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Some linear groups virtually having a free quotient
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Abstract. It is proved that some discrete automorphism groups of
convex cones have a finite index subgroup that maps onto a free group
of rank 2. This generalizes recent results of A. Lubotzky.

We say that a group I' virtually has some property, if some subgroup of finite
index in I' has this property. A group virtually having a non-abelian free quotient
is called large [4]. In this paper we prove that some linear groups are large.
This generalizes results of A. Lubotzky [5]. Except for some additions and
simplifications, we essentially follow the lines of his proof.

Note that if a group I' has a non-abelian free quotient, then any subgroup
of finite index in I" has such a quotient. It follows that if a group T is large, then
any group commensurable with I' shares this property. Clearly, if a group I' has
a virtually non-abelian free quotient, it is large. (The converse is not true.)

Let V' be a finite-dimensional real vector space and V* its dual space.
If K C V is an open convex cone, the dual cone K* C V* is defined by

K*={aecV*:a(v)>0 VYve K}
Obviously, K* U {0} is a closed strictly convex cone in V*. For a linear group
I' C GL(V) leaving invariant an open convex cone K C V. we consider the
condition

(%) I' has no finite orbits in the projectivization PK* of K*.

Main Theorem. Let I' C GL(V) be a finitely generated linear group leaving
invariant some open conver cone K C V and satisfying the condition ().
Suppose that there exists a subspace U of codimension 1 in V' such that

(Hl) H=UNK #@;

(H2) for any v € T', we have either yH =H, or yYHNH =@;

(H3) any compact subset of K meets only finitely many sets of the form

~vH,~veT;

(H4) both connected components of K\H contain some vH,v € T.

Then T' has a subgroup of index < 2 that has a virtually non-abelian free quotient.

We shall deduce from this the theorems stated below, in which the term
“reflection” always means a reflection in a hyperplane.
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Theorem 1. Let T' C GL(V) be a finitely generated irreducible linear group
leaving wnvariant some open conver cone K C V and acting on it discretely.
Suppose that T' contains a linear reflection. Then one of the following alternatives
takes place:

(1) K=V and T s finite;

(2) K is a simplicial cone and T' is virtually abelian;

(3) T is large.

Corollary 1.  Let T' be a finitely generated discrete group of motions of n -
dimensional Lobachevsky space L™(n > 1) , containing a reflection and leaving
invariant no plane (of any dimension) or point at infinity. Then T' is large.

Corollary 2.  Any non-affine infinite indecomposable finitely generated Coz-
eter group 1s large.

Let f be a quadratic form of signature (n,1) over Q. Then the group
O(f,Z) is a lattice in O(f,R).

Theorem 2. Any finitely generated subgroup of O(f,Z) s either virtually
abelian, or large.

Before we started this work, we had been informed that C. Gonciulea
had proved the assertion of Corollary 2 above. But unfortunately his proof was
not available to us at the time we wrote this paper. (See [3] and [2] for a proof
of a weaker theorem that any infinite finitely generated Coxeter group virtually
maps onto Z.)

We are grateful to H. Oh, A. Furman, and the referee for helpful remarks.
This work was done during our stay at Bielefeld University. This stay was
supported by the Humboldt Foundation. The work of the first author was
supported in part by NSF Grant DMS-9800607, and the work of the second
author was supported also by RFBR Grant 98-01-00598.

1. Residually Finite Actions

Definition 1. An action of a group I' on a set X 1is called residually finite,
if for any different points z,z’ € X there exist an action of I' on a finite set Y
and a I-equivariant map f: X — Y such that f(z) # f(2').

Obviously, an action is residually finite if an only if its restriction to each
orbit is residually finite. If an action T' : X is residually finite, then for any finite
number of points of X there exists a I'-equivariant map of X to a finite set
separating these points.

Let us also note that an action I' : X is residually finite if and only if for
any different points x, 2’ € X there exists a normal subgroup A of finite index
in T' such that # and 2’ belong to different A-orbits. Indeed, let  and z’ be
different points of X . If the action I' : X 1s residually finite, then, in the above
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notation, one can take for A the kernel of the action I' : Y. Conversely, if the
action T' : X is transitive and Az # Az', one can take for Y the quotient X/A.

The following fact is known, but we did not find a reference for it.

Lemma 1. Let A be a finitely generated integral domain. Then for any nonzero
element a of A there exists a homomorphism ¢ of A to a finite field such that

p(a) #0.

Proof. Let k& denote the field of fractions of A, and let F' be the minimal
subfield of k. By Hilbert’s Nullstellensatz there exists a homomorphism ¢ of A
into a finite extension of F' such that ¢(a) # 0. If char k£ > 0 this finite extension
is a finite field and ¢ is the desired homomorphism. Let char & = 0. Then k
is an algebraic number field. There exists a (multiplicative) non-archimedian
valuation v of k such that A belongs to the ring O = {z € k | v(z) < 1}
and v(p(a)) = 1. Let m = {z € k: v(z) < 1} be the maximal ideal of O and
7 : O = O/m the natural projection. Then wo¢ is the desired homomorphism.m

Let V be a finite-dimensional vector space over a field k. Denote by
PV the projective space associated to V', and, for any non-zero vector v € V',
denote by [v] the corresponding point of PV.

Proposition 1.  Any linear action of a finitely generated group T' in the space
V' and the induced action T : PV are residually finite.

Proof. Let v1,...,7s be generators of I', and let v be a vector in V. Consider
the subring A of k generated by the matrix coefficients of v1,..., 75,71 'y. .., 77"
and the coordinates of v in some fixed basis of V. Any homomorphism ¢ of A
to a field K defines a group homomorphism I' — GL,(K), where n = dimV,
and thereby a linear action T' : K™. At the same time it defines a I'-equivariant
map f: A" —+ K". According to Lemma 1, for any a € A,a # 0, there exists a
homomorphism ¢ of A to a finite field K such that ¢(a) # 0. In particular, if
v' € T'v is different from v, one can choose ¢ in such a way that f(v) # f(v').
Thus, the action T': V' is residually finite.

Let now v # 0. A vector v’ € T'v is proportional to v if and only if
all the minors of order 2 of the matrix M(v,v") of the co-ordinates of v and
v' are equal to 0. In this case f(v) and f(v') are also proportional. We can
choose ¢ in such a way that f(v) # 0. Then f gives rise to a I'-equivariant
map f : T[v] = T[f(v)]. For any v’ € Tw, which is not proportional to v, we can

choose ¢ in such a way that p(D) # 0 for some minor D of order 2 of M(v,v').
Then f([v]) # f([v']). Thus, the action I' : PV is also residually finite. n

Remark 1. The proposition implies that, for any finitely generated subgroup
[ of an algebraic group G and any action of G on an algebraic variety X, the
induced action T' : X is residually finite. Indeed, it suffices to prove this for
transitive G-actions. But due to a theorem of Chevalley any transitive G-action
is embedded into the natural G-action on PV, where V is a G-module. ]
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2. Some Group Actions on Trees

For any graph S (possibly with loops and multiple edges) denote by [S] its
topological space. If S is connected, set w1 (S) = 71 ([S]). If a group I' acts on
a graph T without reversing edges, one can naturally define a topological action
of T on [T] in such a way that the topological quotient [T]/T" is identified with
[T/T]. In particular, if T is a tree, this gives rise to a surjective homomorphism
@ :I'— = (T/T), taking each v € T' to the homotopy class of the image in [T'/T]
of a path [ connecting the base vertex o with ~vo in [T].

Lemma 2. The kernel Ty of ¢ does not depend on the choice of the base vertex
and s normalized by any automorphism of T normalizing T'.

Proof. Let o' be any other vertex of T and m a path connecting o’ with

! is a path connecting o' with ~o'. If

o. In the above notation, I’ = ml(ym)~
the image of [ in [T/T] is homotopic to a point, then the image of I’ is also
homotopic to a point. This proves the first assertion of the lemma. The second

assertion immediately follows. [ ]

Remark 2. In fact it is easy to show that Iy is the subgroup of I' generated
by all the stabilizers of vertices of T'. ]

It is useful to have in mind the following

Lemma 3. Any group T acting on a tree T contains a subgroup Ty of index
1 or 2 that does not reverse edges.

Proof. Note that if the group T' preserves some orientation of the edges of
T, it cannot reverse edges. There are two distinguished opposite orientations
of the edges of T, under which any vertex is either a source or a sink. Any
automorphism of 7' can only permute them. It follows that the subgroup I';y of
I’ preserving one of these orientations has index 1 or 2, and it does not reverse
edges. |

A tree will be called a star if all its edges have a common vertex, and a
line if its topological space is homeomorphic to R. A graph will be called a cycle
if its topological space is homeomorphic to a circle.

Denote by V(S) (resp. E(S)) the set of vertices (resp. edges) of a graph

S. For a connected finite graph S, we consider the Euler characteristic

o(S) = #V(S) - HE(S).

Obviously, e(S) < 1. If e(S) = 1, the graph S is acyclic (i.e. a tree); if e(S) =0,
it contains exactly one cycle; if e(S) < 0, it contains at least two different cycles.
In the latter case [S] is mapped onto the figure eight, whose fundamental group
is a free group of rank 2 which implies that 7 (S) has a non-abelian free quotient.

Lemma 4. Let S be a connected finite graph whose automorphism group acts
transitively on E(S). Then
1) if e(S)=1, S is a star;
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2) if e(S) =0, S is a cycle.
Proof. If S has an extreme vertex, then each edge contains an extreme vertex.
The other ends of the edges must coincide, so S is a star.

If e(S) =1, S has an extreme vertex and hence is a star. If ¢(5) = 0,5
contains exactly one cycle and no extreme vertices, so it is a cycle. ]

Proposition 2. Let a group T act on a tree T which is not a star or a line.
Suppose that T' does not reverse edges and the action I' 1 E(T) is transitive and
restdually finite. Then T has a virtually non-abelian free quotient.

Proof. Since the tree T is not a star or a line, it contains a subgraph Ty of
the form

There exists a normal subgroup A of finite index in T' such that the edges of Ty
belong to different A-orbits and thereby go to different edges of T/A (but some
vertices of Ty may glue together). This configuration of edges does not allow
T/A to be a star or a cycle. Since I' acts transitively on E(T/A), Lemma 4
shows that under such a choice of A we have ¢(T/A) < 0. Let ¢ : A — =(T/A)
be the homomorphism defined by the action A : T'. It follows from Lemma 2
that Ker = A is a normal subgroup of I'. Since A/Ag ~ 71(T/A) is a non-
abelian free group, I'/Ag is a virtually non-abelian free group. ]

3. Some Virtually Abelian Linear Groups

Let V' be a finite-dimensional vector space.

Lemma 5. Any abelian linear group T' C GL(V') leaving invariant a non-trivial
strictly conver cone K C 'V, has a weight vector in K.

Proof. If all the operators of T' are scalar, there is nothing to prove. Oth-
erwise, let v € I' be a non-scalar operator. By the Brouwer theorem on a fixed
point 4 has an eigenvector in K, with some eigenvalue A > 0. The eigenspace
Vi of ~ corresponding to A, is invariant under I' and does not coincide with
V. Moreover, K1 = K NV; is a non-trivial strictly convex cone in V; invariant
under I'. Proceeding by induction in dim V', we may conclude that T' has a
weight vector in K; and, hence, in K . [ ]

Let now I' C GL(V) be an irreducible linear group.

Lemma 6. IfT' has a finite orbit in PV (or PV* ), then it is virtually abelian.

Proof. Let e € V be anon-zero vector such that the orbit of the corresponding
point [e] € PV is finite. The vectors ye, v € T', span a I'-invariant subspace,
which must coincide with V. The kernel A of the action of I' on the orbit of
[e] is a (normal) subgroup of finite index in I'. All the vectors ve, v € T', are
weight vectors of A. This implies that A 1s abelian. |
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Note that if K is a T-invariant convex cone in V then K N (—K) is
a [-invariant subspace. If follows that any I'-invariant convex cone either is
strictly convex, or coincides with V.

Let R% denote the subgroup of GL(V) consisting of the multiplications
by positive scalars.

Lemma 7. If T' leaves invariant a convex cone K # V and T/(T NRY) is
finste, then dimV = 1.

Proof. Multiplying the elements of I' by suitable positive numbers, we may
assume that dety = £1 for any v € I'. Then I' is finite and, hence, has a fixed
non-zero vector in K. The linear span of this vector must coincide with V. =

Lemma 8. If ' us virtually abelian, then every I -invariant convexr cone K # 'V
18 simplicial and the one-dimensional subspaces spanned by its edges are the
weight subspaces of any normal abelian subgroup A of finite index in T'.

Proof. According to Lemma 5, A has a weight subspace W such that
KNW #£ {0}. Tt follows that the corresponding weight y of A is positive valued,
and the space V' decomposes into a direct sumn of weight subspaces vW,v € T', of
A. Moreover, the stabilizer of the subspace W acts on 1t irreducibly. Applying
Lemma 7, we get that dim W =1.

Let x~ denote the weight of A corresponding to yW . There exists an
element dp € A such that all the weights x. take different values on it. By
syminetry, we may assume that the maximum of these values is taken by y = y.
itself. Then for any v € V we have

) oJv
lim =w

x(do)™ ’

where w is the projection of v to W. It follows that the cone K contains its
projection to W and, by symmetry , its projection to each subspace vW. This
means that K is spanned by these projections and, hence, is simplicial. ]

4. Proof of Main Theorem

The sets vH,~ € I', which we shall call walls, decompose K into some (closed in
K') convex bodies, which we shall call chambers. Consider the graph T', whose
vertices (resp. edges) are the chambers (resp. the walls) and the incidence is
defined by inclusion. Clearly, T is a tree. The group T' naturally acts on it.
The action T' : E(T) is transitive and residually finite, as it follows from the
definition of walls and Proposition 1. Possibly passing to a subgroup of index
2, we may assume that I' does not reverse edges (see Lemma 3). Condition 4)
provides that 7' is not a star. So, if T' is not a line, the group I' has a virtually
non-abelian free quotient according to Proposition 2.

Suppose T' i1s a line. Possibly passing to a subgroup of index 2 and
deleting half of the walls, we may assume that I' acts on T' just by shifts. Let



MARGULIS AND VINBERG 177

[y be the kernel of this action. Then I'/T'y ~ Z. The linear form a defining the
subspace U 1s a weight vector of ['; in the dual space V* of V. Since there are
only finitely many weight subspaces of I'y in V* and T' can only permute them,
there is a subgroup I'y of finite index in I' containing I'y such that T'gar lies in
one weight subspace. Denote by A the linear span of T'gar. Obviously, it is a
[p-invariant subspace. Take any 9 € T'o\I'y. Since

(UNU)NK =@,

some non-trivial linear combination of o and 7y« belongs to K* (here we use
one of the versions of the Hahn-Banach theorem). Hence,

K*'NA#0o.
By the Brouwer theorem ~o has a fixed point in P(K*NA). The I'-orbit of this
point is finite, which contradicts our condition (#). ]

5. Proof of Theorem 1

If K =V, then T isfinite as the stabilizer of 0 € K. In the further consideration,
let us assume that K # V (and, hence, K is strictly convex). By the Selberg
lemma [6] T has a torsion free normal subgroup of finite index, say, I'y . Apply the
Main Theorem to I'y, taking for U the mirror of a linear reflection r contained
in I'. We are to prove conditions 1)-4) and ().

To prove 1), take any point z € K. Then = + r(z) € H.

To prove 2), note that for v € T' the subspace vU 1is the mirror of the
reflection yry~'. If yHN H # &, then § = (yry~!)r has a fixed point in K
and, hence, is of finite order. Let v € T';. Then § = y(ryr)~! € T’y and hence,
0 = 1d; this means that ~U = U or, equivalently, vH = H .

Let us prove 3). By the definition of a discrete action, for any compact
set € C K we have #{v € T : 7CNC # O} < co. But if yHNC # &, the
reflection ry, = 4ry~! has a fixed point in C' so r,C N C # &. Therefore, C
meets only finitely many sets of the form vH,~v € T'.

If one of the connected components of K\ H contains some vH, v € 'y,
then the other one contains ryH = (ryr)H , where ryr € I'y, so condition 4)
is satisfied. If no one of the connected components of K\ H contains any vH ,
~ € I'y, then yH = H for any v € I'y. This implies that the I'-orbit of the
point of PV* corresponding to U, is finite, so according to Lemmas 6 and 8 the
second alternative of the theorem takes place. The same is true, if T' has a finite
orbit in PK*. Thus, either the second alternative of the theorem takes place, or
all the conditions of the Main Theorem are satisfied for I'y. In the latter case T°
is large. |

6. Proof of Corollary 1

The space L™ can be realized as the projectivization of the cone K of the future
in the Minkowski space E™! in such a way that the motions of L™ be induced by
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pseudo-orthogonal operators. Under this realization the planes of L™ correspond
to subspaces of E™! intersecting K, while the points at infinity correspond to
isotropic one-dimensional subspaces. The conditions of Corollary 1 mean that
I' is an irreducible subgroup of the pseudo-orthogonal group O, 1 acting on K
discretely and containing a reflection. By Theorem 1 it is large.

7. Proof of Corollary 2

It is known [7] that any non-affine indecomposable finitely generated Coxeter
group [' can be realized as a linear group in a finite-dimensional real vector
space V' in such a way that

1) T is irreducible;

2) T leaves invariant a non-degenerate symmetric bilinear form f in V';

3) the generators of T' are represented by orthogonal reflections (with re-

spect to f);

4) T leaves invariant an open convex cone K C V and acts on it discretely.
Applying Theorem 1, we see that if T' is infinite, one of alternatives 2) and 3)
takes place, so we only need to exclude 2).

Suppose that the cone K is simplicial. The group T' can only permute
the edges of K. Let A be the kernel of the action of I' on the set of edges of
K. Then A i1s abelian and the one-dimensional subspaces Vi,...,V, spanned
by the edges of K, are the weight subspaces of A. They are isotropic with
respect to f and decompose in pairs in such a way that the subspaces of one
pair correspond to opposite weights and are not orthogonal, while any subspaces
of different pairs are orthogonal. Any reflection of I' permutes the subspaces of
one pair, leaving all the others invariant. It follows that the group T' leaves any
pair of the subspaces Vi,...,V,, invariant, which contradicts its irreducibility,
unless m = 2. But the case m = 2 occurs only for dihedral groups, which are
finite or affine. |

8. Proof of Theorem 2
Consider the space V = R™t! with the scalar product defined by the quadratic

form f. Denote by K one of two connected components of the cone f < 0. The
subgroup
O'(f,R)={9€ O(f,R): gK = K}

has index 2 in O(f,R). Set

O'(f,Z)=0(f,Z)n O'(f,R).

Take any vector e € Z™T! with f(e) = m > 0 and set

Q ={veV: f(v)=m}

U ={veV: (v,e)=0}
Obviously,

H=UNK#g2.
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Lemma 9. The sets vH,v € O'(f,Z), constitute a discrete family in K, i.e.
any compact subset C' C K meets only finitely many of them.

Proof. We have
vH ={ve K : (v,ye¢) = 0}.

Clearly, ve € Q N Z"*!. The orthogonal subspace of any vector v € K is
Euclidean, so its intersection with @ is compact. It follows that the set

Qc ={veQ: (v,u) =0 for some v € C},

is also compact and, hence, contains only finitely many integral vectors. There-
fore, C' meets only finitely many sets vH, v € O'(f,Z). [ ]

Lemma 10. There is a subgroup O of finite indez in O'(f,Z) such that for
any v € O we have either yH=H, or yYHNH =@.

Proof. For v € O'(f,R) the sets H and vH intersect but do not coincide if
and only if the vectors e and ~e span a two-dimensional Euclidean subspace in

V, ie. if

(1) [(e;ve)|l < m.

Let © be the congruence subgroup of O'(f,Z) modulo 2m. For v € ©
we have ve = ¢ (mod 2m), whence

(e,v¢) =m (mod 2m).

This makes (1) impossible. ]

Now let T' be a finitely generated subgroup of O(f,Z). Passing to a
subgroup of finite index, we may assume that I' C ©. Then conditions 1)-
3) of the Main Theorem hold. To ensure condition 4), we choose the vector e
depending on T' as follows.

The group O(f,R) can be considered as the group of motions of Loba-
chevsky space L™ modelled on the projectivization of the cone K. In this
interpretation, an element v € O'(f,R) is called elliptic, if it has a fixed point
in L™, hyperbolic, if it has no fixed point in L™ but has an invariant line, and
parabolic, if 1t has no fixed points or invariant lines in L™, but has a fixed point
at infinity. Any element of O'(f,R) is one of these three types (see, e.g., [1]).

Passing to a subgroup of finite index, we may assume that T' is torsion-
free and, hence, contains no elliptic elements but the identity.

Let 70 € T' be a hyperbolic element and [ the (unique) invariant line of
it in L™. Since the projectivization of Z"*1 is dense in PV, we can choose ¢ in
such a way that H intersects the line [ but does not contain it. Then ~?H and
75 H are in different connected components of K\H for any d € N. Some ~¢
survives after possible passing to a subgroup of finite index in T, so condition 4)
will hold for the obtained group.

Now let 7o € T' be a parabolic element and p the (unique) fixed point
at infinity of it. The point p is represented by an isotropic vector with rational
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co-ordinates. Any horosphere of L™ centered at p is invariant under -y, and
there exists an invariant Euclidean line [ on it. We can choose e in such a way
that (the closure of) H passes through p and intersects the line I but does not
contain it. Then again v¢H and 45 ?H are in different connected components
of K\H, and we can apply the above argument.

Thus, we can conclude that if the group T' satisfies the condition (%),
it is large. If it does not satisfy (), then a subgroup of finite index in T' has a
fixed point in L™ or in L™. In both cases T is virtually abelian. ]

Remark 3. Theorem 2 implies the following generalization of its own. Let
kE C R be a totally real algebraic number field and f a quadratic form of signature
(rn,1) over k that becomes positive definite under any non-identity embedding
o :k — R. Let O be the ring of integers of k. Then any finitely generated
subgroup of O(f, ) is either virtually abelian, or large. Indeed, if [k : Q] = d,
then there are exactly d embeddings o:k — R, and the restriction of scalars
permits us to embed O(f,O) into O(F,Z), where F is a rational quadratic

form of signature (d(n +1) —1,1). ]
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