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Noncompact, almost simple groups operating on
locally compact, connected translation planes
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Abstract. Let E be a locally compact, connected translation plane. The
aim of this paper is a detailed investigation of noncompact, connected, almost
simple subgroups of the point stabilizer Gy of E. It turns out that the only
possible groups A of this kind are 2—fold covering groups of PSO,,(R, 1) for
3 < m < 10. Moreover, the nontrivial central element of A is the reflection
at 0. Furthermore, we will show the existence of an orbit S (called the weight
sphere of A) homeomorphic to an (m — 2)-sphere on which the action of A is
equivalent to the natural action of PSO,,(R, 1) on S,,_2. This weight sphere S
is characterized as the set of those lines in £y whose stabilizer in A is a minimal
parabolic subgroup of A.

As a by—product we prove that a semisimple subgroup of Gy always has
real rank 0 or 1.

1. Introduction

Locally Compact, Connected Translation Planes. A projective plane is
called topological if its point space and its line space are endowed with Hausdorff
topologies such that the operations of joining points and intersecting lines are
continuous. As in the theory of topological groups one obtains the nicest results
under the additional assumption that these topologies are locally compact and
connected. Examples are the projective planes over R, C, H (quaternions) and O
(octonions), the so-called “classical planes”. For a detailed introduction we refer
the reader to [10].

We are mainly interested in a special kind of locally compact, connected
projective planes: Translation planes are distinguished by the existence of a line
Lo such that the automorphisms fixing exactly the points on L, form a group
which is transitive on the set of points outside L.,. This group is called the
translation group with translation axis L.,. The point space of a locally compact,
connected translation plane is a manifold of dimension n € {2, 4, 8, 16}; more-
over, the projective lines (regarded as subspaces of the point set) are spheres of
dimension [ = n/2 (cf. [10, 64.1]). In the sequel we refer to n as the dimension of
the plane.
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For a non—classical locally compact, connected translation plane one knows
that every (continuous) automorphism leaves the translation axis L., invariant
([10, 64.4(c)]). Therefore, we can pass to the corresponding affine plane without
losing automorphisms. The advantage of this procedure is a linearization: The
afline point space P is in a natural way a right vector space of even dimension
over the kernel K of a coordinatizing quasifield and, moreover, K is a topological
field isomorphic to R, C or H ([10, 42.6]). The translation group coincides with the
group of vector translations = — x4 v of P. The line pencil Lo = {L € L]0 € L}
(where £ denotes the set of affine lines) consists of vector subspaces of P of
dimension (dimg P)/2. The other lines are exactly the affine cosets of the elements
of Ly. Tt follows immediately that a locally compact, connected translation plane
of dimension 2 is isomorphic to the real plane.

The group G of all (continuous) automorphisms of (P, L) is a Lie group
with respect to the compact-open topology ([10, 44.6]). Clearly, G is a semidirect
product of the stabilizer Gy of the origin 0 and the translation group. All
elements of Gy are semilinear maps of the K—vector space P. The kernel K is
encoded in Gy: The normal subgroup Gy 1] (consisting of all those elements
of Gy which leave the translation axis pointwise fixed) is precisely the group
{z — za|a € K, a # 0}. The connected component of Gy is an almost direct
product of the connected component of the so—called reduced stabilizer '

SGo = {7 € Go | v is K-linear and detgy =1}

and the connected component of Gy 1, ], see the considerations in [10, 81c].

oo] )
Remark 1.1.  According to [10, 42.6], the group Gy .. is isomorphic to R*,
C* or H* = Rpos x SpingR. We conclude that a noncompact, connected, almost
simple subgroup of Gy is contained in the reduced stabilizer SGy .

We shall interpret a locally compact, connected affine translation plane
E = (P,£) as follows: Since K can be considered as a real vector space, P is
a real vector space, too. The set Ly consists of vector subspaces of dimension
[ = (dim P)/2. Tt is easy to see that £, has to be a spread, i.e. £y covers P and
any two distinct elements K, L € Ly satisfy P = K & L. The topology of Ly as a
subspace of £ and the topology of Ly as a subspace of the Grassmannian manifold
((P) of all [-dimensional vector subspaces of P coincide ([10, 64.4 (a)])®. The
reduced stabilizer SGq is a closed subgroup of SL(P) ([10, 44.6]).

The results given in this paper rest on a deep theorem due to Hahl which
describes the structure of closed subgroups of 5Gy fixing two different lines in Ly,

see [10, 81.8]:

Theorem 1.2. Let I' < SGy be a closed, connected subgroup which fives lwo
distinct lines W, S € Ly. Consider the normal subgroup

K ={y eT'||det(y|w)| = [det(~]s)[ = 1},

If K = H, then the plane is isomorphic to the classical plane over H ([2, Thm.1]); in this
case the determinant dety v is understood to be the real determinant of 4 and hence the reduced
stabilizer equals SLsH in its usual operation on the affine quaternion plane.

2Conversely, if § C 4(P) is a compact spread, then S defines a locally compact, connected
translation plane ([10, 64.4(d)]).
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where det denotes the real determinant.

Then K is the largest compact subgroup of T'. If T' is not compact, then T’
is a direct product ' = K xY of K and a closed one—dimensional subgroup Y
isomorphic to R. We observe that K is connected.

Moreover, for any closed one—dimensional subgroup Y isomorphic to R,
there ts an isomorphism p : R — Y having the following property: For t — —oo,
the maps p(t) converge to the constant map Lo \ {S} — {W} uniformly on each
compact subset of Lo\ {S}. For t — oo, an analogous convergence property holds
with the roles of W and S interchanged.

Remark. (a) Let T' <SGy as above. Then a closed one-dimensional subgroup
Y < T isomorphic to R will be called a compression subgroup of T'.

(b) If Y < T is a compression subgroup, then for every isomorphism
p: R —Y we have either

7}im p(t)(L) =W and tlim p(t)(L) = S for all L € Lo\ {W, S}, or
— 00 ——00

lim p(¢)(L) = S and lim p(t)(L) = W for all L € Lo\ {W, S}.

t—o00 t——00

Notation. Throughout this paper, let E = (P, L) be a locally compact, con-
nected affine translation plane of dimension n = 2/ (where [ € {1, 2, 4, 8}) with
reduced stabilizer SGy .

For a Lie group G, we denote its neutral element by e. Moreover, G° is
the connected component of e in G and T.G is the Lie algebra of G. If h < T.G
is a subalgebra, then we write exp h for the connected Lie subgroup of G with Lie
algebra .

If V' is a real vector space of finite dimension, then GL(V') will denote the
Lie group of invertible linear maps of V. As usual, SL(V) is the group of linear
maps of V' with determinant 1. Notice that the Lie algebra gl(V) of GL(V)
consists of all linear maps of V. The Lie algebra sl(V') of SL(V) consists of all
linear maps with vanishing trace.

A diagonal matrix with diagonal entries &, ..., &, will be abbreviated by
diag (&1, ..., &)-

2. Results

The aim of this and two subsequent papers® is to investigate the structure of a

noncompact, connected subgroup A of the reduced stabilizer of a locally compact,
connected translation plane. The first step in this direction deals with almost
simple groups and shows that the possibilities are very restricted in this case:

Theorem A.  Consider a connected, almost simple subgroup A of Gy. Lel
U # {0} be a A—irreducible subspace of the point space P. If A is not compact,
then only the following possibilities can occur:

3Lowe, H.: Noncompact subgroups of the reduced stabilizer of a locally compact, connected
translation plane and Parabolic collineation groups of locally compact, connected translation
planes, in preparation
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(1) A =SIL;R and dimU is even. If n = 2, then E is isomorphic to the real
affine plane. For n =4 all possible planes are known, see [10, 73.22]

(2) A =SL,C and dimU is divisible by 4. If n = 4, then E is isomorphic to
the complex plane. If n = 8, then dimU = 4 and all possible planes are
known, see [3].

(3) A=Uy(H,1) and dimU =8. If n =8, then H is the qualernion plane.
(4) A =SL,H and dimU = 8. If n =8, then H is the quaternion plane®.
(5) A = Sping(R,1) for some 7 <k <10 and dimU = 16. In this case E is

isomorphic to the octonion plane.

In any case A is a 2—fold covering group of the connected component PSO;, (R, 1)
of PSO,.(R,1) for some® m, 3 < m <10 and its nontrivial central element acts
as the reflection v — —x at the origin.

The proof is surprisingly easy if one uses real Cartan subgroups of A.
Roughly speaking a real Cartan subgroup ' is a maximal Ad-diagonalizable
subgroup of A. It turns out that C fixes exactly two lines W, S € Ly and,
moreover, is a compression subgroup of Awg. According to (1.2) the dimension
of C' (called the real rank of A) equals 1. The assertions can now be obtained by
studying representations of groups of real rank 1.

We point out that each group A occuring in Theorem A acts on a classical
plane. If A is not SLy;R or SLy;C, then the representation of A on the point
space P of an arbitrary plane is equivalent to the representation of A on the
classical plane of dimension dim P. It remains an open problem whether this is
true for A = SI,,C. For A = SI,;R, the analogous statement is not true: Betten
constructed an example of a 4—dimensional translation plane on which SL;R acts
in its 4—dimensional irreducible representation, cf. [1].

However, there is another analogy between the classical and the non-—
classical case: A noncompact, almost simple subgroup A of the stabilizer of a
classical plane has exactly one closed orbit § on L. This orbit is homeomorphic
to a sphere and can be characterized as the set of lines in Ly which are fixed
by some parabolic subgroup of A. From this point of view there is no difference
between the classical and the non—classical case:

Theorem B. Let A < Gg be a connected, noncompact, almost simple group.
Then A has precisely one closed orbit S in Lo. Let 3 < m < 10 be the inleger
such that A is a 2—fold covering group of the connected component PSO; (R, 1) of
PSO..(R,1). (The existence of m is guaranteed by Theorem A). Then S salisfies

the following assertions:

(1) S is homeomorphic to a sphere of dimension m — 2.

4For n = 16, the classification of all possible planes admitting a group isomorphic to SLoH
will be given in another paper. It turns out that — except in the case of the octonion plane —
the automorphism groups of these planes have dimension at most 35.

In particular, m = 3 for A = SLoR, m =4 for A = SLyC, m =5 for A = Uy(H, 1), and
m = 6 for A = SLyH.
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(2) The action of A on S is equivalent to the natural action of PSO;, (R, 1)
= A/{*e} on the sphere

Sz ={R(z1, T9, ..., Ty, V)] ai + a3 +... 22, =1}

contained in the real projective (m — 1)-space. In particular, A is doubly
transitive on S for m = 3 and triply transitive for m > 4.

(3) If m 2 1/2 (where | is the dimension of a line), then E is isomorphic to the
classical translation plane of dimension n = 21 and thus A is a subgroup of

Spin; (R, 1).

Consider a line . € §. Then L is fixed by some parabolic subgroup TI
of A, see (7.3), and thus is fixed by the real Cartan subgroup C' < II, too. It
turns out that L can be considered as the sum of those real weight spaces of A
belonging to positive real weights®. For this reason we call L a weight line and S
— being the set of all weight lines — the weight sphere of A.

Organization of this Paper. We start with a short introduction to semisimple
real Lie algebras.

In Section 4 we investigate arbitrary diagonalizable subgroups of SGy. The
aim is to show that these groups have dimension 1 and fix exactly two lines in Ly.
These lines can be recovered from the “real weight spaces” of the group. The latter
is a consequence of a general result concerning arbitrary compression subgroups of
SGo, cf. (4.1).

Since a real Cartan subgroup of a noncompact, semisimple group A < Gy
is diagonalizable on P and contained in SGy, we apply these results in Section
5 and obtain the main tools for the proof of Theorem A. The proof itself will be
given at the end of Section 6, which is devoted to the investigation of groups of
real rank 1.

The action of a noncompact, connected, almost simple group on Ly is the
subject of the last chapter, where we will prove the assertion concerning the weight
sphere stated in Theorem B.

3. Semisimple Real Lie Algebras

For basic facts concerning semisimple real Lie algebras we refer to Knapp [6].
Throughout this section let g be a semisimple real Lie algebra.

A subalgebra a < g is called a real Cartan subalgebra if a is contained in
the Cartan complement p of some Cartan decomposition g = €@ p of g and if it
is maximal among the subalgebras of g contained in p.

Since [p;p] is a subspace of &, every real Cartan subalgebra of g is abelian.
If g=¢8&p is a fixed Cartan decomposition, then a real Cartan subalgebra a
contained in p is often called a maximal abelian subspace of p in the literature.

We remark that a is a real Cartan subalgebra if, and only if, a is the
abelian part of some Iwasawa decomposition of g. (This follows directly from the

SFor real weights and real weight spaces see the Sect. 3.
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construction of the Iwasawa decomposition.) Moreover, real Cartan subalgebras
are characterized as the maximal ad—diagonalizable subalgebras of g.

As a direct consequence of [6, 6.19] and [6, 6.51] we obtain the following
result:

Proposition 3.1.  Any two real Cartan subalgebras of g are conjugate by an
inner aulomorphism of g.

In particular, any two real Cartan subalgebras of g have same dimension.
We refer to this dimension as the real rank rkrg of g. Notice that the real rank
of g equals 0 if, and only if, g is a compact (semisimple) Lie algebra.

Proposition 3.2. [9, Sec. 4.1] Let g1 and g, be semisimple Lie algebras. Then
rkr(g1 @ 92) = rkegr + rkrgs .

We shall now study faithful representations ¢ : g — gl(V') of a semisimple
real Lie algebra g on a finite dimensional real vector space V. Fix a real Cartan
subalgebra a of g. A real weight of ¢ (with respect to a)is alinear map w:a — R
such that the corresponding real weight space

Vei={z e V]p(A)(z) =w(A) -z for all A€ a}

contains nonzero elements.

Remark 3.3.  Suppose (in addition to the preceding assumptions) that rkpg =
1. Then a = R- X holds for every X € a\ {0}. Consequently, a real weight
w : a — R of the representation ¢ is uniquely determined by the eigenvalue
w(X) of o(X). Moreover, the real weight space V,, and the eigenspace of ¢(X)
belonging to w(X) coincide. We will identify w and w(X) in this situation: A
real weight of ¢ with respect to X is an eigenvalue of ¢(X).

The real weights of ¢ are intimately related to the weights of the complex-
ification @c : gc — gl(Ve): According to [9, Chap.4, Sec.4.1], we find a Cartan
subalgebra f of gc containing a. Then every weight A : ) — C of ¢¢ is real on
a, cp. the proof of Prop. 4.3 in [9, Chap.4]. Since ¢c(h) is diagonalizable on V¢,
we obtain that ¢(a) is diagonalizable on V', i.e. ¢(a) consists of diagonal matrices
with real entries with respect to a properly chosen basis of V. Thus, the vector
space V' is a direct sum of the real weight spaces of . One easily derives that

.=vVn @ ()

AEA A [a=w

holds for every real weight w, where A is the set of weights of ¢¢ and where (V)
is the weight space corresponding to the weight A € A. It follows that if w is a real
weight, then —w 1s a real weight, too, and the dimensions of the corresponding
real weight spaces V,, and V_, coincide. We record these facts:

Proposition 3.4.  Let g be a semisimple real Lie algebra and let a < g be a real
Cartan subalgebra. Consider a representation ¢ of g on some finite dimensional
real vector space V. Lel A be the sel of real weights of ¢ with respect to a.



LOWE 133

(a) ¢(a) is diagonalizable on V. Therefore, V.= @ V., is the direct sum of real
wEA
weighl spaces.

(b) If w is a real weight, then —w is a real weight, too. Moreover, dimV,, =
dim V_,, holds for every w € A.

We should finally introduce the global counterpart to real Cartan subal-
gebras: Let A be a semisimple Lie group (preferably connected). A connected
subgroup C' < A is called a real Cartan subgroup if, and only if, its Lie algebra
T.C is a real Cartan subalgebra of T.A. The real rank rkrpA of A is defined to
be the real rank of T.A.

We mention here that a real Cartan subgroup ¢ < A is always closed in
A: Since ad T.C' is diagonalizable on T.A, the group Ad C' is diagonalizable, too,
and hence Ad (' is closed in SL(T.A). This proves our claim.

4. Compression Subgroups and Diagonalizable Subgroups of the
Reduced Stabilizer

Let E = (P, £) be a locally compact, connected affine translation plane of dimen-
sion n = 2/ and denote its reduced stabilizer by SGy .
Let & < SGws be a compression subgroup with respect to the lines
W,S € Lo, W # S. Note that dim® = 1. Choose a generator T' € gl(P) of
the Lie algebra of ®. Then p : R — ®; r — exp(rT) is a parametrization of ®.
In view of (1.2), we have that
lim p(r)(L) =S and lim p(r)(L) =W
r—r00 r——00
holds for every L € Ly \ {W,S}. Moreover, since W and S are ®—invariant, T
fixes both W and S. Thus, T may be written as T = Ty + Ts, where Ty = T'|w
and Ts = T'|s are endomorphisms of W and S, respectively.
Let oy + Bii, (k= 1,...,s) be the eigenvalues of T with £, > 0 and let
Pr be the generalized eigenspace of oy + Bri. In other words, if di denotes the
multiplicity of the eigenvalue ay + i, then Py = ker(T — oy, - 1)% for B = 0
and P, = ker(T? — 20, T + (a? + B2)1)% for B # 0. Notice that ay + B4i is an
eigenvalue of Ty [of Ts] if, and only if, P, N W £ {0} [Px NS # {0}], and that

every eigenvalue of Ty [of Ts] is also an eigenvalue of T.

Proposition 4.1. We consider a compression subgroup ® < SGw,s as above.
Choose an index ko such thalt ay, = max{ay | P "W # {0}}. Then

W: @ Pk und S: @ Pk.

k; o Sargg kjoagZog,

In particular, the real part of any eigenvalue of Ty is strictly smaller than the real
part of every eigenvalue of Ts. Moreover, if oy + Bii is an eigenvalue of Tw [of
Ts], then Py is a subspace of W [of S].

Remark. We point out that we can recover W and S from the compression
subgroup .
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Proof. (1) Let o+ 34t and a4+ 3;i be eigenvalues of Ty and Ty, respectively.
First, we will show that oy, $ ;.

(2) If By # 0, then there exists a 2-dimensional subspace Ej of W such

[ o =B
TEk_(ﬁk Oék>'

Therefore, we obtain the following equation:

that

P(T>|Ek = exp(rT)|Ek = eXp(TTEk) = e Ck(T),

= (T i)

is an element of the orthogonal group SO(FEj). If 8y = 0, then there exists a
one—dimensional subspace Ej of W with

p(r)|g, = e - Cy(r), where Cy(r) € SO(Ey) = {1}.

where

Analogously, there exists a subspace E; of S such that
p(r)|s, = ™" - C;(r), where C;(r) € SO(E;).

We choose an increasing sequence r, of real numbers with lim,_., 7, = oo such
that the sequence (Ci(r,),C;(r,)) possesses a limit (D, D;) in the compact set
SO(Ey) x SO(E;).

(3) We claim that o 2 aj. Alming at a contradiction, we assume o —ay <

aJ—ak)“:g:{ 0 ifa;—ars0 .

1 ifozkzaj

0 and infer

lim e
V=00

Now, we choose z € Ej \ {0} and y € F; \ {0}. Then the line L =0V (z 4 y) is
different from W and S and therefore lim, . p(r)(L) = S. In contradiction to
this fact, we have that the limit

lim p(rl,)(]R- (x + y)) = IlimR-

V=00 V=00

¥ Cr(r,)(z) + €™ Ci(r,)(y))
Ci(ry)(z) + 7 Ci(r,)(y))
= R (Dp(z)+¢- Dj(y))

o~~~

= limR-
V=00

of the one-dimensional subspaces p(r,)(R-(z +y)) of p(r)(L) is not contained in
S since y # 0.

(4) In view of (3), the real part of any eigenvalue of Ty is strictly smaller
than the real part of every eigenvalue of T's. By the definition of kg, we obtain
that oy + B is an eigenvalue of Ty if, and only if, o < ay, . If Wi denotes the
generalized eigenspace of Ty with respect to ai + (i1, then

W = @ Wy < @ P,

ki o <ogg ki ap<ag,
since Wy is a subspace of Py for every k. Analogously, we have

S: @ SJS @ Pj,

JiajZag, JiaZag,
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where S; denotes the generalized eigenspace of T's with respect to the eigenvalue
aj + B (with a; 2 ag, ). From

W@S:P:@Pk
k

one derives easily that P, = W}, holds for every k£ with ai < oy, and that S; = P;
holds for every j with a; £ ag,. This finishes the proof of the proposition. ]

As a next step, we apply this proposition to diagonalizable subgroups of
the reduced stabilizer. To this end, we have to show first that such a group is a
compression subgroup:

Proposition 4.2.  Let © <SGy be a diagonalizable, connected subgroup. Then
there exist exactly two distinct © —invariant lines W, S € Ly and © < SGw,s s
a compression subgroup. In particular, dim© =1 and we find a parametrization

p: R — 0O such that

lim p(¢)(L) = S and tlfloo p()(L) =W

t—o00

holds for every L € Lo\ {W,S}.

Proof.  Clearly, © is closed in SGy and isomorphic to R™ for some m. The
point space P = R” is a direct sum P = X; & ... D X, of one-dimensional ©-
invariant subspaces. The one—dimensional subspace X, is contained in some line
W € Ly. For 9 € O, the lines W and J(W) intersect in X; = J(X;) and hence
are equal. Consequently, @ leaves W invariant. Since dim W = [, there exists an
index 1 < j <n = 2[ such that X; is not a subspace of W. Let S € Lo\ {W} be
the line containing X;. By the same arguments as above, S is ©—invariant, too.

We have proved that © = R™ is a closed subgroup of SGw,s. According
to (1.2), the codimension of a maximal compact subgroup of © is at most 1.
Consequently, m = 1 and © = R is a compression subgroup of SGws. The
remaining assertions follow from (1.2). |

Since © fixes the lines W, 5 € Ly, we infer that O is diagonalizable on

both W and S. We choose bases {wy,... ,w;} and {sy,...,s} of W and 5,
respectively, such that the parametrization p described in (4.2) is given by

p(t) = diag(eM?, .. M et et for t € R

with respect to the basis {wq,... ,wys1,...,8} of P. From (4.1) we conclude
that A;  p; holds for every pair i,j (with 1 <i,5 <[). In other words, we have
just shown the following:

Proposition 4.3.  Let X ={xy, ..., x,} be a basis of P and let
L <. <6
be real numbers. For t € R, define the linear map p(t) € GL(P) by

p(t) = diag(e, ... &),
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where the matriz is given with respect to the basis X .

Suppose that © = {p(t)|t € R} is a subgroup of the reduced stabilizer
SGo. Then the subspaces W and S spanned by {xq, ..., x;} and {x141, ..., Tu},
respectively, are © —invariant lines. Moreover, & s strictly smaller than €41, i.e.
& 5 &ivj holds for every pair 1,5 (with 1 < 4,7 <1).

5. Semisimple Subgroups of Gy

Throughout this section let A be a connected, semisimple Lie group and let
¢ : A = Gy be a Lie homomorphism with discrete kernel. In particular, ¢ is
a representation of A on the vector space P = R".

Let g = T.A be the Lie algebra of A. By ¢, we denote the derivative of
¢. Notice that ¢, : g — gl(P) is a faithful representation of the semisimple Lie
algebra g.

Proposition 5.1.  Let A be a connected, semisimple Lie group and let ¢ : A —
Go be a Lie homomorphism with discrete kernel. Then the real rank tkpA equals 0
or 1. In particular, A is either a compact group or A s an almost direct product
of an almost simple group of real rank 1 and a compact group.

Moreover, if C < A is a real Cartan subgroup, then its image ©(C) is
contained in the reduced stabilizer SGy .

Proof.  Recall that A is a compact group if, and only if, kg A = 0. Therefore,
it sufficies to consider the case that tkpA > 1. Let ¢ < A be a real Cartan
subgroup. Then C' is contained in some noncompact, almost simple normal
subgroup A; of A. The image ¢(A;) is contained in the reduced stabilizer SGy,
see (1.1). Moreover, ¢(C) is diagonalizable on P, cf. (3.4). Using (4.2) we derive
that tkp A = dim (' is at most 1. According to (3.2), at most one of the almost
simple factors of A has real rank 1 while the others have real rank 0 and thus are
compact. This finishes the proof. [ ]

Corollary 5.2.  Let P be a locally compact, connected projective translation
plane. If the group T' of all continuous collineations of P contains a semisimple
group of real rank at least 2, then P s a classical plane and T' does not fix any
point or line.

Remark. The connected components Aut(P,F)® = PSL;F (where F = R,C
or H) and Aut(P,0)° = Eg(—26) of the automorphism groups of the classical

projective planes are almost simple Lie groups of real rank 2.

Proof. lLet A <T be asemisimple group. If P is not classical, then I' leaves
the translation axis invariant ([10, 64.4(c)]) and thus operates on the corresponding
locally compact, connected affine translation plane. Being an affine group, I' is a
semidirect product I' = TI'g X R™ of the stabilizer 'y and the translation group.
We conclude that every Levi complement of I' is conjugate to a subgroup of I'y.
Without loss of generality, we therefore may assume that the semisimple group A
is a subgroup of I'g. Applying (5.1) shows that rkpA equals 0 or 1. ]

We restrict our attention to the noncompact case:
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Proposition 5.3.  Let A be a noncompact, connected, semisimple Lie group
and let ¢ : A — Gy be a Lie homomorphism with discrete kernel. Notice that
tkp A =1, ¢f. (5.1). Fiz a real Cartan subalgebra a of the Lie algebra g = T, A
and an element X € a\ {0}. Let Q be the sel of real weights of v, with respect
to X (cp. (3.3)). As usual, P, denotes the real weight space of ¢, belonging to
w € Q. Then the following statements hold:

(a) 0 is not a real weight of o, .

(b) Both vector subspaces
Ly= @ P and .= P
wE; w>0 wE; w<o

of P are lines.

Remark. Since dima =1, the set {L,,L_} C Ly depends only on the choice
of a, not on the choice of X € a.

Proof. By (5.1), the real Cartan subgroup ¢(expa) is contained in the reduced
stabilizer SGy. In view of (3.4) there exists a basis X = {z1,... ,2,} of P such
that p(exp(1X)) is expressed as the matrix

exp(tX) = diag(e“", ..., &)

with respect to X', where w; < w,; < ... <w, are the real weights of ¢, (i.e. the
eigenvalues of ¢, (X)). By (4.3), the vector subspaces

W =span{zy,... ,2;} and S = span{z;y1,... , 2.}
are lines and, moreover, wy < ... <w; S w1 < ... < w,.

Assume that w; > 0. We rewrite W and S, respectively, as a direct sum
wW=r,e @ P and S= € P
wEQ;wéwl WGQ;Win

of real weight spaces. If w 2 w; > 0 is a real weight, then —w £ 0 < w; is a real
weight, too, and dim P, = dim P,, cf. (3.4). Contrary to dimW = dim S = [,

this implies that
@

wEQwZw
would be proper subspace of W with dimU = dim S. We conclude that w; 5 0.
Similary one proves wip; £ 0. In particular, 0 is not a weight and Ly = 5 and
L_ =W are lines. |

Corollary 5.4. Let A < Gy be a noncompact, semisimple group. Then A
cannol act trivially on a nonzero subspace of P.

Proof. If A did operate trivially on a subspace U # 0, then 0 would be a
weight of A, contrary to (5.3). [ ]

Definition 5.5. Let A < Gy be a (connected) semisimple Lie group of real
rank 1. Then L € Ly is called a weight line with respect to A if L is fixed by
some real Cartan subgroup C' of A. We refer to the set of all weight lines as the
weight sphere of A.
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6. Proof of Theorem A

Let A be a noncompact, connected, almost simple subgroup of the stabilizer Gy .
Then A is contained in the reduced stabilizer SGo, cf. (1.1). Let g be the Lie
algebra of A and let U # {0} be a A-irreducible subspace of P.

The real rank of A equals 1 by (5.1) and hence g is isomorphic to an
algebra of the following list, see for example [8, p. 312]:

s0,(R, 1), where m > 3,
su,, (C, 1), where m > 3,
U, (H, 1), where m > 3,

the exceptional Lie algebra f4(—20).

Remark. We have isomorphisms so3(R,1) = sl,(R), sos(R,1) = sl,(C),
505(R, 1) 2 uy(H, 1) and sog(R, 1) = sl,(H).

Lemma 6.1. The stabilizer Gy does not contain a subgroup which is locally
isomorphic to SU3(C,1).

Proof.  Assume that A < Gy is locally isomorphic to SU3(C,1). The almost
simple group A acts completely reducibleon P ie. P=U;&...6 U, is a direct
sum of A—irreducible subspaces U; < P.

Recall that dim U; = 1 is impossible by (5.4) and that dim P € {2,4,8,16}.
Checking the list of irreducible representations of SU3(C,1), cp. [10, Sect. 95],
yields dimU; € {6,8,12}. From dimU; + ...+ dimU, = dim P € {2, 4, 8, 16}
we obtain dim U; = 8 as the only possibility.

On the other hand, dimU; = 8 implies that Aly, realizes the adjoint
representation of SU3(C, 1), which has 0 as a real weight in contradiction to (5.3).

|

Together with some well known bounds for the dimension of automorphism
groups of locally compact, connected translation planes, this lemma proves the
following result:

Proposition 6.2.  Let A < Gy be a connected, almost simple group. If A is
not compact, then A is locally isomorphic to one of the following groups:

1. SLoF, where F =R, C or H, or
2. Uy(H,1), or

3. Spin,, (R, 1) with 7 <m <10.

Remark.  Fach of the groups listed above operates on the octonion plane. Thus,
our result is the best possible.
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Proof.  Recall that the subgroup A of Gy does not contain a subgroup locally
isomorphic to SU3(C, 1) by (6.1). Consequently, A is not locally isomorphic to
SU,.(C,1) or U, (H,1) for any m > 3.

Moreover, the largest possible dimension of the stabilizer Gy of a locally
compact, connected affine translation plane equals” dim(Rpos % Spin,o(R, 1)) = 46,
cf. [10, 81.9, 82.27]. Thus, A is not locally isomorphic to SO,, (R, 1) for any m > 11
nor is it locally isomorphic to the exceptional group F4(—20).

Excluding these groups from the list of simple groups of real rank 1 (cp.
the beginning of this section) finishes the proof. |

We should note a corollary which is interesting in its own:

Corollary 6.3. Let T < Gg be a closed subgroup and let Ay, Ay < T be
connected, almost simple, noncompact subgroups. If dimA; = dim Ay, then A,
and Ay are conjugate in I,

Proof.  Up to conjugation, we may assume that both A; and A, are contained
in the same Levi complement of I'. Therefore, it suffices to consider the case
that I' is semisimple and connected. Since I' cannot be a compact group, I' is
isomorphic to an almost direct product I' = A x €', where A is a simple group of
real rank 1 and where C' is a compact group, cf. (5.1). Obviously, both A; and
Ay are subgroups of A. Moreover, by (6.2), the group A is locally isomorphic to
SO, (R, 1) for some m. Now the assertion can be easily derived from the following
fact:
If § is a noncompact, simple subalgebra of the Lie algebra

s50,(R,1)={A egl,R|[,Al, = —A"}

(where I, denotes the (m x m)-diagonal matrix diag(1l,...,1,—1)), then b is
conjugate to the subalgebra

w= { < 0 B ) € g[mR‘ LBl = _Btr} = soi(R.1)

of 50,,(R, 1) for some [.

For the proof of this claim, let s0,,(R,1) = €& p be a Cartan decomposition
of 50,,(R,1) (where £ is the compact part) such that h = (ENh) S (pNh) is a
Cartan decomposition of . (The existence of such a decomposition is guaranteed
by a theorem of Mostow, cp. [7, p.53].) Note that the dimension [ = dim(pNk) # 0
since b is noncompact.

By [6, 6.19], the subspace p is conjugate by an inner automorphism of
50,,(R, 1) to the noncompact part

()

of the standard Cartan decomposition of s0,,(R, 1). Moreover, the group

exp ad { ( ¢ 0 > ‘ CEsom_lR}

7RPOS x Spinyo(R, 1) is the stabilizer of the origin of the affine octonion plane.

= Rm—l}
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operates transitively on the set of [-dimensional subspaces of q. Consequently,
we may assume that

0
pp=pNh= 0 y € R
tr

Y

o OO
o O

In particular, we obtain f = [pg; ps] & py = ;. [ ]

We will now investigate each of the possible groups appearing in (6.2)
separately.

Convention 6.4.  We will use the following notation in (6.5) — (6.8): Let A be
a connected, almost simple Lie group of real rank 1 which operates on P as a group
of automorphisms. To be more precise, let ¢ : A — GL(P) be a representalion
with discrete kernel such that o(A) < Gy and thus p(A) <SGy by (1.1). We will
study a nonzero @ —irreducible subspace U < P. By m : A — GL(U) we denote
the corresponding irreducible representation defined by w(6) = ¢(8)|v. The kernel
of m then is the discrete normal subgroup K(w).

We start with the smallest group SI;R:
Proposition 6.5.  Let A = SLyR and retain the notation of (6.4).

Then the dimension dimU s even and the kernel of m s trivial.

In particular, (A) is isomorphic to SLyR and the central involution o of
A = SIuR acts as the reflection o(o) : P — P; @ — —x.

Proof. Let m =dimU. Consider the real Cartan subgroup

c:{(eor e‘i) TER}

of A =SL,;R. According to [5, thm.12 on p.85], n(C') is given by

(C) = {diag(e(_m"'l)r, elmmEd)r o em=3)r, e(m_l)r) |r € R}

with respect to some basis of U. Since 0 is not a real weight of © by (5.3), we
conclude that m = dim U is even. An even—dimensional irreducible representation
of SLyR always has trivial kernel and its centralizer is always R, see the table in
[10, Sect. 95]. Thus, for every ¢-irreducible subspace U of P we have that
©(A)|y = SLyR and that ¢(o)|y = —id. n

Proposition 6.6.  Let A = SL,C and retain the notation of (6.4).
Then dimU € {4,8,12,16}, the kernel of 7 is always trivial and the
representation m of A on U is complex linear. In particular, p(A) is isomorphic

to SLQC
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Proof.  The representations of SLyC in dimension 4, 8, 12 and 16 are exactly
those representations of dimension at most 16 with trivial kernel, see [10, Sect.
95]. Thus, we have to exclude all representations with nontrivial kernel, i.e we
have to prove that Aly is not isomorphic to PSL,C. But this is clear, since Al
cannot contain a group isomorphic to PSLyR by (6.5). [ ]

Proposition 6.7.  Let A = U,y(H, 1) and retain the notation of (6.4).

Then dimU = 8 and the representation m of A on U is equivalent to the
usual representation of Uy(H,1) on H*.

If &im P =8, then P is isomorphic to the quaternion plane.

Proof.  Since A cannot act trivially on a subspace of P, the dimension dim P €
{2,4,8,16} has to be a sum of dimensions of irreducible representations of Uy(H, 1).
Irreducible representations of Uy(H, 1) in dimension at most 16 have dimension
5, 8, 10 or 14, see [10, Sect. 95]. By simple combinatorics, we infer that only
the (unique) 8—dimensional representation is possible. This proves the first part
of our assertion.

If dim P =8, then E is the quaternion plane, see [10, 82.25]. [ ]

Proposition 6.8.  Let A = SL,H and retain the notation of (6.4).

(a) For dim P < 8, the only possibility is the natural action of A = SL,H on
the quaternion plane.

(b) If dim P = 16, then ¢ = m X my, where m is the natural representation of
A = SLyH on H? and where m is the contragredient representation on H? .

In particular, we can identify P and the 4 —dimensional right quaternal vector
space H* x H? in such a way that p(A) is given by

¢(A):{<A A*>‘A€SL2H},

where A* = (A™)™! for a matriz A € SLyH.

Proof. If dimP < 8, then P is isomorphic to the quaternion plane and
A = SI,H acts in the usual way, cp. [10, 82.25]. It remains to treat the case
dim P = 16. By [10, Sect. 95], a @—irreducible subspace U has dimension 6, 8,
10 or 15. If dimU € {5,10,15}, then the kernel of the representation = equals the
center of A. But this implies that ¢(A)|y = PSL;H would contain a subgroup
isomorphic to PSLyR in contradiction to (6.5).

Consequently, P is a direct sum of two p—irreducible 8—dimensional sub-
spaces U1 and U,. Let m; and 7y denote the representations of A = SLyH on U
and U, respectively. Notice that m; either is the natural representation of SL,H
on H?, or is the contragredient one.

If m; and 7y are equivalent, then we can identify P = U; @ U, with H? x H?
such that ¢(A) becomes the group

¢(A)={<A A)‘AESLQH}.
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In this case the weight lines belonging to the real Cartan subgroup
o(C) = {diag(e", e, ", ™) |r € R}
are W=Hx0xHXx0 and S=0xH x 0 x H. Obviously, the compact group
K = {diag(a,1,a,1)|a € H, ||a|| =1} = SpinsR

leaves W invariant and fixes S pointwise. But this is impossible by [2].

Thus, 7y and 7 are inequivalent , i.e. m realizes (without loss of generality)
the natural representation of SLyH and 7y realizes the contragredient one. This
proves part (b). ]

Proposition 6.9.  Let A < Gy be locally isomorphic to Spin,,(R,1) for some
m, 7 < m < 10. Then (P,L) is isomorphic to the octonion plane and A is
isomorphic to Spin,, (R,1) in ils usual embedding in Spin;o(R,1). In particular,
A operates irreducibly on P.

Proof. A contains a group = locally isomorphic to Spin;(R,1). Thus, (P, £)
is isomorphic to the octonion plane by [4] and A is a subgroup of the reduced
stabilizer SGy = Spin;y(R,1) of the octonion plane. By (6.3), we infer that A
is conjugate to the group Spin,,(R,1) in its usual embedding in Spin,y(R, 1) for
some m, 7 < m < 10. [

Remark. The proof of Theorem A can be pieced together from Propositions
6.2 — 6.9 and the remark at the beginning of Sect. 6.

7. Proof of Theorem B

Let A be a noncompact, connected, almost simple subgroup of the stabilizer Gg
and let § C Ly be the weight sphere of A. From Theorem A we know that A is a
2—fold covering group of PSO,,(R,1) for some m, 3 <m < 10. The Lie algebra
g = T.A therefore is given by

g :50m(R71) = {A Eg[mR|[A I = _Atr}v

where [ denotes the matrix [ = diag(1,...,1,—1). In order to avoid confusion we

define the faithful representation ¢, : g — gl(P) as the derivative of the natural
embedding ¢ =1d : A — Gy.

Lemma 7.1. A leaves S invariant.

Proof. A line L. € Ly is an element of § if, and only if, L is fixed by some
real Cartan subgroup C' of A. For § € A, the conjugate §C'd~" is a real Cartan
subgroup fixing §(L) and thus §(L) is an element of £ again. |
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Before discussing the action of A on &, we have a closer look at the Lie
algebra g = 50,,(R,1). For this purpose we fix the real Cartan subalgebra

0

a=R-X <g=s0,(R,1), where X = . 0

_
O =

of g. The corresponding Cartan involution is
150, (R, 1) = 50, (R, 1) Y s TV - [T

l.e. a is a maximal abelian subspace of the Cartan complement p of the Cartan
decomposition defined by ¢, 1.e.

s0,(R,1)=¢®p with Ez{(A O)‘Aesom_lR}

and p:{(ﬁr 3)

The restricted roots® with respect to X are 0, 1 and —1. We write gy for the
restricted root space belonging to the restricted root A and obtain

T € Rm_l} .

0 —x =
g ={Y eg|adX)(Y)=Y} = ™ 0 0 z € R™?
0 0

In fact, gy is an abelian subalgebra of g since [g1,91] € g2 = {0}. Notice that
g=tPadg and g=tP ad g_y are the Iwasawa decompositions of g defined
by a.

In what follows we need the notion of parabolic subgroups of an almost
simple Lie group. We will introduce this concept for the groups considered here
only, for the general case we refer to [12, Chap.1.2].

We start with the Iwasawa decomposition A = K-C'- Ny, where K = exp €,
Ny = exp g1 and where C' denotes the real Cartan subgroup ' = expa of A. Let
M and M™ be the centralizer and the normalizer, respectively, of C' in K. Then
IT =M-C- Ny is a closed subgroup of A, which we call the standard minimal
parabolic subgroup of A. We emphasize the fact that II is uniquely determined by
the generator X of a. If we replace X by an arbitrary element Y generating some
other real Cartan subalgebra of g, then we obtain another closed subgroup Ily
of A by the same construction. These subgroups are called the minimal parabolic
subgroups of A. Since every two real Cartan subalgebras of g are conjugate, we
see from the construction that every minimal parabolic subgroup is conjugate to a
minimal parabolic subgroup defined by an element X’ of a. Obviously, Tl(,y) = Tly
holds for every positive real number r and thus X’ can be taken as X or —X.
In order to see that Il = IIx and TI_x are conjugate, too, we use the Weyl group

8 A restricted root is a real weight of the adjoint representation; the corresponding real weight
spaces are called restricted root spaces.
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W(A,C)= M*/M of A. In our situation, this Weyl group is a group of order 2:
For every w € M*, the automorphism Adw leaves invariant the one—dimensional
algebra a and therefore (Adw)|, = £ids. Moreover, w induces the identity on a
if, and only if, w is an element of the centralizer M of C' in K. Consequently,
M* - M* C M and thus W(A,C) = M*/M is a group of order 2 (since the Weyl
group of a noncompact, almost simple group never is trivial, see the considerations
in Warner [12, Chap. 1.2]). Given an element w € M*\ M, we conclude from
(Adw)(X) = —X that wllyw™! =T_x.

We should add another interesting conclusion: The set of orbits of A on
the set of all parabolic subgroups (i.e. subgroups containing a minimal parabolic
subgroup) of A is in one-to—one correspondence with the elements of the Weyl
group, see [12, Thm.1.2.1.1]. In our situation, |W(A,C)| = 2 implies that every
proper subgroup of A containing a minimal parabolic subgroup is a minimal
parabolic subgroup itself.

Let us return to geometry. According to (5.3) the real Cartan subgroup C
of A fixes exactly the weight lines

W = @ P\ and S = @ P.

AEA MO AEANSO0

Here, A is the set of real weights of ¢, with respect to X (cp. (3.3)) and P, is
the real weight space belonging to A € A. We claim

Lemma 7.2. The stabilizer Ag of S equals the minimal parabolic subgroup
IMT=M-C-N; and fires no line except S in Ly.
Moreover, if w represents the non—trivial element of the Weyl group

W(A,C), then w interchanges W and S.

Proof. Let X be the maximal element of A. For Y € g, and v € Py, the

equation

Px(Y)(v) = [p(X); u(V)](0)
= Pu(X)pu(Y)(v) = ou(Y)u(X)(v)
= 2u(X)(px(Y)(v)) = A - s (Y)(v)
shows that ¢, (X)(e.(Y)(v)) = (1 +X) - ¢ (Y)(v). Consequently, ¢, (Y)(v) =0
since A’ is a maximal real weight. Therefore, the group N; = expg; operates
trivially on the subspace Py of S and hence leaves S invariant.

Thus, Nj is a subgroup of Ag. Moreover, M centralizes ' < Ag and
thus fixes 5, too. This shows that Ag contains the minimal parabolic subgroup
IT and thus is a parabolic subgroup of A. The Weyl group W(A, (') has order 2
and thus either Ag = II or Ag = A. The latter case cannot occur, otherwise A
leaves S invariant and realizes on S a representation having only positive weights
contradicting (3.4). Therefore, Ag = II and, analogously, Ay = II_x. Since
IT # I_x, the line W is not invariant under II. Moreover, C' < II fixes no lines
except W and S. From these considerations we infer that Il cannot fix a line in
Lo\ {5}

Now consider an element w € M* representing the non—trivial element
of the Weyl group W(A,C). Then Adw induces the map Y — —Y on a.
Consequently, w interchanges the real weight spaces P, and P_, for every real
weight A. This proves the remaining assertion. |
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Corollary 7.3. The stabilizer of a weight line L. € S is a minimal parabolic
subgroup of A. Conversely, a minimal parabolic subgroup of A fizes exactly one
line L € Ly and, moreover, L is a weight line.

Proof. Let (' be a real Cartan subgroup of A which fixes L. Then C' is
conjugate to C' by an element v € A, see (3.1), and C fixes y(L). Without loss
of generality we assume (L) = S. Consequently, A;, = y7'Agy = v~ 'y is
conjugate to II and thus is a minimal parabolic subgroup of A.

Conversely, a minimal parabolic subgroup is conjugate to I1 = Ag by an
element, say, § € A and thus equals the stabilizer of §(5) € S. [ |

Since any two minimal parabolic subgroups of A are conjugate to each
other, we immediately obtain:

Corollary 7.4. A operates transitively on ils weight sphere S.

Thus, the weight sphere S is a homogeneous space A/, where IT = Ag
is a minimal parabolic subgroup of A. Moreover, the central element —e € A
operates trivially on Ly, i.e. & can be considered as a homogeneous space of
A/ + e = PSO,(R,1) modulo the minimal parabolic subgroup II' = I/ £ e.
In fact, this homogeneous space may also be derived from the natural action of
PSO,.(R,1) on the corresponding projective quadric, which is an (m — 2)—sphere.
Hence S,,_; ~ PSO,,(R,1)/II' & S and the action of A on § is equivalent to
the natural action of PSO,,(R,1) on S,,_,, i.e. the assertions stated in part (1)
and (2) of Theorem B are proved. Part (3) of Theorem B is a consequence of
Theorem A.

It remains to show that no orbit except S is closed in Ly. Consider a
line L € Lo\ §. Fix a real Cartan subgroup € < A. Then C fixes two lines
W,S € §. Since C < Gw,s is a compression subgroup, we can apply (1.2) and
find a parametrization p : R — ' such that limy p(¢)(L) = 5. The closure
of the orbit A(L) thus contains S € § = A(S). We conclude that A(L) is not

closed in L.
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