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Abstract
We study the sum

of consecutive iterations of the Euler function ¢(n) (where the last iteration satisfies
(M) (n) = 1). We show that for almost all n, the difference |F(n) — n| is not too
small, and the ratio n/F(n) is not an integer. The latter result is related to a question
about the so-called perfect totient numbers, for which F(n) = n.

1 Introduction

Let ¢ denote the Fuler function, which, for an integer n > 1, is defined as usual by

pn)=4{j €Z|1<j<n, ged(jn) = 1}.

Moreover, for an integer k& > 1, we use ¢® to denote the kth iteration of o, that is, the
function defined recursively as ¢ (n) = ¢(n) and p** ) (n) = P*(p(n)), k=1,2,....

Clearly for every n there exists a uniquely defined integer #(n) such that *™)(n) = 1.
Accordingly, we define the function
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which is an additive analogue of the function

considered in the paper [[]. (In fact, the results of [[[] are formulated for nG(n) but one can
easily reformulate them for G(n).)

The function F(n) also appears in the definition of perfect totient numbers, which are
the integers n > 2 with F(n) = n; see [[, ] and references therein. Here we use some very
elementary arguments to establish several properties of this function, which seem to be new.

Let

V(z) ={¢n) <z |n=12..1, U(z)={F(n)<z|n=12..}
We start with the observation that
U(x) CT{v+ F(v) |veV()},

therefore
#U(x) < #V(x).
There are several very tight bounds on the value set of the Euler function (see [}, {]).
These immediately imply that

#U(x) <

exp ((C' + o(1))(loglog log 2)?) , T — 00, (1)
log
for some absolute constant C' = 0.8178---. This, in turn, implies that the set of perfect
totient numbers is of density zero. On the other other hand, it is easy to check that F'(3%) =
3%, s =1,2,.... Thus there are infinitely many perfect totient numbers, and in fact #U(x) >
log z/log 3—1. Here we show that in fact one can get a better bound by considering integers
of the form 2"3%, r,;s =1,2,....

As in the case of the classical perfect numbers, see [[J], one can consider multiply perfect
totient numbers for which F(n)|n. We show that multiply perfect totient numbers form a
zero density set.

We also show that
[F(n) —n| > (log /s 2+

for almost all n. Hence such “approximately” perfect totient numbers form a set of density
zero, too.

Throughout the paper, the implied constants in the symbols “O”, “>” and “<” are
absolute. (We recall that the notation U < V and V > U is equivalent to the statement
that U = O(V') for positive functions U and V). We also use the symbol “o” with its usual
meaning: the statement U = o(V) is equivalent to U/V — 0.

Finally, for any real number z > 0 and any integer v > 1, we write log,, z for the function
defined inductively by log, z = max{log z, 1}, where log z is the natural logarithm of z and
log, z = log,(log,_; z) for v > 1. When v = 1, we omit the subscript in order to simplify
the notation; however, we continue to assume that logz > 1 for any z > 0.
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2 Main Results

Theorem 2.1. The following bound holds:
#U(z) > (logz)>.

Proof. For positive integer r and s, we have
2s 2r
F(227‘328) — Z 328—i22r + Z 227”—j
i=1 =0

— 227’—1(328 o 1) 4 227‘ - 1= 22T—132s 4 227‘—1 —1.

Assume that
227’—1325 4 227"—1 —1= 22u—132v 4 22u—1 o 1

for some positive integers u and v. Then
(3% 4+ 1) = 2202 (3% 4 1)
which is impossible unless © = r, v = s, since
3 +1=3"+1=2 (mod 4).
This means that the values of F(2273%%) are pairwise distinct and the result follows. O

Denoting by M (x) the number of multiply perfect totient numbers n < x, we have the
following result.

Theorem 2.2. For all positive integers n < x except possibly o(x) of them, the bound

x
M(z) < gz &P ((C +o0(1))(logs x)?)
holds.
Proof. Let
A = max .
n<z p(n)

Since p(n) > n/log,n (see [, Theorem 4, Chapter 1.5]) we conclude that A = O(log, z).
Clearly, every n with F'(n)|n must be of the form n = du with an positive integer d < A
and u € U(z/d). Therefore, using ([), we deduce,

M@) < Y #UE/d)

1<d<A

v Y o e ((C+ o) log a/d))

1<d<A
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exp ((C' + o(1))(logy x)*)

1<d<A

exp ((C' + o(1))(logs z)?) log A

log x

<
log x

= oz 0 ((C + o1)) log 2)?).

which finishes the proof. O




Theorem 2.3. For all positive integers n < x, except possibly o(x) of them, the bound
|F(n) —n| > (logz)e>+et)
holds.

Proof. Let v(m) denote the largest power of 2 that divides m. We start with an observation
that if m is not a power of 2 itself, we have v(¢(m)) > v(m). It is also clear that v(p(m)) >
w(m) — 1 where w(m) is the number of distinct prime divisors of n. This implies that

Fn)=2*M"14...41=-1 (mod 2°W~1).

From the classical Hardy-Ramanujan inequality, for any y > 1,

lw(n) —logy x| < y\/log, z

for at most O(zy2) positive integers n < z (see [[l, Theorem 4, Chapter II1.3]). Take
y = (log, 2)"/% and put

r= Llogﬂc—y log, x — 1J , 5= {long—Qy\/logsz :

We see that

F(n)=-1 (mod 2")
for all but O(z(log, x)~'/?) positive integers n < x. Therefore, for every of the remaining
integers n we see that if |F(n) — n| < 2° then n belongs to one of the O(2%) residue classes
modulo 2". Thus this is possible for at most O (2°(z/2" + 1)) = O(x2°"") positive integers
n < x, which finishes the proof. O

3 Open Questions

It seems quite plausible that considering integers n composed out of more fixed primes, for
example, n = 2"3°5" one can improve the lower bound of Theorem P-I. We however do not
see how to create a more generic argument, which would lead to, say, the estimate

log#U(x)

T — 00,
log,

which, no doubt, is correct.

It is also natural to expect that the bounds of Theorems . and are not tight and
can be improved.

One can easily derive from [[], Theorem 4.2] that

1 3
ST F(n) ~ Sa
=) F(n) ~ o

n<x

In fact, using the full strength of [[l, Theorem 4.2], one can obtain a more precise asymptotic
expansion for the average value of F'(n).

Finally, one can also ask similar questions for the sums of iterations of other number
theoretic functions, such as the the sum of divisors function o(n) or the Carmichael functions
A(n).
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