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Abstract

We show that the number of acyclic directed graphs with n labeled vertices is equal
to the number of n× n (0, 1)–matrices whose eigenvalues are positive real numbers.

1. Weisstein’s conjecture

Last year Eric W. Weisstein of Wolfram Research, Inc., computed the numbers of real n×n

matrices of 0’s and 1’s all of whose eigenvalues are real and positive, for n = 1, 2, . . . , 5. He
observed that the resulting sequence of values, viz.,

1, 3, 25, 543, 29281
1 This work was carried out during F. E. Oggier’s visit to AT&T Shannon Labs during the summer of

2003. She thanks the Fonds National Suisse, Bourses et Programmes d’Échange for support.
2 To whom correspondence should be addressed.
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coincided with the beginning of sequence A003024 in [8], which counts acyclic digraphs with
n labeled vertices. Weisstein conjectured that the sequences were in fact identical, and we
prove this here.

Notation: a “digraph” means a graph with at most one edge directed from vertex i to vertex
j, for 1 ≤ i ≤ n, 1 ≤ j ≤ n. Loops and cycles of length two are permitted, but parallel edges
are forbidden. “Acyclic” means there are no cycles of any length.

Theorem 1.1. For each n = 1, 2, 3, . . . , the number of acyclic directed graphs with n labeled
vertices is equal to the number of n×n matrices of 0’s and 1’s whose eigenvalues are positive
real numbers.

Proof. Suppose we are given an acyclic directed graph G. Let A = A(G) be its vertex
adjacency matrix. Then A has only 0’s on the diagonal, else cycles of length 1 would be
present. So define B = I + A, and note that B is also a matrix of 0’s and 1’s. We claim B

has only positive eigenvalues.
Indeed, the eigenvalues will not change if we renumber the vertices of the graph G con-

sistently with the partial order that it generates. But then A = A(G) would be strictly
upper triangular, and B would be upper triangular with 1’s on the diagonal. Hence all of
its eigenvalues are equal to 1.

Conversely, let B be a (0, 1)–matrix whose eigenvalues are all positive real numbers. Then
we have

1 ≥
1

n
Trace(B) (since all Bi,i ≤ 1)

=
1

n
(λ1 + λ2 + · · ·+ λn)

≥ (λ1λ2 . . . λn)
1

n (by the arithmetic-geometric mean inequality)

= (detB)
1

n

≥ 1 (since detB is a positive integer). (1)

Since the arithmetic and geometric means of the eigenvalues are equal, the eigenvalues are
all equal, and in fact all λi(B) = 1.

Now regard B as the adjacency matrix of a digraph H, which has a loop at each vertex.
Since

Trace(Bk) =
n
∑

i=1

λk
i =

n
∑

i=1

1 = n,

for all k, the number of closed walks in H, of each length k, is n.
Since the trace of B is equal to n, all diagonal entries of B are 1’s. Thus we account for

all n of the closed walks of length k that exist in the graph H by the loops at each vertex.
There are no closed walks of any length that use an edge of H other than the loops at the
vertices.

Put A = B − I. Then A is a (0, 1)–matrix that is the adjacency matrix of an acyclic
digraph. 2
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Remark. We found only two related results in the literature. D. M. Cvetković, M. Doob
and H. Sachs [3, p. 81] show that a digraph G contains no cycle if and only if all eigenvalues
of the adjacency matrix are 0. Nicolson [5] shows that for a nonnegative matrix M the
following four conditions are equivalent: (a) there exists a permutation matrix P such that
PMP ′ is strictly upper triangular; (b) there is no positive cycle in M (i.e. in the weighted
digraph there is no cycle whose edges all have positive weight); (c) permanent(M + I) = 1;
and (d) M is nilpotent.

2. Corollaries.

(i) Let B be a (0, 1)–matrix whose eigenvalues are all positive real numbers. Then the eigen-
values are in fact all equal to 1. The only symmetric (0, 1)–matrix with positive eigenvalues
is the identity.

(ii) Let B be an n × n matrix with integer entries and Trace(B) ≤ n. Then B has all
eigenvalues real and positive if and only if B = I +N , where N is nilpotent.

(iii) If a digraph contains a cycle of length greater than 1, then its adjacency matrix has
an eigenvalue which is zero, negative, or strictly complex. In fact, a more detailed argument,
not given here, shows that if the length of the shortest cycle is at least 3, then there is a
strictly complex eigenvalue.

(iv) The eigenvalues of a digraph consist of n− k 0’s and k 1’s if and only if the digraph
is acyclic apart from k loops.

(v) Define two matrices B1, B2 to be equivalent if there is a permutation matrix P such
that P ′B1P = B2. Then the number of equivalence classes of n × n (0,1)–matrices with
all eigenvalues positive is equal to the number of acyclic digraphs with n unlabeled vertices.
(These numbers form sequence A003087 in [8].)
Proof. Two labeled graphs G1, G2 with adjacency matrices A(G1), A(G2) correspond
to the same unlabeled graph if and only if there is a permutation matrix P such that
P ′A(G1)P = A(G2). The result now follows immediately from the theorem. 2

(vi) Let B be an n × n (−1,+1)–matrix with all eigenvalues real and positive. Then
n = 1 and B = [1].
Proof. The argument that led to (1) still applies and shows that all the eigenvalues are 1,
detB = 1 and Trace(B) = n. By adding or subtracting the first row of B from all other
rows we can clear the first column, obtaining a matrix

C =

[

1 ∗

0 D

]

,

where 0 is a column of 0’s and D is an n − 1 × n − 1 matrix with entries −2, 0,+2 and
detD = detC = detB = 1. Hence 2n−1 divides 1, so n = 1. 2

It would be interesting to investigate the connections between matrices and graphs in
other cases–for example if the eigenvalues are required only to be real and nonnegative (see
sequences A086510, A087488 in [8] for the initial values), or if the entries are −1, 0 or 1
(A085506).
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3. Bibliographic remarks

Acyclic digraphs were first counted by Robinson [6, 7], and independently by Stanley [9]: if
Rn is the number of acyclic digraphs with n labeled vertices, then

Rn =
n
∑

k=1

(−1)k+1

(

n

k

)

2k(n−k)Rn−k ,

for n ≥ 1, with R0 = 1, and

∞
∑

n=0

Rn

xn

2(
n

2
)n!

=

[

∞
∑

n=0

(−1)n
xn

2(
n

2
)n!

]

−1

.

The asymptotic behavior is

Rn ∼ n!
2(

n

2
)

Mpn
,

where p = 1.488 . . . and M = 0.474 . . ..
The asymptotic behavior of R(n, q), the number of these graphs that have q edges, was

found by Bender et al. [1, 2], and the number that have specified numbers of sources and
sinks has been found by Gessel [4].
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