether C is the first representative of its equivalence class
when ordered in lexicographic order (for a fixed order of cross-design-filled cells). If yes,
then we can fill the other diagonal Latin square cells. Otherwise, we generate the next cross
design.

5 Computational experiments

We applied the proposed algorithm to enumerate diagonal Latin squares of order at most 9
with the first row set in an ascending order, i.e., the first row equals to 1, 2, . . . , 9. Conse-
quently, we obtained the following sequence:

1, 0, 0, 2, 8, 128, 171 200, 7 447 587 840, 5 056 994 653 507 584.

We added this sequence to the OEIS, as A274171. By multiplying the corresponding numbers
to N !, we obtained the following sequence that represents the number of diagonal Latin
squares of order up to 9:

1, 0, 0, 48, 960, 92 160, 862 848 000, 300 286 741 708 800, 1 835 082 219 864 832 081 920.

We added this sequence to the OEIS, as A274806.
The experimental details are presented below. We first applied the standard version of

the algorithm (see Section 2) to enumerate diagonal Latin squares of order at most 8. Then,
we applied the optimized bit arithmetic version of the algorithm (see Section 3) to enumerate
diagonal Latin squares of order 9 in two large-scale computational experiments. Later, using
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the symmetry breaking version, we verified the obtained results. Additionally, the optimized
bit arithmetic version was used to estimate the number of diagonal Latin squares of order
10.

5.1 Enumeration of diagonal Latin squares of order at most 8

We used the standard version of the algorithm to enumerate diagonal Latin squares of order
at most 8 with the first row fixed in the ascending order. For an order of at most 7,
the calculations consumed less than 1 s. For order 8 at the time of experiment, 30 h were
consumed on one CPU core to perform the calculations. The optimized bit arithmetic version
achieved this result in 21 min, while the symmetry breaking version in approximately 5 s.

5.2 Enumeration of diagonal Latin squares of order 9

We performed two separate experiments to enumerate diagonal Latin squares of order 9 using
the optimized bit arithmetic version of the algorithm. We performed the first experiment in a
volunteer computing project. For the second experiment, we employed a computing cluster.

In both cases, we decomposed the problem as follows. We set the first Latin square row
in an ascending order. Because we filled in the cells of a Latin square in a specific order
(presented in Figure 1), we could select a small number of cells to be filled and process
their correct assignments separately. In our experiments, we varied values of the first 10
cells (according to the aforementioned order). There were 1 225 884 correct assignments
of these cells, for which we constructed a subproblem for each of these assignments. In
each subproblem, all diagonal Latin squares of order 9 must be enumerated with constant
values of 19 among 81 cells. As the proposed subproblems are disjoint, we could solve them
independently. Consequently, we obtained an array of 1 225 884 integer numbers. Their
total sum was equal to the number of diagonal Latin squares of order 9 with the first row
equal to 1, 2, . . . , 9.

5.2.1 Experiment in a volunteer computing project

Volunteer computing is a relatively cheap and natural method for solving computationally
hard problems that can be decomposed into independent subproblems. It is based on using
computers of the so-called volunteers— private persons willing to donate their computational
resources for certain causes. We used the volunteer computing project Gerasim@home [21]
to enumerate Latin squares of order 9. Gerasim@home is based on the Berkeley Open
Infrastructure for Network Computing [1].

The computational experiment was aimed at the enumeration of diagonal Latin squares of
order 9 that started on June 18, 2016. The server of Gerasim@home created and maintained
1 225 884 subproblems; all of them were solved by volunteers’ computers. The experiment
lasted 3 months and ended on September 17, 2016. In total, approximately 1000 computers
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of 500 volunteers from 51 countries were used in the experiment. The peak performance was
5 teraflops, and the average performance was approximately 3 teraflops.

Consequently, we determined that the number of diagonal Latin squares of order 9 with
the first row set in an ascending order is 5 056 994 653 507 584. If we multiply it to 9!, we
obtain the number of diagonal Latin squares of order 9: 1 835 082 219 864 832 081 920.

It should be noted, that if we did not improve the algorithm performance by means,
described in Sections 2 and 3, the corresponding experiment in Gerasim@home would take
about 10 years.

5.2.2 Experiment on a computing cluster

In application to hard enumeration problems, it is crucial to cross-check the results as small
errors may remain undetected in specific circumstances, thus jeopardizing the validity. One
might say that this is especially true when using volunteer computing; however, our empirical
results prove otherwise. In any case, we decided to perform verifications by ourselves and
conducted an additional experiment aimed at solving the same problem. To perform it, we
used the computing cluster “Academician V.M. Matrosov” of the Irkutsk supercomputing
center of Siberian Branch of Russian Academy of Sciences [2]. Each node of this cluster
contains two 16-core AMD Opteron 6276 CPUs and 64 gigabytes of RAM. The approach as
that in the Gerasim@home experiment was used for decomposition.

We developed the MPI-program (here, MPI represents message passing interface) based
on the optimized bit arithmetic version of the algorithm. In this program, one process is a
control process, and all the remaining processes are computing processes. The control process
creates and maintains the pool of subproblems to be processed by computing processes.
Furthermore, it accumulates and processes results obtained by computing processes.

The experiment started on July 17, 2016 and required several executions of the MPI-
program to complete it. In these executions, the number of employed cluster nodes varied
from 10 to 15, while the runtime varied from 2 h to 7 days. The majority of executions
involved using 15 nodes with a runtime of 7 days. The experiment ended on October 17,
2016. Finally, the experiment lasted 2 months. Consequently, we verified that the number
computed in Gerasim@home was correct.

5.2.3 Experiment with symmetry breaking

We developed and implemented the symmetry breaking version of the algorithm long after the
two experiments described above have already ended. In the experiment for diagonal Latin
squares of order 9, we used the sequence of partial designs, each an extension of the previous
one. We pre-filled the main diagonal of a Latin square in an ascending order. Then, we
filled the cross design cells and verified whether this cross design was the first representative
of its equivalence class. If yes, then we generated asterisk designs that were representatives
of their equivalence classes. To each asterisk design class representative, we applied the
similar scheme: we generated doublecross designs and for each doublecross equivalence class
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representative, we computed the number of diagonal Latin squares of order 9 that share it.
The motivation here is simple: the size of equivalence class for the cross design varies from 12
to 768; for the asterisk design, it is typically either 768 or 384; for doublecross, it is 1536 in
most cases. Therefore, it is the most beneficial to use doublecross designs. However, without
the auxiliary steps including cross and asterisk designs, we must generate and reject many
doublecross instances that are not the class representatives.

The experiment lasted 79 h on a computer equipped with Intel Core i7-6770 (with eight
threads). This means that for N = 9, the symmetry breaking version of the algorithm is
approximately 1000 times faster than the optimized bit arithmetic version.

5.3 Estimation of the number of diagonal Latin squares of order
10

After enumerating diagonal Latin squares of order 9, we decided to apply the optimized bit
arithmetic version of the algorithm for the enumeration of diagonal Latin squares of order
10. However, it became clear quickly that the number was extremely large. To estimate it,
we employed the Monte Carlo method [14] in the following form. If we specify some order
in which we fill the cells of a diagonal Latin square, we can consider an incomplete diagonal
Latin square formed by the first k cells according to the specified order. It is natural to
consider the trivial order: the first k elements of a Latin square from left to right, from top
to bottom. Let us refer to such incomplete diagonal Latin squares of order 10 as DLSk

10
.

First, for a specific k, we compute the number of possible DLSk
10
, to which we refer as

Nk
10
. Then, we form a random sample of DLSk

10
. For each incomplete diagonal Latin square

from the sample, we enumerate all possible diagonal Latin squares of order 10 that can be
constructed by filling the unassigned cells of DLSk

10
. As a result of processing the random

sample, we estimate an expected value of the number of diagonal Latin squares of order 10
that shares the same DLSk

10
. By multiplying this estimated expected value to Nk

10
, we then

estimated the number of diagonal Latin squares of order 10.
First, we must select k such that the number of DLSk

10
can be computed in reasonable

time and that the sample of DLSk
10

can be processed to a sufficient size. We set the elements
of the first row of a Latin square in an ascending order for simplicity. We started from
k = 30. The corresponding N30

10
is 284 086 571 712. However, for each DLS30

10
, several days

are required on one core of the state-of-the-art CPU to enumerate all possible diagonal Latin
squares that share some DLS30

10
. Thus, we selected k = 32 and estimated this value. The

number of corresponding incomplete diagonal Latin squares N32

10
was 12 611 543 636 160. We

generated a random sample of 10 000 DLS32

10
instances and used it to estimate the expected

value of the number of diagonal Latin squares of order 10 with DLS32

10
. The corresponding

expected value was equal to 11 931 268 344. Thus, the estimated number of diagonal Latin
squares of order 10 was approximately 1.5 · 1023.
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6 Related studies

In previous studies [6, 12, 13], approaches that resulted in the enumeration of Latin squares
of orders 10 and 11 were described. The authors of the present paper are not aware of
algorithms that are developed specifically for the enumeration of diagonal Latin squares.

McKay et al. [10] enumerated the transversals for Latin squares of order at most 9.
They considered the fact that the space of Latin squares could be divided into isotopy
classes. Transversals were enumerated for each representative, thus enabling the number of
transversals to be calculated for each isotopy class. In other studies [10, 15, 19], the lower
and upper bounds on the number of transversals in Latin squares were investigated.

Among other recent and relevant enumeration results, we would like to briefly mention the
following. McKay et al. [11] determined that Latin squares of order 10 from several particular
families cannot participate in a triple of mutually orthogonal Latin squares (MOLS) of order
10. Egan and Wanless [4] enumerated MOLS of order up to 9; additionally, they found the
triple of Latin squares of order 10 that is the closest to being a triple of MOLS discovered
hitherto. Zaikin et al. [22] discovered a triple of diagonal Latin squares of order 10 that is the
closest to being a triple of mutually orthogonal diagonal Latin squares discovered hitherto.
Potapov [16] estimated the number of sets of orthogonal Latin squares and that of Latin
hypercubes.

Several studies have been performed where authors applied parallel computing to search
for combinatorial designs based on Latin squares. Lam et al. [8] used a computing cluster
to prove the nonexistence of finite projective planes of order 10. McGuirre et al. [9] proved
a hypothesis regarding the minimum number of clues in Sudoku using a computing cluster.
They developed a fast algorithm to enumerate and verify all possible Sudoku variants.

7 Conclusions

We herein presented a fast algorithm for the enumeration of diagonal Latin squares of small
order. One of its main features was symmetry breaking techniques that enabled the search
space to be reduced significantly. Using the proposed algorithm, we enumerated diagonal
Latin squares of order up to 9. For future studies, we plan to investigate if the proposed
algorithm can be used to solve other problems in related areas.

The present study is a significantly reworked and extended variant of the paper [20]. The
modifications included (but were not limited to) new sections on symmetry breaking and
applications of the corresponding techniques (Section 4), owing to which the main result of
[20] was substantially improved.
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[6] A. Hulpke, P. Kaski, and P. R. J. Österg̊ard, The number of latin squares of order 11,
Math. Comput. 80 (2011), 1197–1219.

[7] D. E. Knuth, Dancing links, In Millennial Perspectives in Computer Science, Corner-
stones of Computing, pp. 187–214. Red Globe Press, 2000.

[8] C. W. H. Lam, L. Thiel, and S. Swierz, The nonexistence of finite projective planes of
order 10, Canad. J. Math. 41 (1989), 1117–1123.

[9] G. McGuire, B. Tugemann, and G. Civario, There is no 16-clue Sudoku: Solving the
Sudoku minimum number of clues problem via hitting set enumeration, Exp. Math. 23
(2014), 190–217.

[10] B. D. McKay, J. C. McLeod, and I. M. Wanless, The number of transversals in a latin
square, Des. Codes Cryptogr. 40 (2006), 269–284.

20

https://hpc.icc.ru


[11] B. D. McKay, A. Meynert, and W. Myrvold, Small latin squares, quasigroups, and
loops, J. Combin. Des. 15 (2007), 98–119.

[12] B. D. McKay and E. Rogoyski, Latin squares of order 10, Electr. J. Comb. 2 (1995),
1–4.

[13] B. D. McKay and I. M. Wanless, On the number of latin squares, Ann. Comb. 9 (2005),
335–344.

[14] N. Metropolis and S. Ulam, The Monte Carlo method, J. Amer. Statistical Assoc. 44
(1949), 335–341.

[15] V. N. Potapov, On the number of transversals in latin squares, Discrete Appl. Math.
202 (2016), 194–196.

[16] V. N. Potapov, On the number of SQSs, latin hypercubes and MDS codes, J. Combin.
Des. 26 (2018), 237–248.

[17] N. J. A. Sloane, The on-line encyclopedia of integer sequences, Electr. J. Comb. 1 (1994),
year.

[18] N. J. A. Sloane et al., The on-line encyclopedia of integer sequences, Available at
https://oeis.org, 2019.

[19] A. A. Taranenko, Multidimensional permanents and an upper bound on the number of
transversals in latin squares, J. Combin. Des. 23 (2015), 305–320.

[20] E. Vatutin, S. Kochemazov, and O. Zaikin, Applying volunteer and parallel computing
for enumerating diagonal latin squares of order 9, In Proc. PCT 2017, Vol. 753 of
Commun. Comput. Inf. Sci., pp. 110–124. Springer, 2017.

[21] E. Vatutin, O. Zaikin, S. Kochemazov, and S. Valyaev, Using volunteer computing to
study some features of diagonal latin squares, Open Engineering 7 (2017), 453–460.

[22] O. Zaikin, A. Zhuravlev, S. Kochemazov, and E. Vatutin, On the construction of triples
of diagonal latin squares of order 10, Electron. Notes Discrete Math. 54 (2016), 307–312.

2010 Mathematics Subject Classification: Primary 05B15; Secondary 68W01.
Keywords: Latin square, enumeration.

(Concerned with sequences A002860, A274171, and A274806.)

Received July 3 2019; revised versions received October 8 2019; October 28 2019. Published
in Journal of Integer Sequences, December 28 2019.

Return to Journal of Integer Sequences home page.

21

https://oeis.org
https://oeis.org/A002860
https://oeis.org/A274171
https://oeis.org/A274806
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Algorithm description
	Approaches for generating diagonal Latin squares
	Algorithm design
	Optimal order of cells
	Optimizations
	Use formula to compute the last element in a row/column/diagonal
	Lookahead heuristic


	Bit arithmetic implementation
	Equivalence classes of diagonal Latin squares
	Embedding symmetry breaking into the algorithm

	Computational experiments
	Enumeration of diagonal Latin squares of order at most 8
	Enumeration of diagonal Latin squares of order 9
	Experiment in a volunteer computing project
	Experiment on a computing cluster
	Experiment with symmetry breaking

	Estimation of the number of diagonal Latin squares of order 10

	Related studies
	Conclusions
	Acknowledgments

