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Abstract

We study the sum

F (n) =

κ(n)
∑

k=1

ϕ(k)(n).

of consecutive iterations of the Euler function ϕ(n) (where the last iteration satisfies
ϕ(κ(n))(n) = 1). We show that for almost all n, the difference |F (n) − n| is not too
small, and the ratio n/F (n) is not an integer. The latter result is related to a question
about the so-called perfect totient numbers, for which F (n) = n.

1 Introduction

Let ϕ denote the Euler function, which, for an integer n ≥ 1, is defined as usual by

ϕ(n) = #{j ∈ Z | 1 ≤ j ≤ n, gcd(j, n) = 1}.

Moreover, for an integer k ≥ 1, we use ϕ(k) to denote the kth iteration of ϕ, that is, the
function defined recursively as ϕ(1)(n) = ϕ(n) and ϕ(k+1)(n) = ϕk(ϕ(n)), k = 1, 2, . . ..

Clearly for every n there exists a uniquely defined integer κ(n) such that ϕ(κ(n))(n) = 1.
Accordingly, we define the function

F (n) =

κ(n)
∑

k=1

ϕ(k)(n),
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which is an additive analogue of the function

G(n) =

κ(n)
∏

k=1

ϕ(k)(n)

considered in the paper [1]. (In fact, the results of [1] are formulated for nG(n) but one can
easily reformulate them for G(n).)

The function F (n) also appears in the definition of perfect totient numbers , which are
the integers n ≥ 2 with F (n) = n; see [4, 6] and references therein. Here we use some very
elementary arguments to establish several properties of this function, which seem to be new.

Let

V(x) = {ϕ(n) ≤ x | n = 1, 2, . . .}, U(x) = {F (n) ≤ x | n = 1, 2, . . .}.

We start with the observation that

U(x) ⊆ {v + F (v) | v ∈ V(x)},

therefore
#U(x) ≤ #V(x).

There are several very tight bounds on the value set of the Euler function (see [2, 5]).
These immediately imply that

#U(x) ≤
x

log x
exp

(

(C + o(1))(log log log x)2
)

, x→∞, (1)

for some absolute constant C = 0.8178 · · · . This, in turn, implies that the set of perfect
totient numbers is of density zero. On the other other hand, it is easy to check that F (3s) =
3s, s = 1, 2, . . .. Thus there are infinitely many perfect totient numbers, and in fact #U(x) ≥
log x/ log 3−1. Here we show that in fact one can get a better bound by considering integers
of the form 2r3s, r, s = 1, 2, . . ..

As in the case of the classical perfect numbers , see [3], one can consider multiply perfect
totient numbers for which F (n)|n. We show that multiply perfect totient numbers form a
zero density set.

We also show that
|F (n)− n| ≥ (log n)log 2+o(1)

for almost all n. Hence such “approximately” perfect totient numbers form a set of density
zero, too.

Throughout the paper, the implied constants in the symbols “O”, “À” and “¿” are
absolute. (We recall that the notation U ¿ V and V À U is equivalent to the statement
that U = O(V ) for positive functions U and V ). We also use the symbol “o” with its usual
meaning: the statement U = o(V ) is equivalent to U/V → 0.

Finally, for any real number z > 0 and any integer ν ≥ 1, we write logν z for the function
defined inductively by log1 z = max{log z, 1}, where log z is the natural logarithm of z and
logν z = log1(logν−1 z) for ν > 1. When ν = 1, we omit the subscript in order to simplify
the notation; however, we continue to assume that log z ≥ 1 for any z > 0.
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2 Main Results

Theorem 2.1. The following bound holds:

#U(x)À (log x)2.

Proof. For positive integer r and s, we have

F (22r32s) =
2s
∑

i=1

32s−i22r +
2r
∑

j=0

22r−j

= 22r−1(32s − 1) + 22r − 1 = 22r−132s + 22r−1 − 1.

Assume that
22r−132s + 22r−1 − 1 = 22u−132v + 22u−1 − 1

for some positive integers u and v. Then

(32s + 1) = 22u−2r(32v + 1)

which is impossible unless u = r, v = s, since

32s + 1 ≡ 32v + 1 ≡ 2 (mod 4).

This means that the values of F (22r32s) are pairwise distinct and the result follows.

Denoting by M(x) the number of multiply perfect totient numbers n ≤ x, we have the
following result.

Theorem 2.2. For all positive integers n ≤ x except possibly o(x) of them, the bound

M(x)¿
x

log x
exp

(

(C + o(1))(log3 x)
2
)

holds.

Proof. Let

∆ = max
n≤x

n

ϕ(n)
.

Since ϕ(n) À n/ log2 n (see [7, Theorem 4, Chapter I.5]) we conclude that ∆ = O(log2 x).
Clearly, every n with F (n)|n must be of the form n = du with an positive integer d ≤ ∆
and u ∈ U(x/d). Therefore, using (1), we deduce,

M(x) ≤
∑

1≤d≤∆

#U(x/d)

≤ x
∑

1≤d≤∆

1

d log(x/d)
exp

(

(C + o(1))(log3(x/d))
2
)

≤
x

log x
exp

(

(C + o(1))(log3 x)
2
)

∑

1≤d≤∆

1

d

¿
x

log x
exp

(

(C + o(1))(log3 x)
2
)

log∆

=
x

log x
exp

(

(C + o(1))(log3 x)
2
)

,

which finishes the proof.
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Theorem 2.3. For all positive integers n ≤ x, except possibly o(x) of them, the bound

|F (n)− n| ≥ (log x)log 2+o(1)

holds.

Proof. Let ν(m) denote the largest power of 2 that divides m. We start with an observation
that if m is not a power of 2 itself, we have ν(ϕ(m)) ≥ ν(m). It is also clear that ν(ϕ(m)) ≥
ω(m)− 1 where ω(m) is the number of distinct prime divisors of n. This implies that

F (n) ≡ 2ω(n)−1 + · · ·+ 1 ≡ −1 (mod 2ω(n)−1).

From the classical Hardy-Ramanujan inequality, for any y ≥ 1,

|ω(n)− log2 x| ≤ y
√

log2 x

for at most O(xy−2) positive integers n ≤ x (see [7, Theorem 4, Chapter III.3]). Take
y = (log2 x)

1/6 and put

r =
⌊

log2 x− y
√

log2 x− 1
⌋

, s =
⌊

log2 x− 2y
√

log2 x
⌋

.

We see that
F (n) ≡ −1 (mod 2r)

for all but O(x(log2 x)
−1/3) positive integers n ≤ x. Therefore, for every of the remaining

integers n we see that if |F (n)− n| < 2s then n belongs to one of the O(2s) residue classes
modulo 2r. Thus this is possible for at most O (2s(x/2r + 1)) = O(x2s−r) positive integers
n ≤ x, which finishes the proof.

3 Open Questions

It seems quite plausible that considering integers n composed out of more fixed primes, for
example, n = 2r3s5t one can improve the lower bound of Theorem 2.1. We however do not
see how to create a more generic argument, which would lead to, say, the estimate

log#U(x)

log2 x
→∞, x→∞,

which, no doubt, is correct.
It is also natural to expect that the bounds of Theorems 2.2 and 2.3 are not tight and

can be improved.
One can easily derive from [1, Theorem 4.2] that

1

x

∑

n≤x

F (n) ∼
3

π2
x.

In fact, using the full strength of [1, Theorem 4.2], one can obtain a more precise asymptotic
expansion for the average value of F (n).

Finally, one can also ask similar questions for the sums of iterations of other number
theoretic functions, such as the the sum of divisors function σ(n) or the Carmichael functions
λ(n).
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