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to simple Lie algebras of real rank two,
I: the A, case
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Abstract. By using Clifford algebraic methods, we classify all real semisimple
Lie algebras of type As. This approach to the classification avoids the need
to discuss the real and complex cases separately, and also provides interesting
information about the structure of the algebras.

1. Introduction

Since the time of E. Cartan, in the study of Lie algebras, attention has been focused
on the involutions of the algebra. It is well known, however, that if g=¢G adn
is the Iwasawa decomposition of g, then the algebra g is uniquely determined by
the subalgebra a @& n. Thus it should be possible to classify real semisimple Lie
algebras by classifying their Iwasawa subalgebras a & n. This is the first paper of
a series devoted to this task.

This approach was followed in two papers by M. Cowling, A. Dooley,
A. Koranyi, and F. Ricci [3, 4], in which the authors classify real rank one Lie
algebras and describe them. These papers rest on the observation of Koranyi [8]
that the nilpotent subalgebra in the Iwasawa decomposition of a real semisimple
Lie algebra of rank one is either Abelian or lies in the class of algebras introduced
by A. Kaplan in [6] and called generalized Heisenberg algebras.

The following observation holds for general real semisimple Lie algebras,
and 1s the basis of our approach to studying them. The nilpotent subalgebra n
is the semi-direct product of a generalized Heisenberg algebra ng and a nilpotent
subalgebra of the algebra which normalises ny and centralises the centre. This may
be seen as a generalization to arbitrary rank of Koranyi’s original observation. In
this paper we use this fact to classify and describe simple real Lie algebras with
root system of type Ay, which is the simplest case of a higher rank algebra.
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the University of New South Wales and Professor Fulvio Ricci of the Politecnico di Torino for
their interest and valuable advice.

ISSN 0949-5932 / $2.50 (©) Heldermann Verlag



54 CraTTI1

As far as we know, this approach to the classification has never been tried
before. In spite of its difficulty, our technique, which avoids complexification, seems
to be more natural than the classical method for dealing with real algebras. This
approach also leads us to discover some interesting properties of g, and clarifies
the role played by Clifford algebras in the structure of real semisimple Lie algebras.

We further observe that both complex and noncomplex Lie algebras are
treated simultaneously in our method. The real rank two algebras associated to
root systems of type Ay are sl(3,R), sl(3,C), su*(6), and eg_z6), corresponding
to the cases where the root spaces have dimensions 1, 2, 4, and 8 (our notation
for Lie algebras follows S. Helgason [5, p. 518]).

Here is an outline of the paper. In Section 2, we list some general results
on semisimple Lie algebras, focusing attention on restricted roots and on the
subalgebra m. In this section, we quote most standard results without providing
the proofs, which may be found in [5].

Section 3 is devoted to generalized Heisenberg Lie algebras. We give the
definition and, after some generalities whose proofs may be found in [6], we study
the derivations of a generalized Heisenberg algebra in the cases of interest for us.

In Section 4, we choose a set of positive roots Ay = {a,3,a + §}, and
prove that the maximal nilpotent subalgebra n, given by

n=40.Dgs D gats,
is a generalized Heisenberg algebra, i.e.,
n=ves,

where 3 = g,45 = R? is the centre and v = g, @ gs is a module for the Clifford
algebra C(d). We use this fact to give an elementary proof that all roots in a root
system of type A, have the same multiplicity, d say, and then we establish that d
isin {1,2,4,8}. Finally, we show that the decomposition of v into the orthogonal
direct sum g, @ gg corresponds to the usual decomposition of a C(d)-module into
the direct orthogonal sum of two C*(d)-modules.

Section 5 is devoted to the study of the subalgebra m of a real simple Lie
algebra with root system A;. We determine m explicitly and describe its action
on n and On for d in {1,2,4,8}.

In Section 6, we use the results of Sections 4 and 5 to construct a vector
space g4, endowed with a skew-symmetric product [-,-]; and an involutive [-,]4-
automorphism 6, for all d in {1,2,4,8}.

In the two last sections we prove that [-,-]; is a Lie bracket, showing that
it satisfies the Jacobi identity. In particular, in Section 7, we show that (g, [-,-]4)
is isomorphic to the matrix Lie algebra s[(3,F;), where F; is equal to R, C and
H, when d = 1, d = 2 and d = 4 respectively. In Section 8, we consider the
case where d = 8. To check the Jacobi identity in gg, we prove that for any three
elements of gg, there are a vector subspace g’ containing all three elements and a
one-to-one linear mapping A from g onto g4 such that

ALY, Vs = X, AY]..

Since at that stage we have already proved that (ga, [, ]s,0s) is a Lie algebra, it
follows that the Jacobi identity holds in (gs, [-,-]s,0s)-
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Finally, up to isomorphism, there is exactly one irreducible generalized
Heisenberg algebra with d-dimensional centre, therefore the calculations in Sec-
tion 5 determine the commutation relations uniquely, and prove that for each d
in {1,2,4,8} there is exactly one real semisimple Lie algebra of type A, for which
the dimension of each of the root spaces is d.

2. Preliminaries

In this section, we first recall some familiar facts about semisimple Lie algebras,
and then prove some results about the subalgebra m in this general context. Let
g be a real semisimple Lie algebra, not necessarily of real rank 2, and let B be
the Killing form of g. Let 6 be a Cartan involution of g, and

g=top
be the corresponding Cartan decomposition, where
t={Xe€g:0X =X} and p={Xe€g:0X=-X}.

Let ¢ be a positive constant, to be fixed later. For X and Y in g, let

(X,Y) = —cB(X,0Y). (1)

Then (-,-) is a positive definite inner product. The corresponding norm will be
denoted by || - ||. It follows from the invariance of the Killing form that

((X,Y],Z) =(X,[6Y. Z]) VXV, Z€g (2)

We will often use (2) without comment in the paper.
Fix a maximal abelian subalgebra a in p. A nonzero linear functional o
on a is said to be a restricted root of (g, a) if

9o = {X €g:[H,X] = a(H)X}

is nontrivial. The subspace g, is called a root space, and its dimension is called
the multiplicity of the root a and denoted by d,. We will denote the set of roots
of (g,a) by A, and by go the commutant of a in g. By f-invariance,

go=(g0Np) & (g NE =adm,

say. For a and 3 in A U {0}, we have [g,,83] C @atg, and in particular,

For a in A, let H, be the unique vector in a such that

B(H,,H)=a(H) VHEa.

For o, in A, set

(a | B) = (Ha, Hg);
this defines an inner product on a* which depends on the constant ¢ in (1). It is
well known (see [5, p. 94]) that

X,0X] = X[ H,  ¥X €. (3)
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We fix H in a such that o(H) # 0 for all @ in A, and order the roots by
saying that a root « is positive if @(H) > 0. Then

A= A+ U (_A+)7

where Ay is the set of positive roots. Let

n= Z o then On = Z O o-

aEAL a€AY
It is clear that both n and fn are nilpotent subalgebras. We obtain the decompo-
sition
g=ndgdn=0nd(adm)dn.

We now examine the structure of m more carefully. We emphasize that the
results in this section do not rely on the assumption that g is of real rank 2. Much
of what follows is “known,” but not codified as here (as far as we know).

Proposition 2.1.  Suppose that X, X' € g, \ {0} for some root v and that
(X,X')=0. Then
[X,0X'] = [X',0X] € m.

If in addition 2v is notl a root, then [X,0X'] # 0.

Proof.  To prove that [X,0X'] € m, we first observe that [X,0X’] lies in gq.
Since the decomposition gy = a @& m is orthogonal, [X,6X’] lies in m if and only
if (H,[X,0X']) =0 for every H in a. We find that

(H,[X,0X']) = ([H,0X],0X") = —7(H)(X, X') = 0.
Hence, [X,0X’'] € m. In particular, since 8 fixes m, it follows that
[0X, X' = 0]X,0X'] = [X,0X'].
Finally, if 2y is not a root, then [X,0X] # 0, since
(10X, X"], X] = [[0X, X], X'] = 5([0X, X]) X',
and ~([0X, X]) # 0 by (3). n
For any root v define
m, = span{[X,0X"]: X, X' €g, and (X,X')=0}.
Since [gy, -] € RH, @ m,, we have [gy,g_,] N m=m,.

Lemma 2.2. [Ify € A, then m, is an ideal in m.

Proof.  Since ad is linear, it suffices to show that ad(M)[X,0X’] lies in m, for
all M in m and all orthogonal vectors X and X’ in g,. We find that

[M,[X,0X]] = [X,[M,0X"]] + [0X",[X, M]] = [X,0]M, X']] + [[M, X],0X"].

In this formula, the right hand side lies in m, @ a and the left hand side lies in m.
So both sides are in mN (a & m,) = m,. n
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Proposition 2.3.

Proof.  The inclusion ) m, C m follows from Proposition 2.1.

YEAL
my = § Moy,

For the converse, let
YEAL

and

gy =M (admy)dn

Since each m, is an ideal in m, my is an ideal in m, and m; @ a is an ideal
in m@a. We prove that g, is an ideal in g. First, it is a subalgebra, since n and
On are subalgebras and

n,On] Cadmy Gndon,

and since a and my preserve root spaces under the adjoint action, both being
subspaces of gg. It remains to show that g, is an ideal. Tt is already clear that
MPadbng,] Cgy. Let M be a generic element of m. Since ad(m) preserves
root spaces and my is an ideal in m, we have by linearity

ad(M)(ndmy Gadbn) Cndmy Gadbn.

Thus g4 is an ideal in g. Since g is simple, g1 = g and so my = m. [ ]

Proposition 2.4.  Suppose that v is a rool and that 2+ is not a root. Suppose
also that Xy, Xy, X3, X4 are pairwise orthogonal vectors in g.. Then

[X1,0X5], Xa] = v([X2, 6X5]) Xy, [X1,0X:], Xi] = —([X1,0X1]) X2, (4)
[[le 9X2]v )(3] =0, (5)
[X1,0X:], [X5,0X5]] = ([0X2, Xo])[ X1, 0X5], (6)

and
[[Xl,aXz],[X3,9X4]] :O (7)
Proof. The formulae (4) are easy consequences of the Jacobi identity and of

the fact that 2y ¢ A since
[[X1,0X,], Xo] = [[ Xy, 0Xo], Xia] + [[X1, Xo], 0Xo] = v([Xy, 0X,]) X
For (5) we have

[[X1,0X,], X3] = [[0X:, X2, X5] = [[0X1, X3], Xa] = —[[X3,0X4], X3].
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Permuting the indices twice we get
[[X1,0X5], Xa] = —[[X35,0X,], Xo] = [[ X2, 0X5], Xi] = —[[X3, 0X5], X5].
Hence,
[[Xl,HXQ],X'g,] - 0
Now (6) follows by the Jacobi identity using (4) and (5):

[[X1, 0X2), [ X5, 0X0]] = [Xa, [X1, 0X0), 0X2]) + [0z, [Xa, [ X1, 0X]]]
= ’Y([GX%X?])[X&@XJ-

Similarly we get (7) from the Jacobi identity and (5). ]

Definition 2.5.  Let {X;,...,X; } be an orthonormal basis of g,. When
1 # 7, we set

Corollary 2.6.  Suppose that v is a rool and that 2~ is not a root. Then when
1 # 7 and k # 1, we have

[(Xij, Xua] = ([0, Xa]) (6, Xix + i Xt — 0 X — 053 Xan). (8)
In particular, m, is isomorphic to so(d,) and dimm, = 1d.(d, —1).

Proof. By definition
m, = span{X;; : 1 < j}.

We know that X;; # 0 by Proposition 2.1. Since
<[X27 an]v [Xk7 9Xl]> = _<[[XZ7 HXJ]Xl]v Xk>7

it follows from Proposition 2.4 that (X;;, Xj;) # 0 if and only if (i,7) = (k,[)
v (i,7) = (I,k). Therefore, {X;; : i < j} is an orthogonal basis of m,. From
Proposition 2.4 we get (8). These commutation relations show that m, = so(d.,).

Hence, dimm, = 1d,(d, —1). [ |

We recall, from the classification of the algebras so(d), that m, is simple
when d, > 5 or when d, = 3, and that when d, =4,

m, =m @m%

where m; and m; are ideals isomorphic to s0(3), and the decomposition is ortho-
gonal.

Corollary 2.7.  Suppose that v is a rool and that 27 is not a rool. Then m,
acts irreducibly on g,. Moreover, if d, > 2 the action s faithful, thal s, if
M em, and

M, X]=0 vX eg,,

then necessarily M = 0.
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Proof.  This holds since m, acts on g, as so(d,) acts on R%. ]

Corollary 2.8.  Suppose that v and § are roots and that 2~ is not a root. If
there exist lwo orthogonal vectors Xy and X, in g, such thal

[X'laHXZ] E m(S’

then m, C m;.

Proof.  The statement is vacuous if d, = 1 and obvious if d, = 2. Assume
therefore that d, > 3. Extend {Xj, X3} to an orthogonal basis {X;1,X5,..., X4 }
of g,. Then the set {[X;,0X;]:¢# j} spans m,. If ¢ > 3, since [X1,0X;] € m;,
it follows from (6) that

—v([0 X3, X2])[ X1, 0X;] = [[X1,0X3], [X2, 0X;]] € ms.

The same argument shows that [X;, 0X;] € ms whenever 1 <i < j <d,, proving
the statement. |

Proposition 2.9.  Let v and & be roots, and assume that 2y ¢ A. If the
action of ms on g, is trivial then m, N ms = {0}. Suppose further that d, > 3.
If m, Nms = {0}, then the action of ms on g, is lrivial.

Proof. Take M in m, Nm;s. Since M € m;, we have
(M,Y] =0 VY € g,.

However, M lies in m, and the action of m, on g, is faithful by Corollary 2.7.
Hence, M = 0.

Assume that d, > 3 and m, Nms = {0}. As in Lemma 2.2, the inter-
section m, N ms is an ideal in both m, and ms. Since [m,,m;] is a subset
of m, Nmg, it is trivial. In other words, for all M in ms the operator ad(M)
lies in the commutant of m,. But m, = so(d,) and any skew-symmetric operator
on R% which commutes with so(d,) is zero when d., > 3. |

Note that in the statement of Proposition 2.9 we suppose that d, > 3. It
is clear from a study of s[(3,C) that this hypothesis is necessary.

3. Generalized Heisenberg Lie algebras

In this section, we introduce generalized Heisenberg Lie algebras, and next examine
their derivations. We then examine carefully four examples of these algebras, and
finally show that the Iwasawa n summands of simple Lie algebras of type A, are
generalized Heisenberg Lie algebras.

The following definition of generalized Heisenberg (or H-type) Lie algebra
is due to Kaplan [6].
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Definition 3.1.  Let n be a two-step real nilpotent Lie algebra, endowed with
an inner product (-,-). Denote by v the orthogonal complement of the centre 3
of n, and for each 7 € 3 define a map Jz: v — v by

(J7X,Y)=(X,Y],Z) VX,Ye€nv.

We say that n is a generalized Heisenberg algebra if Jz is orthogonal whenever
|Z]| = 1, or equivalently if

I zX| = 1Z|IIX|  VZes VXev.
Since the Lie bracket is skew-symmetric, we have
(JzX,Y) = —(X,J5Y)
for all X and Y in v. Hence,
Tz =—Z|*1L.
By polarization, we obtain
(JzX, Iz X) = —(Z, 2| X|* I,

and

Jgdg + Jpdy = —2<Z, Z’>[.

In particular the last relation shows that, if d denotes the dimension of 3, then v
is a module for the Clifford algebra with d generators C(d) (for the definition and
properties of Clifford algebras, see, for instance, [9] or [10]).

Take 7 in 3. Let .jz be the extension to n of Jz; which acts on the
centre as minus the reflection in the hyperplane orthogonal to 7. Then Jy is an
automorphism of the Lie algebra n.

Fix d > 1. We recall that there exists an H-type algebra with a d-
dimensional centre. We say that two H-type algebras n; and ny are isomorphic if
there is an orthogonal Lie isomorphism between ny and ny. We say that n=v&3
is irreducible if there is no v C v such that v’ &3 is H-type.

Proposition 3.2. Up to isomorphism there is exactly one irreducible H-type
algebra with centre of dimension d.

We will denote the irreducible generalized Heisenberg algebra with d-dimensional
centre by ng =0, P 34.

We now discuss the derivations of a generalized Heisenberg algebra, follow-
ing C. Riehm [11]. Let D(n) be the space of skew-symmetric derivations of n.
If D € D(n), then D, being a derivation, maps 3 into itself, and since D is
skew-symmetric it also maps v into itself.

Let {Z1,..., 74} be an orthonormal basis of 3. We will set J; = Jz . For
each pair (7,k) with ¢ # k define a linear endomorphism D}, of ng by

D?kV = J.J,V YV € v,

and

D27 = 2607 — 28u7; V1 <1<d.
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Then set
D,(n) = span{ D}, : i # k}.

It is easy to verify that D;(n) is a subspace of D(n). We see from the definition
that the restrictions of the elements of D;(n) to 3 span the algebra of all linear
skew-symmetric maps of 3 into itself. Now, since the D ’s are derivations, an easy
computation shows that they satisfy the commutation relations of so(d). Hence,
D;(n) is a Lie algebra isomorphic to so(d).

Let Dy(n) denote the space of the skew-symmetric derivations of n which
act trivially on j.

Proposition 3.3.  Take D in D(n). For all Z in  we have
DlyJz = Jpz + JzDls.

Furthermore, D(n) = D;(n) & Dy(n), and D; and Dy commute.

Proof. Since D is skew-symmetric and a derivation,

(DJ7X,Y) = —(J;X,DY)

= —(%,[X, DY])
= —(Z,D[X,Y]) +(Z,[DX,Y])
= (DZ,[X,Y]) +{JzDX.Y)

= (JpzX,Y) + (JzDX,Y),

for all Z in 3 and all X and Y in v, which proves the first result.
Let D|; be the restriction of a derivation D to 3. Since DJ; is a skew-
symmetric linear map of § into itself, it is an element of so(d). Therefore,

Dl; = Z cinDig s,
itk

where the coefficients ¢;, = —¢g; in R are uniquely determined by D|;. Let

D=D - cuDj. (9)

i#k

Then D is a skew-symmetric derivation of n acting trivially on 3. Further the
decomposition (9) is unique and D; and D, commute, since

D,(n) 0 Do(n) = {0},
as required. ]

Now we are interested in studying the generalized Heisenberg algebras with
centres of dimension of 1, 2, 4, and 8. For the reader’s convenience we recall that
C(l) = C, C(2) 2 H, C(4) = H(2), and C(8) = R(16), where F(n) denotes the
space of n X n matrices with entries in the field F.

It is well known (see, for instance, [9] or [10]) that any Clifford algebra
C(d) splits into the direct sum of its even and odd parts, denoted by C*(d) and
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C~(d) respectively, and that C*(d) is a Clifford algebra isomorphic to C(d —1).
Corresponding to this decomposition of C(d), when d in {1,2,4,8}, the C(d)-
modules v, split into the sum vgy & V49, where vy and v, are irreducible C*(d)-
modules. The algebras C*(1) and C*(2), which are isomorphic to R and C have,
up to equivalence, only one irreducible module: the irreducible module for C*(1) is
isomorphic to R and that for C*(2) is isomorphic to C. However, C*(4) = H& H
and C*(8) 2 R(8) @ R(8) have two inequivalent irreducible modules, vy and vy
say. As real vector spaces, the irreducible C*(4)-modules are of dimension 4,
while the irreducible modules of C*(8) are of dimension 8. These modules may be
distinguished by looking at the action of € = J1Jy ... Jy, which acts as the identity
on vy and as minus the identity on vy, .

Corollary 3.4.  Suppose that d in {1,2,4,8} and that D € D(n). If D|; =0
and Dvg C vg, then the restrictions Dl,, and Dl,, of D are related by the
formula

D|Ud1 = _JZD|Ud2JZ (1())

for all 7 in j of norm one.

Proof.  Since D acts trivially on 3, we get from Proposition 3.3
Do, J7 = J7Dls, VZ €3,
which, for Z with norm one, implies
Doy, = =J7zDloy, J7,
as required. ]

We denote by D{{(nd) the subspace of Dy(ng) which consists of derivations
preserving the C+(d) -modules v4; and v42. In general Dg‘(nd) is a proper subspace
of Dy(ng). We observe however that for d in {4,8}, when v, is the sum of two
inequivalent modules, then necessarily D (ng) = Do(ng) since any D in Df (ng)
which commutes with .J; also commutes with e.

Proposition 3.5. The dimensions of the spaces DF (ng) are equal to 0, 1, 3,
and 0 when d is equal to 1, 2, 4, and 8 respectively.

Proof. As we observed vy and v, are irreducible C*(d)-modules. Moreover,
any derivation in D (ng) commutes with the action of C*(d). Now for d = 1, since
C*t(1) = R, the commutant is R. For d = 2, since C*(2) = C, the commutant
is C. For d =4, since C*(4) = H @ H, the commutant is H. For d = 8, since
C*(8) = R(8) @ R(8), the commutant is R. ]

We conclude this section by showing that generalized Heisenberg algebras
occur naturally in real simple Lie algebras. This provides the link between the
Clifford algebraic approach just presented and semisimple Lie algebras.
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Lemma 3.6.  Suppose thalt o, 3,a+ (3 € A and that 2a+ 3,a+23 ¢ A. Then
1
(ala+B)=Blat+B)=5lat+flath) (11)
Proof.  Recall that if v,§ are distinct roots, then (see [1, Chapter VI, 1.3])

(v]6)<0=>~v+0€A, (12)

moreover, if (v |d) =0, then

T+ EA = y-d€A. (13)
We also recall that
(7 19)
2 € {0, +1,42, +3). 14
ol €1 J (14
We claim that
(a]a+3)>0 and (Bla+p5)>0. (15)

Indeed, if (o | @+ 3) < 0, then 24 3 € A by (12), contradicting the hypothesis,
and (o | a+ 3) # 0 by (13) since 8 € A. Thus (a | a + 3) > 0; exchanging the
roles of o and 3 shows that (8 |a+ 3) > 0. Since

(| a+ ) n (Bla+p8) -1
(a+Bla+pB)  (a+Bla+p)

(14) and (15) imply (11). [ |

Set
n=(go+9s) DGats;,  5=0a+s and V=g, +gs,
so that n=0v@ 3.
Definition 3.7.  For Z in 3, we define an operator Jz on v by
Jz X =[7Z,0X] VX €v.
Theorem 3.8.  Fix the constant ¢ in (1) such that
(a+8|a+s)=2.

Then n =0 &3, endowed with the inner product (-,-), is a generalized Heisenberg
algebra with centre 3. In particular, for all 7 in 3 and X and Y in v

(JzX, V) = —(X, J;Y), (16)
(X, 1z X] = | X|I*Z, (17)

and

(JzX,Y) = (Z,[X,Y]). (18)
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Proof.  We first prove that J; is skew-symmetric. Take X and Y in v. From
the definition of J; and (2) it follows that

(J2X,Y) =([2,0X],Y) =(Z,[X,Y]) = =(Z, [V, X])
—([Z,0Y],X) = —(J;Y, X) = —(X, JY),

i.e., (16) holds.
Now we prove that J3X = —||Z||?X for all X in v. Let Z be in j and
suppose that X is in g,. From the definition of Jz; we get

= [7,0[7,0X])].
Hence, from the Jacobi identity
JEX = [Za [HZaX]] = [[Z,HZ],X] = _a<[aza ZDX = _HZ”QX’ (19>

by (3.8). The case where X € gg is similar.
It is clear from the structure of the root system that g,43 C 3. We prove
the converse. It follows from Lemma 3.6 and formula (3.8) that

[X, JZX] = [X7 [Z7 HX]] = [Za [X7 HXH = (CM—I—ﬁ)([QX,X])Z
= Lot BlatAIXPZ= X2 X <.

This proves that for all nonzero X in v the vector JzX is such that [X,.J;X] # 0,
whence v N3 = {0}. Therefore, 3 coincides with g,44. |

4. The structure of n

From now on, we consider real semisimple Lie algebras with root system A,. This
means that

A-}-:{aaﬂaa_l_ﬁ}a (20>
and that all roots have the same length, hence

(@] 8) = —5(a | ) (21)

It is clear that
n=0g,Dds O dats-

As before, we set
3 = Hats and v =g, D gs.
If we choose the constant ¢ in (1) so that for all v in A,
(Hy, Hy) =2,
that is

y([6X, XT) = 2| X]*
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for all X in g,, then n, endowed with the inner product (-,-), is a generalized

Heisenberg algebra, by Theorem 3.8. From (21) and (22) it follows that
a([0Z,7]) = B([0Z, Z]) = | Z|%, (23)
for all Z in go4p, and that
a0V, Y]) = —|Y]*  and  B(0X, X]) = —||X]% (24)
for all Y in gg and all X in g,.
Lemma 4.1.  For all nonzero vectors X in g, the map Z — JzX from goip
into gg is one-to-one and onto. Ils inverse is | X|[7?adx. Similarly, for all

nonzero Y in gg the map 7 — JzY from @45 into g, is one-to-one and onto
and its inverse is |Y]|7* ady . In particular, d, = dg = doyp.

Proof. If J;X =0 and X # 0, it follows that Z = 0 from (17). Therefore,
Z — JzX is one-to-one. This map is also onto because given Y in gg, using the
Jacobi identity and the fact that o — 3 ¢ A, we find that

J[X,Y]X = [[Xv Y]ng] = [[Xv 9X]7Y] = 6([X7 QX])Y = HXHZY

The inverse of this map is | X||7%adx by (17).
By symmetry the same is true for 7 — JzY. [ ]

From the lemma we immediately get the following corollaries.
Corollary 4.2. The following relations hold:

(o, 98] = Gasts) [Got6,9-5] = 8o and  [gatp, §-a] = 9. (25)

Actually, as we show in [2], formulae (25) hold in all simple real Lie algebras.

Corollary 4.3.  Let {Z,Z5,...,Zy} be an orthonormal basis of 3 and let X be
a unit vector in g, . Then { Xy = 1k X : 1 <k <d} and{Y, = 1 X : 1 <k <d}

are orthonormal bases of g, and gg respectively. Furthermore,
{Xik = [J1J¢X,0J1JkX] ) < ]{7} and {Y;k = [JZX,QJ]CX] ) < k}

are orthogonal bases of m, and mg respectively.

Theorem 4.4. The rool spaces g., 9a, and go4p all have the same dimension,
which can be either 1, 2, 4, or 8. Furthermore, v is an irreducible C(d)-module.

Proof.  All the roots have the same multiplicity by Lemma 4.1. In other words,
the number of generators (dimj = dimg,45) of the Clifford algebra involved in
the generalized Heisenberg algebra is half the dimension of the Clifford module v
(which is dimg, 4 dimgg). There are few Clifford modules with this property.
These are the irreducible modules for the Clifford algebras C(1) = C, C(2) = H,
C(4) = C(4), and C(8) = R(16), whose real irreducible modules have dimension
2,4,8,16 respectively (see [9, p. 28]). [ ]
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Proposition 4.5. The root spaces g, and gg are irreducible C*(d,)-modules.
If d, € {4,8}, then g, and gg are inequivalent C*(d,)-modules.

Proof.  The first part follows from the discussion preceding Corollary 3.4.
Now assume that d, € {4,8}. Since ¢ = J1.J5...Jz, commutes with J;J,
for all j,k in {1,...,d,}, and since ¢* = 1, it follows from the irreducibility of the
C*(d,)-modules g, and gg that ¢ is I on g, and gz. Since e anti-commutes
with Ji, it follows that if e = [ on g,, then ¢ = —I on gg and vice versa. ]

5. The structure of m

Lemma 5.1.
m=m,+mMg=m, + My = Mg+ My43.

Proof.  Proposition 2.3 implies that m = m, +mg+m,4s. Thus, to prove that
m = m, + mg, it suffices to show that

myps © My + ms.

Suppose that M is in m,4s. By Proposition 2.3, we may write
v = 31707
=1

where 7; and Z are orthogonal vectors in g.15 for each index . It is sufficient to
prove that if Z, 7" € g,4s and (Z,7') = 0, then [Z,0Z'] € m, 4+ m;s. Since
[9v,95] = @445 by Corollary 4.2, there are vectors X; and Y; in g, and g;

7'= ) 1%.Y],

1<j<n

respectively such that

where n is a positive integer. By the Jacobi identity,

(2,62 = ) [Z,6]X;,Y]]

1<j<n

= 0X;, 0002, V)] + > [[7,0X,],0V] € (m, +ms) & a.

1<j<n 1<j<n

But the left hand side lies in m, hence [Z,0Z'] belongs to m. 4+ m;.

The other equalities are proved similarly. ]
Lemma 5.2. Let {7y, 73} be an orthonormal pair in 3, and X be a unit vector
in v. Then

[Zl,QQZQ] - [X,e-]l-]QX] +[-]1X,0-]2X] (26)

Proof.  Since Z, = [X, J;X] by (17), the Jacobi identity implies (26). ]
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Observe that if d, = 1, then m = {0}. For d in {2,4,8}, we consider the
decomposition
m=m, s S m,

The elements of m are clearly derivations of the generalized Heisenberg algebra n.
If Zy, Z, are in go4p and V isin v, then

(71,075, V] = [[V,02,], Z1| = [Z1,0]Z2,0V ]| = J1.J5V. (27)

Now, since mg4p s0(d,) and since the space of restrictions to g,45 of the

elements of D;(n) is isomorphic to so(d, ), we see that

Ma4s = Dy(n).

We will see later that mi_i_ﬁ = Dg'(n).

Proposition 5.3.  Suppose that d, > 2. If myps N m, = {0}, then d, = 2. If
doy =2, then muyp N My = Myyp Nmg =mgNm, = {0} and m, = my = s50(2);
moreover,

mayp = R{OX, /1o X] + [1 X, 0], X]},
mt, ;= R{[0X, ], .X] - [, X,0,X]},

and
Df (ng) = mi+ﬁ-

Proof.  Assume that m,.5 N m, = {0}. If d, were greater than or equal to 3,
then the action of m,4s on g, would be trivial by Proposition 2.9, yielding a
contradiction, since (ad[Z;,07;])X = J1.J,X. Hence, d, = 2.

For the converse, assume that d, = 2, and suppose by contradiction that

Myt5 N M, # {0}. Then we would have
[71,07,] = ¢[X,0.J,J,X], (28)
with ¢ in R. Applying (28) to Z;, we deduce from the Jacobi identity that
27, = c[[X, 01 J.X], Z1] = c[[Z1,0.,0,X], X] = c[J2 ], X, X] = 73,
whence ¢ = 2. On the other hand, (28) applied to X gives
I X =2([0X, 111,X], X] = 2a([0X, X])J1J2 X,

which implies that (o | @) = 1/2, yielding a contradiction. Thus, the sum of m,
and mg is direct, and we conclude from Lemma 5.1 that

m=m, & mg.

From Corollary 2.6, it follows that m, ~ mg ~ m, 45 ~ 50(2).
From (26), we obtain immediately that

m, 5 = span{[X, 0., L X] + [, X, 0., X]},
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which implies that
m,, 5 = R([X,0/1,X] - []1X,0],X]).

It is now clear that

mi_+ﬁ C D(-I)-(m)'
Since dimDJ (ny) = 1 by Proposition 3.5, it follows that

mi-}-ﬁ = Df (na),
as required. n
Lemma 5.4.  Assume that d € {4,8}. If {Zy, 7y, 73, Z4} is an orthonormal
system in gayp and X is a vector in g, such thal

JiJo Js I X = X, (29)
then

Zig + Z3a = Yia + Yau, Ziz + Zaa = Yiz + Y,
Zia+ Zaz = Yia + Yoz, Zig — Ziza = Xaa — Xuo,
Zhz — Zag = Xag — X3, Zha — Zaz = Xoz — Xua,
Yig — Yau = Xig + Xy, Yiz — Yao = Xz + X,

Yia — Yoz = Xig + Xos.

Notice that when d, = 4, it is always possible to reorder any given ortho-
normal basis of g,4+g in such a way that (29) holds.

Proof.  From (26) and (29) we get
[Z3,074) = [X,0J3.,X] + [J:X,0J,X] = =[X, 0.1 ,X] + [J:X,0J,X].
Summing this formula and (26) we obtain
[Z1,075) 4 [Z5,074) = [1 X, 0, X] + [ X, 01, X],

which gives the first equality enunciated. The others may be proved similarly. =

Proposition 5.5.  Suppose that d, = 4. Then

m = (Mats N Ma) G (Mot N M) S (Ma N M),

and
Motp N My = My NMg = m, Nmg = s50(3).

If {7,,75, 75,74} is an orthonormal basis of go4+p such that JiyJyJs 4, X = X,
then

m, N Myy3 = span{Ziy — Zs4, Z13 — Zaz, Z1a — Zas},
Mg N Myyp = span{ Ziz + Zsa, Z1s + Zaz, Z1a + Za3},

and
m, Nmg = span{ Xy + Xsq, X153+ Xyz, X14 + Xp3}.

Finally, Df (ny) = m, Nmg.
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Proof.  From Proposition 5.3, it follows that m,;1z N m, is a nontrivial ideal
in m, and in m,;3. However, we see from (29) that

[Z12 + Zs4, X] = 0,
which implies that m,43 # m,, by Corollary 2.7. Since
Mytp = 50(4) >~ s50(3) @ s0(3),

it follows that m,15 N m, ~ so(3).
By Lemma 5.4 we have

Zig + Zsa = Y12 + Y,

so that
Zia + Zzg € Myyp N mg.

Since m,13 N mg is an ideal it follows from Proposition 2.4 that
Zis+ L4y € Myt N mg and 4+ 7oz € Mu+p N mg.

Hence,

Mots N Mg = span{Zis + Zsa, Z13 + Zaz, Z1a + Za3}.

The rest of the proposition follows similarly. ]

Proposition 5.6.  Suppose that d, = 8. Then

m=m, = mg = Matp = 50(8).

Proof. By Proposition 5.3, m,13 N m, is a nontrivial ideal in m, and m,4g3.
Since m, =~ 50(8), which is simple, it follows that m,;z N m, = m, and similarly
that m,yp MM, = Myqp. ]

Corollary 5.7.  Suppose that d, = 8. For all pairs (i,j) with i # j, there are
uniquely determined coefficients xi;m and y;;p in R such thal

[Xi,0X;] = Z Tl [Zx, 071), and  [Y;,0Y;] = Z Yijkl [Zrs 077).

1<k<I<8 1<k<I<8

Proof. By Proposition 5.6, m = m, = mg = m,15 = s0(8). Therefore, each of
the sets {[X;,0X;]}, {[Vi,0Y;]} and {[Z;,0Z;]} (where 1 <1 < j <8) are bases
of m. |

Let {Zi,...,Zs} be an orthonormal basis of g,44.
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Lemma 5.8. There is a unit vector X in g, , such that

JiJods Jy X = 1Sy s J6 X = JiJo 7 s X = JiJ3 50 X = X.

PI'OOf. The operators J1J2J3J4, J1J2J5J6, J1J2J7J87 and J1J3J5J7 commute
with each other, are symmetric, and have square equal to the identity, so the
lemma follows. |

We note that JyJyJ3J, X = X if and only if
Z4 - [X, J1J2J3X]. (30)

We are interested in studying the subalgebra g’ generated by X, X, Z,, 07,
Zy, 07,5, 75, 075, Z4 and 07,. The set of vectors

{21, 29, 23, 74, X, 1 X, Jo X, Js X, Ju X, J1 Jo X, J1 Js X, Jy Jo X b

spans a nilpotent Lie algebra n’. This subalgebra of n, endowed with the re-
striction of (-,-), is a generalized Heisenberg algebra. Since there is only one
irreducible generalized Heisenberg algebra with four dimensional centre, up to
equivalence, n' is isomorphic to the irreducible generalized Heisenberg algebra ny.
Since JyJyJ3J4, X = X the commutation relations in g’ take the same form as in
the case d, = 4. Let

M, = Xy + X4, My = X5+ Xy and M; = X144+ Xos.

Lemma 5.9. The vectors My, My and M act trivially on span{Zy, Zy, 73, 74}
and satisfy

My, = X9+ X34 = Yio — Y4 = Zsg — Zsr,
My = Xi3 4+ Xyo = Yis — Yag = Zs7 — Zse, (31)
Ms = X4+ Xo3 = Yy — Yo3 = Zsg — Zrs.

Proof.  Clearly M,, M, and Mj act trivially on span{Z,, Z,, Z3, Z4}. There-
fore, My, M, and Mj lie in the linear span of {Z;; : 5 <i <j <8}, i.e.,

MZ' = Z m; ik ij. (32)

5<j<k<8

Since the representation of 50(8) on R?® is faithful, by using Proposition 2.4 and
Lemma 5.8 to compare the action of (31) and (32) on {Xj,..., X3}, we obtain
(31). ]

6. Construction of the algebras

In this section, for any d in {1,2,4,8}, we build a vector space g, and then we
endow gy with a skew-symmetric product [-,-]. In the next two sections we prove
that (g4, [,-]) is a Lie algebra. Our construction is motivated by the structural
analysis of Sections 2 to 5.
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Suppose that d € {1,2,4,8}, and let 3; denote R? with its standard inner
product (-,-). We fix an orthonormal basis {Z;,...,Z;} of 35 once and for all.
Let C(d) be the Clifford algebra associated to (R%(-,-)). Take an irreducible
module v; of C(d), and denote by J : C(d) — End(v;) the corresponding rep-
resentation. The module v, is naturally endowed with an inner product (-,-)
with respect to which J, is skew-symmetric for all a in C(d). As we observed
in Section 5, for d in {1,2,4,8} the dimension of v, is 2d. By Proposition 3.2,
up to equivalence, there is exactly one irreducible generalized Heisenberg algebra
(ng, [+,], (-, ) with centre 34, where

ng =0 D 34.

Since d € {1,2,4,8}, the module v; splits into the direct orthogonal sum of
two irreducible C*(d)-modules vy and vgy. We know that C*(d) is isomorphic
to C(d — 1), and that the C*(d)-modules vy and v4, are equivalent when d is 1
or 2 and inequivalent when d is 4 or 8. If d is 4 or 8, then we may and shall
assume that ¢ = J;....J; is the identity on vy and minus the identity on vy (as
before we use the notation J; = Jz ). Take X in vy such that || X]| = 1, and
then

{-X, . X, hJ:X,...,1J.X} and {NhX, LX, :X,..., X}
are orthonormal bases of vy and vy respectively. We set
X, =L, X and Y, = JX.
We now build the algebra a@® m. Let a be R? endowed with the canonical
inner product. Then let a* be the space of real linear forms on a with its canonical

inner product denoted by (- | -). We fix two elements o and 8 in a* satisfying
the conditions

(a]|a)=(01]8)=2 and (] B) = —1. (33)
Once we have o, # and o+ 3, we introduce the notation
§=0a4p, Vi1 =0go and Vi =gp,

and call g,, 93, gatp rOOt spaces. We now define the Lie bracket of an element
of a with an element of ny.

Definition 6.1.  For all H in a, we set
[H, X +Y + Z] = o(H)X + B(H)Y + (o + B)(H) Z,

forall X in g,, Y in gg, and 7 in goy5.

It is clear that a acts on ng by derivations. As in Section 2, we associate to «, 3
and a + (3 the vectors H,, Hg, and H,4p in a.
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Definition 6.2. We next set
my(d) = Dy(ng),  mi(d)=Df(ng) and  my=my(d) O mJ(d),

and let the Lie bracket in a & mg, which is an algebra of derivations of ng, be the
ordinary commutator.

Note that the sum in my; = m,(d) & mf (d) is direct, by Proposition 3.3. In
view of Corollary 2.6 and Proposition 3.5, set

m(1) = mf(1) = {0} and  mF(s) = {o}.

We choose now a specific basis of Dg (ng). In doing this, given a linear map
D g, — ga, we will extend it to a map on gg by

D=—J,DJy,

where 7 is any unit vector in j, and then we extend it to be zero on 3.
When d = 2, we set

DX1 = 3X2 and DX2 = —3X1

It is easy to verify that the extended map D on ny, obtained as described above,
is a derivation.
When d = 4, we set
D1 Xy = 2(61, X2 — 621 X1 — 631Xy + 046.X5),
Dy Xy = 2(631, X7 — 615 X5 4 04k Xo — 021.X4),
D3 Xy = 2(615 X4 — 601 Xy + 621 X3 — 631.X5).

Again it is easy to verify that the extensions to ng of these maps are derivations,
still called Dy, D,, and D; respectively.

+

Lemma 6.3. The subalgebras my(d), mg(d) and a are ideals in a @ m,.

We are now in a position to begin the construction of g,. We need two
copies of ng, so we take the Cartesian product

ng x {+,—}.
To simplify notation, we set
gy =ng X {+} and ng_ =ng x{—},

and write
ng X {4, —} = ngy ©ng_.

We also set

Gogp = 3d X {+},  Goa-p =30 X {—},
go = g1 X {+}7 g—o = Vg2 X {_}7
g5 = 041 X {+}, g_p =042 X {-}.

Correspondingly, for V' in ng, we denote by V* the pair (V,4) and by V= the
pair (V,—).
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Definition 6.4. Let

0o =Ny- S (@B my) S ngy,

and let 6 : g5 — g4 be the linear involution defined to be the identity on my,
minus the identity on a, and by

vVt =V- and V- =VT+ VYV € n,.

Clearly 6? is the identity on g,;. Notice also that the image under # of an
orthonormal basis of n; is an orthonormal basis of ng_ .

Definition 6.5. Let a®my act on ngy by the action defined in Definitions 6.1
and 6.2. For all H in a, M in my and W~ in ng_, we set

[H + M, W~ = 0[0H + 6M,0W =] = 0[—H + M, W],

Then a®m, acts by derivations not only on ngy, but also on ng_. We will denote
by g4y and gy— the Lie algebras consisting respectively of the semi-direct product
of ngy and ngo with a @ my.

We observe that when d € {1,2}, since there is only one irreducible C*(d)-
module, the distinction between vy, and vy, is irrelevant in the subsequent con-
struction. When d € {4,8}, the C*(d)-modules vy; and vy are inequivalent and
we are free to identify one of the root spaces {g,,g3} with either of them. But,
after that, in accordance with Proposition 4.5, all the other root spaces are deter-
mined. For instance, we may choose vy as the root space g,, then we have to
take gg isomorphic to vgs, g—, isomorphic to v4, and g_g isomorphic to vy, .

It remains to define the Lie bracket of pairs of vectors lying in root spaces
g, and g_s with v and § in A;. We do this by analogy with the results of
Sections 4 and 5.

Definition 6.6.  Take Z% in go1p5, XT in g,, and YT € gg. We set

(2%, X7 =T, XT, (2T Y] = J,Y T,
Y*,X7]=0, [X7,XT]=|X"|*H,,
Y=Y =Y P Hs  and  [Z7, 77] = Haypll 2",

Suppose also that d € {2,4,8}. For all (i, k) with 1 <i < k < d, we set
[ZF, Z7) = Dy (34)
Further, if d = 2, we impose the conditions
IXTL XS]+ YY) = (X, 0000, X] + [ X, 00,X] = DY,

and

(X5, X1+ V5 Y] = =X, 0001, X] + [ X, 00, X] = D,
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by analogy with Proposition 5.3. These relations define the single Lie brackets
(X, X7] and [V:F,V,7]. If d = 4, we impose the conditions

D?Q_Dg4:[X X ]—[X;',X ],
D?S_DE2Z[X17 3]_[ X5, (35)
D?4 - Dgs = [Xfl-ale_] - [X2+7X3 ],
and
D(IJQ + D34 - D/1+7Yv2_] + [Y:S+7Y:1_]7
Dy + Dy, = [Vi7, Y] + [YF, Y7, (36)
Dy + ng, = YT+ VY
by analogy with Lemma 5.4, and then we set
= [X1+7X2_] + [X;,X;] = [1/1+a1/2_] - [Yé+7Y;1_]7
Dy = [X{F, X7]+ [XT, X7 = [V, Y] = [V, Y, (37)
D3:[X1+aX4_]+[X2+7X3] [Yi+7 _] [Y2 7Y ]

These relations define the single brackets [X:, X;] and [V;",Y,”]. Finally, if
d =8, we define, for 1 # j,

XH X7 = > wyu Dy,
1<k<I<8
and
Vi,V = Yijkt Dy,
J
1<k<I<8

where x;; 1 and y;; . are given by Corollary 5.7. All the remaining brackets are
defined by imposing the condition that

[0U,0V] = 0[U,V] YU,V € ga.

In the last two sections we prove that the skew-symmetric product just
defined really is a Lie bracket. Then, since there is exactly one irreducible gener-
alized Heisenberg algebra with d-dimensional centre, up to equivalence, by Propo-
sition 3.2, the considerations in Section 5 determine the commutation relations
uniquely, proving that for any d in {1,2,4,8}. there is only one real semisimple

Lie algebra with d, = d.

7. An explicit model for g; when d € {1,2,4}

In this section we will prove that the vector space g; endowed with the product
[-,:] is a Lie algebra when d € {1,2,4}, by verifying the Jacobi identity.

We denote by F; the real numbers, the complex numbers and the quater-
nions, when d = 1, d = 2, and d = 4 respectively. We write z = ag+aj1+ayj+azk
with a1, aq,a3,a4 in R for z in F,;, with the understanding that a; = a3 = a3 =0
when d =1 and a; = a3 = 0 when d = 2. Correspondingly, we write ImF; for
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{z €Fy : ap=0}. If 2 € F; we denote by T the conjugate of = and by |z| the
modulus of z, i.e.,

T =ag— ayl —ayj — ask and |z|* = 27 = al + a* + a’ + a.

Let sl(3,F;) be the Lie algebra of 3 x 3 matrices X with entries in [Fy
such that tr X = 0 when d € {1,2} and Retr X = 0 when d = 4. We identify

(g4, [, -],0) with s[(3,F,), endowed with the matrix commutator, written [-, -], and
with the Cartan involution 0, given by
0X = -X7,

for X in sl(3,F,), where X* ="X.

For z, y and z in F;, we set

N(;v,y,z):

o O O
O O R
o

Define
dd = {N(0,0,Z) HEAS ]Fd}7
v = {N(z,0,0) : = € Fy},
Vg2 = {N(ana()) Ty € Fd}a
Ng+ = Vg1 D Va2 D 3a,
Ng— = @nd+.
We define the inner product (-,-) on ng4 by
(N(z,y,2), N(z',y', 2")) = Re(za’ + yy' + 22’
[ — — I— 1— I—
— g(xzv’—l—yy’—l—zz’—l—;v;v—l—yy—l—zz).
It may be easily verified that ng, with this inner product, is a generalized Heisen-
berg algebra and that the operator J is given by
JN(O’O’Z)N(JZ, y,0) = N(—z7,72,0).

For ¢i,q2,q3 in Fy, we denote by diag(qi,q2,q3) the 3 x 3 diagonal matrix with
diagonal entries ¢, g2, g3 in Fy. Then we define a to be the space of real diagonal
3 x 3 matrices of trace zero, and define H,, Hg, and H,1s in a by

H, = diag(1,-1,0), Hz =(0,1,-1) and Hyvp = (1,0,-1).
Next, if d = 2, then we define
m, = {diag(iz,0, —iz): z € R} and md = {diag(iz, —2iz,iz) : v € R}.
If d =4, then we define
m, = {diag(¢1,0,92) : ¢1,¢2 € ImFy} and md = {diag(0,¢,0) : ¢ € ImF,}.

In both cases we put
m=m, &mg.
It is easy to show that the spaces of matrices introduced in this section

may be identified with those introduced in Section 6 and that the commutation
relations are the same. This proves that g, is a Lie algebra (i.e., the Jacobi identity

holds).
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8. The Jacobi identity for (gs, |-, ]s,0s)

Recall from Definition 6.5 that gsy and gs_ are the semi-direct products of ad mg
with ngy and ng_ respectively, hence they are Lie algebras. By linearity, to prove
that gs is a Lie algebra, it therefore suffices to check that

U, [V, W]+ [V.[W,U]]| + [W,[U,V]] =0

(the Jacobi identity) for (U, V, W) in ngy X ng_ X gs.

Suppose that (U, V, W) € ngy xns_ xgs. There are essentially three different
cases which have to be taken into account. The first two, which are equivalent,
are those in which U,V € ng, and W € ng_, or U € ngy and V,W € ng_. The
last case is that in which U € ngy, V € ng_, and W € mg & a. By linearity, in
proving the identity for these cases, we may assume that each of U, V, and W
lies in a root space or in m & a. In what follows, we use the term “root vector” to
indicate an element of U,cag, .

The next results will enable us to avoid direct verification of the Jacobi
identity.

Lemma 8.1.  Suppose that d = 8 and that v is a root in Ay . The vector space

9(r) = 09— © (RH, © ms) © gy,

equipped with [-,-]g, is a real simple Lie algebra of real rank one isomorphic

to s0(1,9).

Proof. Let {Vi,...,Vs} be an orthonormal basis of g,. Then by (3)
H"/ = [0‘/;@7 %],
and further
{Vi,0V;] : 1 <i<j<8}
is a basis of mg acting on g, and g_, by formulae (4) and (5).

Let ¢; be the row vector whose entry in the i*" place is equal to 1 and all
other entries are equal to 0. Define

0 €; 0
E;, = fe; 0 e Vi € {1,...,8}.
0 —e O

Then set

I

Il
—_ o O
oo O
O O =

It is clear that

0 0 0
[EZ',@E]']:Q 0 €5 0 vz,j€{17,8} L#],
0 0 0

where © was introduced in Section 7, and e;; is the matrix with (i,7)®-entry
equal to 1 and (j,7)™ entry equal to —1, and all other entries zero. Then it
may be easily seen that the linear map defined by the conditions that V; — F;,

0V, — OF;, H,— A, and [V;,0V;] — [E;,OF;], is a Lie algebra isomorphism. =
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Lemma 8.2.  Suppose that {7, Z;, Zs, Zs} is orthonormal in g,45 and X is
a unit vector in g, . Suppose further that

Iy Js I, X = X. (38)

The smallest [-,-|s-closed vector subspace of gs containing Zy, Zy, Zs, Z4, X
and X is denoted by g'. This subspace, endowed with the restriction [-,-]" of |-, ]s,
is a Lie algebra isomorphic to g,.

Proof.  Set
gl+[3 = Spa‘n{Zh Z27 Z37 Z4}7
gl =span{X, 1 L X, 1 Js X, 1 J, X},
gl = span{ /i X, [, X, Js X, JuX}
and

nf=glagleg,

It is easy to check that (38) ensures that the subspace n', equipped with the
restrictions of the bracket and of the inner product of gs, is a subalgebra of
the generalized Heisenberg algebra ng,. Since, up to equivalence, there is only
one irreducible generalized Heisenberg algebra with four-dimensional centre, n'
is isomorphic to ny. Hence the construction of Section 6 yields a Lie algebra g
isomorphic to g4, by the results of Section 7. We prove that g' is a subalgebra
of gg. We observe that for U,V in g' the definitions of the brackets [U, V] and
[U,V]s are the same with the exception of those brackets which are defined in g4
by (37). However, from Lemma 5.9 we see that [X;, 0X,]s + [ X3, 0X4]s acts on al
in exactly the same way as [X;,0X;]4 + [X3,0X4]s. Since the action of m, on g,
is faithful by Lemma 8.1 and Corollary 2.7, this ensures that

[X1,0X2]a + [X5,0X4]a = [X1,0X2]s + [ X5, 0X4]s,

where [, -]4 stands for the Lie bracket in g4 and [-, ] stands for the bracket of gs.
Similarly we deduce that

(X1, 0X3]4 + [ X2, 0X4]a = [ X0, 0X5]s + [ X2, 0X4]s
[(X1,0X4]a + [ X2, 0X5]a = [X1,0X4]s + [ X2, 0X5]s,

as required. ]

Proposition 8.3. Take root vectors U,V in ngy and a root vector W in ng_.
There exists a subspace of gs containing U, V,W which, equipped with |-,-]s, is a
Lie algebra isomorphic to g, .

Proof. Given any triple of root vectors in ngy xngy xns_ we will use Lemma 5.8
to see that there exist an orthonormal system {7y, Z,, Z5, Z4} in g,45 and a unit
vector X in g, such that U, V, and W lie in the span of {Z;, 7y, 73, 74},
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{=X, 1 ,X, i J: X, 1 L X}, {h X, ], X, J:X, J, X}, and of the vectors obtained
acting on these by means of 4.

Take U and V in ngy and W in ng_. We assume without loss of generality
that they are unit vectors. There are essentially six different cases to consider.

Case 1. Suppose that U,V € go4p and that W € g_,_5. Consider an
orthonormal system {71, Z,, Z3} in g,4p such that

U = Zl, V = U1Z1 + U2Z2 and GW = w1Z1 + w222 + UJ3Z37

where vy, va, wy, we, w3 € R. We fix a unit vector X in g,, and define Z; by (30).
Case 2. Suppose that U,V € g, and that W € g_,. There is an
orthonormal system {7y, Z,, Z3} in g,4p such that, writing X for U,

V = U1X + U2J1J2X and HW = U)1X + wngJgX + w3J1J3X,

where vy, vy, w1, wq, w3 € R. We define Z4 by (30).
Case 3. Suppose that U € go1p5, V € 9o, and W € g_,_3. There exist
orthonormal vectors 7Z; and Z; in g,4p such that

U - Zl 'dIld 0W = 'LU1Z1 + 'LUQZQ,

where wy,w; € R. Setting V = X, we take any unit vector Z3 in g,45 orthogonal
to Z; and Z,, and we define Z; by (30).

Case 4. Suppose that U € go4p, V € gy and W € g_,. There exist
orthonormal vectors 7Z; and Z; in g,4p such that, setting V = X, then

U=27 and OW = w X + wy 1 /o X,

where wy,wy € R. We take any unit vector Zs in g,4p orthogonal to Z; and Z,,
and we define Z4 by (30).

Case 5. Suppose that U € g,, V € gg, and W € g_,. There exist two
orthonormal vectors 7Z; and Z; in g,4p such that, if we set U = X, then

V=J,X and OW = w1 X 4+ wy 12 X,

where wy,w; € R. We take any unit vector Zs in g,4+5 orthogonal to Z; and Z;,
and we define Z; by (30).

Case 6. Suppose that U € goyp, V € g, and W € g_,. Setting U = 7,
there exists a unit vector Zy orthogonal to Z; and a unit vector X in g, such
that

V=JX and W = w0X 4+ wy0J,.J, X,

where wy,w, € R. We take any unit vector Z3 in g,45 orthogonal to Z; and 7,
and we define Z; by (30).

Since in any case JiJyJ3J, X = X by Lemma 5.8, the proposition follows
from Lemma 8.2. [ |

Proposition 8.4.  Suppose that U is a root vector in ngy, V is a root veclor
in ng_, and L € a or L. = D?j. Then there exists a subspace of gg containing
U,V, L which is isomorphic to g4.
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Proof.  The case where L € a is easy. Indeed, take a unit vector Z in g,43.
As in the proof of Proposition 8.3, we find a linear subspace of gg which, endowed
with the bracket inherited from gg, is a Lie algebra isomorphic to g4. Now, this
algebra, being of real rank two, contains a, and hence also L.

When L € mg, we may assume that L is equal to D{,. Therefore, there
are two orthonormal vectors Z; and Z, in g,4p such that

L == [Zl,HZQ].

There are essentially three different cases.

Case 1. Suppose that U € g,45 and that V € g_,_3. The orthonormal
system {7, Z,} may be extended to an orthonormal system {7, Z,, Z3, Z,} such
that

U = UIZI + UQZQ + U3Z3 and V = 'UIGZI + UQHZQ + U3023 + U4HZ4,

where uy, ug, us, vy, vz, v3,v4 € R. Now, since (JyJ2J3.J4)* = I, we may assume
that JyJyJ3J4 has a unit eigenvector X in g, with eigenvalue 1.

Case 2. Suppose that U € g, and that V € g_,. There is an orthonormal
system {Z1,Z3,Z3} in ga4p extending {7, Z5}, such that, setting U = X,

V = ’Ung + U20J1J2X + U30J1J3X,

where vy, vy, v3 € R. We define Z; by (30).
Case 3. Suppose that U € gua4p and that V € g_,. There is an
orthonormal system {7, 75, Z5} in g,4p extending {Z;, Z,}, such that, taking

X =0V,
U=uwuZy+ usZy + usZs,
where uy,uy, us € R. We define Z, by (30).
Since JyJyJ3J4 X = X in all cases, the result follows from Lemma 8.2. m

Theorem 8.5. The vector space gg endowed with the bracket [-,-]s defined in
Section 6, is a simple real Lie algebra.

Proof.  The Jacobi identity holds in gg by the results above.

We prove that gg is simple. Suppose that f is a nontrivial ideal in gg, and
let U be a nonzero vector in fj. Take Z in g,4g. Since ad 7 is nilpotent, there
exists a nonnegative integer & such that

(ad Z)*"*'U =0  and V= (ad 2)*U #£ 0.

Then V € hNng, since [Z,V] = 0. Write V as X +Y + 7', where X € g,,
Y €gg,and Z' € goq3. Then

[H, V] =2X -Y+72'€h, [HsV]=-X+2Y+7 €}

and

[Hots,V]=X+Y 427 €.
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From these relations it follows easily that X, Y, Z’ € ). Assume that X # 0. Since
the representation of m on g, is irreducible, it follows that g, C . Therefore we
deduce from Corollary 4.2 that all root spaces are contained in §, from which it
follows that h = gs.

Finally, denoting by B the Killing form of gs, it is easy to verify that

as required. ]
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