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Poisson liftings of holomorphic automorphic
forms on semisimple Lie groups
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Abstract. Let G be a semisimple Lie group of Hermitian type, K C G
a maximal compact subgroup, and P C G a minimal parabolic subgroup as-
sociated to K. If ¢ is a finite-dimensional representation of K in a complex
vector space, it determines the associated homogeneous vector bundles on the
homogeneous manifolds G/P and G/K. The Poisson transform associates to
each section of the bundle over G/P a section of the bundle over G/K, and
it generalizes the classical Poisson integral. Given a discrete subgroup T' of G,
we prove that the image of a T'-invariant section of the bundle over G/P under
the Poisson transform is a holomorphic automorphic form on G/K for T'. We
also discuss the special case of symplectic groups in connection with holomorphic
forms on families of abelian varieties.

1. Introduction

In classical harmonic function theory, it is well-known that the Poisson integral of
a complex-valued integrable function defined on a unit circle in the complex plane
determines a harmonic function on the corresponding unit disk. The purpose of
this paper is to discuss the Lie-theoretic analogue of the Poisson integral that
transforms sections of a certain vector bundle to holomorphic automorphic forms
on a semisimple Lie group of Hermitian type.

Let S be the unit circle in the complex plane C given by S = {e
—m < 0§ < w}, and let L'(S) denote the space of complex-valued integrable
functions on S. Let f € L'(S), and set ]?(9) = f(e") for —7 < 0 < 7.
Then the classical Poisson integral Pf of f is a function defined on the unit

disk U = {z € C| |z| < 1} given by

i6|

P S 1 —r? ~
Pre =5 [ e O 0

for 0 <r <1 and ¢ € R, and it is known that Pf is a harmonic function (see
e.g. [8]). If we use the normalized measure ds for S, then the expression in (1)
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can now be written in the form
1 —|z|?
P = _—
P = [

f(s)ds (2)

for all z € U. We can interpret (2) in terms of Lie groups as follows. Let Gy be
the Lie group SU(1,1) which can be written in the form

a b
w={(; )
Then Gy acts on the unit disk U by
(a b> az +b
- _]rz==
b a bz +a

2) € Go. We consider the subgroups Ag, Ko, My and Ny of

a
b T

a,be C, |a|2—|b|2=1}.

for z € U and (
Gy given by

cosht sinht - e? 0
Ao = {(Sinht Cosht> ‘tER}’ AO_{(O e_M) ‘ GER}’
Mo:{<6 0) 52:1}, Noz{(“.“” _”f"> xER}.
0 ¢ 1T 1 -z

Then the unit circle S and the unit disk U can be identified with the quotient
spaces

S == GQ/[/((), U = GO/MOAONO

(cf. [2, Chapter I]), and therefore we see that the Poisson integral associates a
harmonic function on U to each integrable function on 5. Such an interpretation
of the Poisson integral suggests the possibility of extending (2) to the case of a
more general semisimple Lie group.

Let G be a semisimple Lie group of Hermitian type, and let o be a finite-
dimensional representation of a maximal compact subgroup K of GG in a complex
vector space. Let g and € be the Lie algebras of G and K, respectively, and let
p be the orthogonal complement of € in g relative to the Killing form. Let P be
a minimal parabolic subgroup of G, and let a be a maximal abelian subgroup of
p. If ac denotes the complexification of a maximal abelian subspace a of p and
if A € ap, then o can be extended to a representation opy of P. Thus we can
consider the homogeneous vector bundle W(op,) (resp. V(o)) over G/P (resp.
(/K') associated to the representation op, (resp. o). Now as the analogue of
the classical Poisson integral we can consider the Poisson transform P, p which
assigns to each section ¢ of W(op,) a section of V(o) (see Section 4 for details;
see also [2, §11.3.4], [5], [11]).

Let ' be a discrete subgroup of GG that acts on the Riemannian symmetric
space GG/K properly discontinuously without fixed points. Then we can discuss
holomorphic automorphic forms on G/ K for T' associated to an automorphy factor
of T'. In this paper, we show that the I'-invariant sections of W(op,) are liftings
of such automorphic forms. More precisely, we prove that the Poisson transform
Prp¢ of a I'-invariant section ¢ of W(op,) is a holomorphic automorphic form
on G/K for I' with respect to the canonical automorphy factor of GG associated
to 0. As an application we show that for symplectic groups such liftings can be
regarded as liftings of some holomorphic forms on a family of abelian varieties.
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2. Automorphic forms

In this section we discuss holomorphic automorphic forms on semisimple Lie groups
of Hermitian type and their interpretation in terms of sections of certain vector
bundles over locally symmetric spaces. We also describe canonical automorphy
factors associated to semisimple Lie groups of Hermitian type.

Let G be a connected semisimple Lie group Hermitian type, and let K be
a maximal compact subgroup of GG. Thus the associated Riemannian symmetric
space D = G/ K is a Hermitian symmetric domain that has a G-invariant complex
structure, and it can be realized as a bounded domain in C* with kdimg D.
Let W be a finite-dimensional complex vector space, and let GL(W) denote the
group of all invertible endomorphism of W. If G’ is a subgroup of G, a map
J:G'"'x D — GLW) is called an automorphy factor of G' if it satisfies the
following conditions:

(i) For fixed g € G', the map z — j(g,2), D — GL(W) is holomorphic.

(i) For all ¢1,¢92 € G' and z € D, we have

j(919272) :j(glag'z?«’) 'j(92,2) (3)

Let I' be a torsion-free discrete subgroup of G. Then the complex structure
on D induces the structure of a complex manifold on the locally symmetric space
X =T\D, and we can define automorphic forms on D as follows (cf. [1]).

Definition 2.1.  Let j : I' x D — GL(W) be an automorphy factor of T.
A holomorphic automorphic form on D of type 7 for T' is a holomorphic map
f: D — W that satisfies

f(vz) =3(v,2) - f(2) (4)

forall z€ D and v €T.

Given an automorphy factor j : I' x D — GL(W), we can construct an
associated vector bundle on the locally symmetric space X = I'\D as follows. Let
the discrete subgroup I' of G act on D x W by

v (Z’w> = (FVZ’j(F)/’Z)w)

for all ¥y € I' and (z,w) € D x W. The fact that this operation indeed defines an
action of I' on D x W follows from the condition (3). We set

AT, j) =T\D x W,

where the quotient is taken with respect to the above action of I' on D x W. Then
the natural projection D — T\ D induces the structure of a holomorphic vector
bundle on the induced map

w: A(lj) = X =T\D

with fiber W. Let T'o(X,A(l',7)) denote the space of holomorphic sections of
A(T',j) over X, that is, holomorphic maps s : X — A(T', 7) such that wos = 1x.
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Lemma 2.2.  Let j: ' x D — GL(W) be an automorphy factor. Then each
element of T'o(X, A(L', 7)) can be identified with an automorphic form on D of

type 3 for T'.
Proof.  See for example [6]. [ ]

We shall now describe the construction of the canonical automorphy factor
of G. Let I be a G-invariant complex structure on D = G/ K. Then it determines
a complex structure I, on the tangent space T,(D) for each z € D. Let g and & be
the Lie algebras of G and K, respectively, and let g = €+ p be the corresponding
Cartan decomposition of g. If zy is the point in D with Kzy = zg, then we can
identify p with the tangent space T, (D). Thus we obtain a complex structure
I, on p. We set

Pt = {X € pc | [zo(X) = iZX}J
and denote by P, P_ the C-subgroups of G¢ corresponding to p4, p_, respec-
tively; here (-)¢ denotes the complexification. Then we have

P, NKcP- ={1}, GCP,KcP., GNKcP.=K

(cf. [9, Lemma I1.4.2], [6]). If ¢ € PyKcP- C Gg¢, we denote by (¢)y € Py,
(9)o € K¢ and (g)- € P_ the components of g such that

9=1(9)+"(9)o-(9)--

Let (Gg X p4)s« denote the subset of G x pi consisting of elements (g,z) such
that ¢g-expz € PL K¢P-, and set

J(g,z) = (g-expz)y € K.

for (g,z) € (G x p4).. If we identify the Hermitian symmetric domain D with a
subset of py using the Harish-Chandra embedding D < p; (cf. [9, §I1.4]), then
we have

G x D C(Ge X pg)s
Thus we obtain a map J : G x D — K¢ which satisfies the condition

J(g192,2) = J(g1,922) - J(g2,2) (5)

for g19 € Gand z € D. Let 0 : K — G L(W) be a representation of K in W, and
extend it to a representation of K¢. From (5) we see that ooJ : Gx D — GL(W)
is an automorphy factor.

Definition 2.3.  The automorphy factor J, = coJ : G x D — GL(W) is

called the canonical automorphy factor of G associated to o.

3. Homogeneous vector bundles

Let GG be a Lie group, and let H be a closed subgroup of G'. Let G/H denote the
set {gH | g € G} of left cosets modulo H, and let p: G — G/H be the natural
projection p(g) = gH. Then GG/H has a unique manifold structure such that p is
smooth and for each gH € G/H there is a neighborhood U of gH and a smooth
map p : U — G such that pop = idy. The quotient space G/H with such a
manifold structure is called a homogeneous manifold.
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Definition 3.1. Let M = GG/H be a homogeneous manifold. A vector bundle
E over M is called a homogeneous vector bundle if G acts on F on the left and
the G-action satisfies the following conditions:

(i) If E, denotes the fiber of £ over z € M, then ¢g- E, = E,, for all
x€ M and g € (.

(ii) The map E, — E,. induced by ¢ is linear for all x € M and g € G.

We shall now construct a homogeneous vector bundle associated to a rep-
resentation of H. Let M = G/H be a homogeneous manifold, and let 7 be a
representation of H in a finite-dimensional complex vector space V. Then H acts
on the product G x V' on the right by

(g,v) - h = (gh,7(h)™'v) (6)
for all g,¢' € G and v € V. We set
V=GxV/H,

where the quotient is taken with respect to the action of H on G x V' given by
(6). The natural projection G x V' — G induces the map 7 : V — M which has
the structure of a vector bundle with fiber V' (cf. [10]). It can be shown that V is

a homogeneous vector bundle over M. Let T'y(M,V) be the space of sections of
V', that is, smooth maps s : M — V such that mos = 1,,.

Lemma 3.2. A section s € To(M,V) of V can be identified with a smooth
function f:G —V on G satlisfying

f(gh) = 7(h)™" f(9)
Jor all (g,v) € GxV and h € H.

Proof.  See for example [10]. [ |

4. Poisson transforms

Let G, K, g, € and p be as in Section 2 with g = €+ p, and let a be a maximal
abelian subspace of p. Then we obtain the Iwasawa decomposition

g=t+a+n

of g, where n is a nilpotent subalgebra of g (see e.g. [3, §V.2]). Let A and N be
subgroups of G corresponding to the Lie algebras a and n, respectively, so that
we obtain the Iwasawa decomposition G = KAN of G. Let M be the centralizer
of Ain K, and set P = MAN, which is a minimal parabolic subgroup of G'. We
shall write any element g € G in the form g = k(g) - €9 . n with k(g) € K,
H(g) €aand n € N.

Let o be an irreducible representation of K in a finite-dimensional complex
vector space W. Given an element A € af we define the representation oy p of P

in W by

(=2+p)H (a)

o(m) (7)

U/\’p(man) =€
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forall me M, a € A and n € N, where p is the half-sum of dim(g,)a over the
positive roots a of (g,a).
Let V(o) (resp. W(o,p)) be the homogeneous vector bundle on G/K
(resp. G/ P) associated to the representations o and o) p, respectively. Using
Lemma 3.2 and (7), we see that each section ¢ € T'o(G/P,W(o,p)) of the bundle
W(oy p) can be regarded as a function ¢ : G — W satisfying
¢(gman) = o5 p(man) ™ ¢(g) = e Wg(m) " g(g) (8)
for ge G, me M, ac Aand n € N. Similarly, a section ¢ € Ty(G/K,V(0))
of V(o) can be identified with a function ¢ : G — W such that
v(gk) = o (k)™ (g) (9)

for all £k € K and ¢ € GG. We now define the Poisson transform which may be
regarded as the Lie-theoretic analogue of the classical Poisson integral (cf. [7], [2,

§11.3.4], [5]).

Definition 4.1.  Let ¢ be an element of I'y(G/P,W(o, p)), that is, a smooth
function ¢ : G — W satisfying (8). The Poisson transform Py p¢p of ¢ is a
W -valued function on G given by

(Prrd)lg) = [ olb)otgb)k (10

K

forall g € G

Lemma 4.2.  Let [ is a continuous function on K that is right invariant under

KN M. Then we have
F(k)dk = / e=2H G (g k) dk
K K
for g e G.

Proof.  See for example [3, p. 170]. [ |

Lemma 4.3.  The Poisson transform Py p¢ of an element ¢ € To(G /P, W(o\ p))
can be writlen in the form

(Prrd)g) = [ I (g 1)) (1)

K

for all g € G.
Proof. If m € KN M, then by 8 we have

a(km)¢(gkm) = o(k)o(m)o(m)™ é(g)

for g € G and k € K. Hence, applying Lemma 4.2 to the function k& — o(k)¢(gk),

we obtain

/F o(k)(gk)dk = /I e 21 o (g™ k) p(gr(g™" k) dk



LEE AND MYUNG 87

for g € G. Let g7'k = k(g7 'k) - ay - ny with a; € A and ny € N. Then we have
gr(g™'k) = knT'aT" = ka7'n/

for some n' € N. Hence we see that

d(gr(g™ k) = d(kaT'n’) = eP=PHET) (k)
= e_(/\_p)H(“l)(ﬁ(k) = e—(/\—p)H(g‘lk)q')(k)_

Thus we have

/ o(k)p(gk)dk = / e TR o (g k) )em AT b ) dke
K K

/ e OO o (55" ) ) (k) dE,
K

and the lemma follows. ]

Let T' be a torsion-free discrete subgroup of GG as in Section 2, and consider

the left-action of ' on G x W defined by

7 (9, w) = (vg,w) (12)

for vy € T and (g,w) € G x W. Since this action commutes with the action given
by (6) for 7 = ¢ and V = W that was used for the construction of a homogeneous
vector bundle, the homogeneous vector bundle V(o) - D = (/K associated
to o induces the vector bundle V(T',o) = I'\V(o) over the locally symmetric
space X = I'\D =T'\G/K with fiber W. Similarly, we obtain the vector bundle
W(T,0:p) = T\W(ox,p) over the space T'\(G/P whose fiber is again W. Thus
each section ¢ € To(I'\G/P,W(I',0:p)) of W(I',o,p) is a I'-invariant section of
W(T,0:p), and it can be identified with a smooth function ¢ : G — W on G
satisfying (8) and

d(vg) = #(g) (13)

for all v € T and g € (G. In the same way, a section of V(I', o) can be regarded
as a smooth function ¢ : G — W satisfying (9) and ¢(vg) = ¢¥(g) for v € I' and
g €.

Lemma 4.4. Lel J, : G x D — GL(W) be the canonical automorphy factor
given in Definition 2.3, and let zy € D = G/K be the point with Kzy = zy. Then
the map [(g,w)] — [(gzo0,w)] determines a canonical isomorphism of the vector
bundles

V(Io)=T\GxW/K = AT, J,) =T\D x W.

Proof.  See [6, Theorem I11.4.1]. u

Now we state our main theorem in this paper, which implies that each
section of the homogeneous vector bundle W(T', o, p) can be regarded as a lifting,
via the Poisson transform map P, p, of a holomorphic automorphic form on D
for I of type .J,, the canonical automorphy factor of G associated to o.
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Theorem 4.5.  Lel ¢ be an element of To(I'\G/P,W(T',0, p)) considered as
a W-valued smooth function on G satisfying (8) and (13), and let J, be the
canonical automorphy factor associated to o described in Definition 2.3. Then the
Poisson transform Py pd of ¢ is a holomorphic aulomorphic form on D of lype

J, for I'.

Proof.  Let ¢ be an element of I'o(I'\G/P,W(I',0:p)). Using Lemma 4.3, for
each g € G and ky € K we obtain

(’P)\’P¢)<gk1>:/ 6_()\+p)H((gkl)_lk)0’<KJ((gk‘l)_lk))qb(k)dk‘
K
— / e~ OHAHGET 970 o (o (kT g™ k) ) (k) d:
.
= [ T (™ k)
K

=o(k7")- [ e TG R o (o (g7 k) (k) dke

K

= o(k1)™" - (Prrd)(9),

which implies that P, p¢ is a smooth section of V(o). Since the function g —
e_(A""’)H(g_l)a(/i(g_l)) is analytic and K is compact, using (11), we see that Py p¢
is also analytic. Furthermore, since D is assumed to have a G-invariant complex
structure, it follows that P, p¢ is in fact a holomorphic section of the bundle V(o).
On the other hand, using (10), we obtain

-

(Prrd)ng) = [ ab)olrgh)dh = (Prrs))
x
forall vy € I' and g € GG. Therefore P, p¢ 1s I'-invariant, and hence it follows that
Pa.p¢ is an element of T'o(X, V(T',0)). Now the theorem follows by using this and
the canonical isomorphism described in Lemma 4.4. ]

5. Symplectic groups

It is well-known that an arithmetic quotient of a Siegel upper half space can be
considered as the parameter space of a family of polarized abelian varieties. In this
section we show that sections of a certain vector bundle associated to a symplectic
group can be regarded as liftings of some holomorphic forms on such a family of
abelian varieties.

Throughout this section, let Gy be the symplectic group Sp(n,R), and
let Ky be a maximal compact subgroup of Gy. Then the associated Hermitian
symmetric domain G/ Ky can be identified with the Siegel upper half space H,, of
degree n. Let T'y be a torsion-free subgroup of Sp(n,Z) of finite index. Consider
the semidirect product I'y x (Z" x Z")™ whose multiplication operation is given

by

(ga (ula Ul)a Tty (uma vm)) ) (gla (ulla U;)a R (u;m U;n))
= (94, (ur,01)g" + (i, 01), - s (U 0m) g + (U, 7))
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for all g,¢' € Ty C Sp(n,R) and (uj,v;) € Z" x Z™ for 1 < j < m. Then it acts
on the space H,, x C™" by

((gcbl)v(ulvvl)v"' 7(um7vm)) ’ (%Cla--- 7Cm)
= ((az +b)(cz +d)™", (wz + v + G)(ez + )7, ..
o (Umz 4 v+ Cn)(cz +d)7Y)

forall ¢;,...,(n €C*, 2z € H,, (25) €Ty, and (uj,v;) € Z"XZ" for 1 < j < m.
We denote by Y the associated quotient space, that is,

Y =To % (Z" x Z")™\H, x C™™. (14)

Then the natural projection H, x C™ — H, induces a map m : Y7" — Xy =
I'o\H,, which gives YJ" the structure of a fiber bundle over X, whose fiber is

isomorphic to the complex torus

(Z" x ™)™\ C™" = (Z x Z\O)™".
By (14) a holomorphic differential form on Y;* can be regarded as a holomorphic
form on H, x C™" that is invariant under the action of I'y x (Z" x Z")™.

Given a nonnegative integer k., a holomorphic function f : H, — C is a
Siegel modular form of weight k for Ty if it satisfies

f((az +b)(cz +d)™") = (cz + d)* (=)
for all (2%) € Ty C Sp(n,R). We shall denote by My(Ty) the space of Siegel
cd g

modular forms of weight & for Ty.

Proposition 5.1. Let n > 2 and (n) = n(n + 1)/2. There is a canonical
isomorphism between the space My, 1ny1(To) of Siegel modular forms for Ty of
weight m+n+1 and the space HO(YJ", QM+ of holomorphic forms on YJ* of
degree <n> + mn.

Proof.  The proof can be sketched as follows. Let
Z:(Zla"'az(n)>a C:(ClaaCm>

with ¢; = ( ]-1, .., (F) for 1 < 5 < 'm be the canonical coordinate systems for H,,,
Cm™ | respectively. Let [ be a Siegel modular form of weight m +n + 1 for T'g,

and define the associated holomorphic form ®; on H, x C™" by
Qs(z,0) = fz)dz NdG A -+ NdC,

where dz = dzy A\ -+ N dzy and d(; :dg}/\---/\q for 1 €7 <m. Then it can
be shown that @ is invariant under the action of T'g x (Z" x Z")™, and therefore
®; is a holomorphic form on Yj™ of degree (n) + mn. On the other hand, given
a (Lo X (Z™ x Z™)™)-invariant holomorphic form

®(z,0) = h(z,O)dz AdG A -+ A dé

on H, x C™ of degree (n) + mn, it can be shown that h(z,() is a function of z
only and that it is a Siegel modular form for T'g of degree m 4+ n + 1 (see e.g. the
arguments in the proof of [4, Theorem 4.2]). Thus the map f +— ®; determines
the desired isomorphism. ]
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Let Go = KogAqNy be the Iwasawa decomposition of GGy described in Section
4, and let Py = MyAoNy be the corresponding minimal parabolic subgroup of Gy,

where M, is the centralizer of Ay in Ky. Let oy : Ky — GL;(C) = C* be the
complex one-dimensional representation of Ky given by

oo(k) = det(k)m"'n"'l
for all k € Ky. Let Ay be an element of (ag)5 with ag = Lie Ay, and let
,P/\O,Po : FO(FO\GO/POa W<FOa (UO)AO,P())) — F0<F0\Hn, V(FO, 0'0))

be the associated Poisson transform.

Theorem 5.2.  Let ¢ be an element of To(To\Go/Po, W(To, (00)ae.p,))- Then
the Poisson transform Py, p,¢ of ¢ is a Siegel modular form of weight m +n +1
for Ty, and therefore by Proposition 5.1 it can be identified with a holomorphic
form of degree (n)+mn on the family YJ* of abelian varieties parametrized by the
Siegel modular variety Xo = Uo\H, .

Proof. By Theorem 4.5 the Poisson transform Py, p ¢ of ¢ is a holomorphic
automorphic form on H, of type o¢ o Jy for 'y, where Jy : Go x H, — Ky
is the canonical automorphy factor of Gy. However, for the symplectic group
Go = Sp(n,R) the canonical automorphy factor is given by

Jo(g,z) =cz+d

for g=(2%) € Gy and z € H, (cf. [9]). Thus we have

(Pro,r@)(72) = 00(Jo(7,2))(Prg,p,®)(2)
= det(cz + )" (P, 0)(2)

for all v € I'y and z € H,,, and hence Py, p,¢ is a Siegel modular form for I'y of
weight m + n + 1. Thus the theorem follows from this and Proposition 5.1. ]
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