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Harmonic analysis on SU(n,n)/SL(n,C) x R}

Nils Byrial Andersen and Jérémie M. Unterberger*

Communicated by J. Hilgert

Abstract. We find an explicit expression for the spherical functions on
the ordered symmetric space M=SU(n,n)/SL(n,0)xRY , we formulate and
prove a Paley-Wiener theorem for the spherical Laplace transform on M
and we find an inversion formula for the Abel transform on M.

0. Introduction

Let M = SU(n,n)/SL(n,C) x R%, let a~ be the negative Weyl chamber of
a certain Cartan subspace a for M, let A € af, the complex dual of a, and
let A~ =expa™. Let ®), denote the Harish-Chandra series on the Riemannian
dual M? = SU(n,n)/S(U(n) x U(n)) of M. G. Olafsson proved in [9],85 an

expansion formula (for general ordered symmetric spaces):

pa(a) = Y c(w\)Bur(a), a€A”,
’LUE‘VO

for the spherical functions ¢y on M (see §3 for a precise definition and con-
struction of ¢y ), where ¢(\) is the c-function for M and Wy is some Weyl
group.

The Berezin-Karpelevic¢ formula for the spherical functions ;/)‘)i‘ on M¢?
was proved by B.Hoogenboom, see [6], using the Harish-Chandra expansion of
¥¢ and an explicit expression for ®). We use the expansion formula above to
prove a similar (explicit) formula for the spherical functions ¢y on M.

The spherical Laplace transform £ on M is defined in terms of inte-
grating against the spherical functions. We use the explicit formulae for the
spherical functions on M and M? to prove a Paley-Wiener Theorem for the
spherical Laplace transform, generalizing results in the rank 1 case obtained by
G. Olafsson and the first author, see [1].
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The Abel transform on M is related to the spherical Laplace transform
L by the classical Laplace transform on the cone ¢max C a. We find an inversion
formula for the Abel transform, using an approach similar to the method used
by C.Meaney for the inversion formula for the Abel transform on M%, see [8].

We have tried to keep notations and proofs to a minimum in order to
make the presentation as clear as possible, we refer to [3], [5] and [9] for more
details on spherical functions and the spherical Laplace and Abel transforms
defined on ordered symmetric spaces.

We would like to thank J.Faraut, G. Olafsson and H. Schlichtkrull for

helpful discussions and comments.

1. Notation and preliminaries

Let n be a positive integer and let G¢ = SU(n,n) denote the connected group
of matrices with determinant 1 preserving the hermitian form

(z,y) =101+ + Tnln — Tnt1Gnt1 — * — TonPon, &, Y € c?,

The Lie algebra g° = su(n,n) is given by 2n x 2n-matrices of the form

“={(&0)

where a,b and ¢ are n x n-matrices. It is isomorphic (by c¢-duality) to

= o B =03* v=~" Stra =
g—{(7 _a*>‘5—ﬁ,7—7, t 0}-

We embed § = sl(n,C) &R = {a € gl(n,C) | Stra = 0} in the diagonal as

follows:
o .-
—«

Let G and H denote the analytic subgroups of GL(2n,C) with Lie algebras g
and b respectively. The involution ¢ on g given by

(5 0)=(5 7).

fixes h. The —1 eigenspace q of o is given by:

{(, e

Let M =G/H = SU(n,n)/SL(n,C) x R%, then G/H is an ordered symmetric
space of Cayley type, see [5] or [9], §1.

Let 6 be the classical Cartan involution on g, i.e. (X) = -X* X € g,
and let € and p denote the +1-eigenspaces of 6. Let K = S(U(n) x U(n))

a=—a",b=-=b" tr(a+b) :0},
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denote the maximal compact subgroup of G with Lie algebra €. Then G/K is
isometric to the Riemannian dual M? of M, see [5] and [9],§1 for details.
We choose a Cartan subspace a C p N q for M as follows:

_ {XT: (; g)‘T:diag(t1/2,...,tn/2), S eR}.

We note that a also is a Cartan subspace of p. We identify a and R™ via the
map R" 5t = (t1,...,t,) = T = diag(t,/2,...,1,/2). Let ~; € a* be defined
by: 7i(t) = —t; for 1 = 1,...,n. We identify the complexified dual af and C"
by the map:

C"3A=(A,. o hn) = — Y A7

The root system A = A(g, a) is given by A = {£~,;}U { ‘”T:t%} , with multiplicity

Yiti
2

meq = 2 for the short roots a = and my = 1 for the long roots o = £~;.

Let AT = {y;} U {wi% 1 < J} be a set of positive roots. Let furthermore Ag

denote the root system Ag = {VJ 2% } with positive roots AT = { 1 < _]}
The negative Weyl chamber a™ is given by:

T={eERMO<t <ty < <tpog <tnl

Let W = {+1}" x &,, and Wy = &,, (the permutation group of n elements)
denote the Weyl groups of the root systems A and Ag respectively. Let finally
n = YoeatGas B =2 ca+8-a, A =expa, AT =expa”, N = expn and
N = expn, where exp is the exponential mapping from g to G.

Let + € R™ and r € R. We will use the notation = > r (z > r) if
zj >r (v >r) for all j. Let Cmax be the (unique) closed H -invariant cone
in q defined by Cmax N @ := cmax = {t € R™|t > 0}. Let S = exp(Cmax)H be
the associated semigroup in G, and let S° denote the interior of S. Let finally
Sy =5°NA=expcay-

Let 1 : D(M) — D(M?) denote the Flensted-Jensen isomorphism be-
tween the commutative algebras of invariant differential operators on M and
M?® respectively (mapping the Laplace-Beltrami operator A on M onto the
Laplace-Beltrami operator A4 = n(A) on M?). Let (D) and T¢(D?) de-
note the radial part (on A7) of D € D(M) and D¢ € D(M?) respectively.
There exists a unique map CP(H\S°/H) 3> f + f¢ € C®(K\G/K) such that
fla- = f&_ and TI(D) fia- = Hd(n(D))fﬁA_ , see [5] or [9], §4 for more details.

Let Py and @) denote Legendre functions of the first and second kind.
We note that

Py (cosh) = o372 (1) = oS(1/2),

and
F'(A+1)
T(HT(\+

where gog‘a’ﬂ) and @&a’ﬂ) denote Jacobi functions of the first and second kind. We
can furthermore view PA_%(cosht) and QA_% (cosht) as spherical functions on

(0,—3) 0,0
)QA s (cosht) = 3777 (1) = 80N (1),
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the Riemannian symmetric space SO,(1,2)/S0(2), respectively on the ordered
symmetric space S0,(1,2)/S0,(1,1), of rank 1. From e.g.[7],§2, we get the
following estimates on PA_%(cosht) and Q)\_%(cosht):

Py (cosht)| < cel PA=DI,

for all t € R and A € C, for some constant ¢; and, for any r > 0:

‘F(/H— 1)
T(A+ 1)

‘Q)\_%(COSht)‘ S cre_(%)\—}-%)t’

for RA >0 and ¢t > r > 0, where ¢, is a constant only depending on r.

2. The spherical Fourier transform on M? = SU(n,n)/S(U(n) x U(n))

In this section we recall some well-known definitions and results for the spherical
Fourier transform on M?, see e.g. [4], Chapter 4.
Let A € C*. The Poisson kernel for M? is defined by:

NAK 3 nak = z — o™ =: pi(z),

where p =37 4 maa. The spherical functions on M¢? can be written as:

#ho) = [ i),

for © € G. The spherical functions are bi- K -invariant, ¥§(exp0) = 1 and
Dy = v(D)(N\)§ for all D € D(M?) and all A € C*, where v is the Harish-
Chandra isomorphism. They are furthermore invariant under the action of the
Weyl group W, ie. ¥, ={ for all w € W.

Let A denote the simple roots in AT. The Harish-Chandra series:

B = Y @T), aedr
nEMU{0}A

is a solution of the differential equation A%®y(a) = (\? — p?)®(a) for a € A™,
where T'g(A) = 1 and T'y(A), ¢ € NA is determined by recursion. The Harish-

Chandra expansion formula states that:

IﬁiA((J,) = ¢§(a—1> = Z cd(w/\)CDwA(a,), a€ A,

weW

where the Harish-Chandra c-function ¢? for M? is given by (modulo constants):

cd(/\) = /Npi(n)dn = H F(P(_i/\”l H(/\? _ /\§>_1.

j _/\j+§> i<j



ANDERSEN AND UNTERBERGER 315

The Harish-Chandra series on M? is given by:

_ T(\; 4 1) I1; @x, 1 (cosht;)
1 By(expt) = /2 . L2 \
for ¢t > 0, where
5 (t) = H sinh (—a, t) = on(n—1)/2 H(cosh t; — cosht;),
a:w‘iw’i<]. i<j

see [6], Theorem 2. Using the Harish-Chandra expansion formula, this yields the
Berezin-Karpelevi¢ formula for the spherical functions on M?:

‘ det (PAi_%(cosh t]')>
[Lic; (A7 = A7) d1(t) ’

for all ¢+ € R™, where ¢ is a constant, see [6] for more details.

Pi(expt) =

The spherical Fourier transform F on M¢? is defined for any function

fECX(K\G/K) as:
FOW = [ fawts@ie = [ fappty@itade,

where §(expt) = [, ca+ sinh”* (—a,t) = & (1) Hj sinht;. The inversion for-
mula for F reads (after normalizing d\ suitably):

fle)= | FONR @
forall f € CX(K\G/K) and z € G.

Let R> 0. Let CP(K\G/K):={f € C*(K\G/K)|suppf C exp Br},
where Bp := {t € R"||t| < R}. Define the Paley-Wiener space Hr(C") as the
space of W -invariant holomorphic functions ¢ on C" of exponential type R,
1.e. satisfying the estimate:

sup e BIRM(1 4 |/\|)N|g(/\)| < 00,
AeCn

for all N € N. Furthermore denote by H(C") the union of the spaces Hr(C")
for all R > 0.

Theorem 1 (The Paley-Wiener Theorem). The Fourier transform is
a bijection of C(K\G/K) onto H(C™). More precisely it s a bijection of
C¥(K\G/K) onto Hr(C") for all R > 0.

3. Spherical functions on M = SU(n,n)/SL(n,C) x R}

We define spherical functions on M according to [9], Definition 4.1:
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Definition 2. An H-biinvariant continuous function ¢ : §° — C is called a

spherical function if there exists a character x of D(M) such that (in the sense
of distributions) Dy = x(D)y for all D € D(M).
Define the Poisson kernel for M (and the open orbit NAH ) by:

NAH 3 nah =z — o’ =: py(a),

and px = 0 on G\NAH. We note that hx € S C NAH for all h € H and

z € 5, see [3], Theorem 4.2. We can construct spherical functions ¢y as follows:

ox(z) ::LpA(hx)dh,

for # € §°, and Dyy = v(D)(N)px for all D € D(M), whenever the integral
exists, see [3],85 and [9], Theorem 4.10.
The asymptotic behavior of ¢y as t — oo, t € a~ is given by:

lim e(A_p)tLpA(exp t) = c(A) = co(N)ea(N),

t—o00

see [3],86 for details, where ¢ is the c-function for M given by:

(W= [ s

NNNAH

the function cq is given by (modulo constants):

At
o= [ paar = [ B TIw+ 40,
J 1<J

see [2], Corollaire 5.2, and ¢q is the ¢-function for a Riemannian symmetric space
with root system Ag, given by (modulo constants):

co(N) = JJ = )™

i<j

We note that cq is Wy-invariant, i.e. co(w)) = co(A) for w € Wy.

Counsidering asymptotics of the spherical functions and the correspon-
dence between (the radial parts of) invariant differential operators on M, re-
spectively on M?, we obtain the following expansion formula for ¢ :

(2) wala) = ca(N) Z co(wA)@yr(a), a€ A,
wE Wy

for A in a dense open subset of C", see [9], Theorem 5.7. We use this expansion
formula to find an explicit expression for @y :
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Theorem 3.  The spherical functions on M are given by:

c det (Q)\i_%(coshtj))
I R AT R

oalexpt) = H<(

for X >0 and t > 0, where ¢ is a constant. The map N — pr(expt) extends
(for fized t > 0) to a meromorphic function with simple poles for \; € —N + %,
(t=1,...n) and \; = =X (1 #J).

Proof. The expansion formula (2) yields:
ealexpt) = ca(N)co(N) Z e(w)Pyr(expt) = c(N) Z e(w)Pyr(expt),

we VVO we VVO

since co(wA) = e(w)eg(N) for all w € Wy = &,, where £(w) denotes the sign
of the permutation w € &,,. Inserting the explicit expression (1) of the Harish-
Chandra series ®) gives the result by definition of the determinant. |

We easily get the following estimates of the spherical functions on M:

Lemma 4. Let r > 0. There exists a constant ¢, such that
(Sl Hor(expt)/c A\ < Cre—minwewo(w%)\,ﬂ < cre—(%)\,rto>
|01(t)pa(exp ,

for RA >0 and t > r, where t, =(1,...,1).

Proof. Let r > 0, then:
'(A;+1)

o1(t expt)/e(N)| = ¢ | =—2L—2 det _

i (Da(exp /()] = | Gt (@,

—min,ecw, (WRA,E
< ce € 0< >7

(cosh t]-)> ‘

1
2

for A > 0 and ¢ > r, for some constants c. [ |

From the two expansion formulae for the spherical functions we finally
obtain the following correspondence between the spherical functions on M? and

M:
cd(w/\)

SOUJ)\(a)v ac A_7

vaa )y =pl@) = Y

weW,\W c(w)

see also [9], Theorem 5.9. We note that the fraction N 1s Wpy-invariant.

4. The spherical Laplace transform on M

We define the normalized spherical Laplace transform £° on M as (cf. [3],§8):

Lo(H)N) = ca(N) . fa)pa(a)d(a)da,
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for any f € C®(H\S°/H) = C*(5%)"° (the left-Wy-invariant functions in
C2°(S%)), whenever the integral converges. From the explicit expression for ¢y,
we see that the function A — L°(f)(\) extends to a meromorphic function on
C™ with at most simple poles for A\; € =Nz =1,...,n).

Let f € C>(S9)"o. We see that L°f satisfies the following functional
equation:

(3) FFHN = > alwh)Lo(f)wh),

weW,\W

almost everywhere (and the right hand side extends to an analytic function),

) = et a0 = [T gl T = )

where

The inversion formula for the normalized spherical Laplace transform is
an easy consequence of (3) and the inversion formula for the spherical Fourier
transform, see also [9], Theorem 6.13:

Theorem 5 (The Inversion Formula). Let f € C(S%)"°. Then

W et gy
f(a) - |W0| o L (f)(/\)¢)\( )Co(/\)cd(—/\)7

for all a € S9.

Let R > r > 0 and define C°%(S4)"° = {f € C>(5%)"o|suppf C
exp(C, N Br)}, where C, = {t € R"|t > r}. Lemma 4 and (3) suggest
the following definition of the Paley-Wiener space, the supposed image space
of the normalized spherical Laplace transform acting on C2°(S%)"° (or on the
subspaces C o, (59)V0):

Definition 6. Let R > r > 0. We define the Paley-Wiener space PW, gr(C")
as the space of Wy-invariant meromorphic functions g on C", with at most

simple poles for \; € =N (¢ = 1,...,n), such that (i)

sup RO (14 AV g(A)/eo(A)] < oo,
RA>0

for all N € N, and (ii) the ¢;-weighted average
Py = Y ealwh gl

wEW,\W

extends to a function in Hz(C"). Furthermore denote by PW(C") the union
of the spaces PW, r(C") over all R > r > 0.

It is easily seen that L£° maps C7 > (59)We into PW, r(C") for all
R > 1 >0 (since LOIAL)(N) = (A2 — pH)Lof(N ) for all f € C(S9)™). We
remark that P*V L% acts injectively on COO(SA) Vo since PYLO(f) = F(f4) =0
implies f = f¢ =0 on A~ for any f € C>°(5%)"™° by injectivity of the spherical
Fourier transform. The following lemma, due to H. Schlichtkrull in the rank 1
case, see [1], Lemma7, shows that P*" is injective on PW(C"):
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Lemma 7. Let g be meromorphic function on C" that satisfies item (i) of
Definition 6 (for some r > 0). Assume that P"Yg=0. Then g=0.

Proof. Let gl( )—g( )/et(=N)eo(N) and let Wy := {+1}" = W,\W. Then
P*g(\) = |[Wiled(N)ed(—N)avg: ()\), where

avgr(A) == % Z g1(w)

Howew,

is the average of g1 over Wi. It follows from the assumption P*Vg = 0 that
avg;y = 0. The function g¢; also satisfies item (i) of Definition 6, in particular,

g1(i+) € LY(R"). Let
v(s) = / gl(i/\)ei<s’)‘> dA, s € R™,

denote the Euclidean Fourier transform of ¢;(z-). The condition (i) implies that
g1 1s holomorphic in an open set containing {z € C"|Rz > 0}, and the standard
argument with Cauchy’s theorem gives that ~ is supported on C,. On the other
hand, the average avy of v is the Fourier transform of avg (i-), which vanishes,
hence av~y vanishes as well. Hence v = 0 by the support condition. Since the
Euclidean Fourier transform is injective on L'(R™), we conclude that gy, and
hence also ¢, vanishes. ]

Theorem 8 (The Paley-Wiener Theorem). The normalized spherical
Laplace transform L° is a bijection of C2°(S%)"° onto PW(C™). More precisely
it 15 a byection of €5 2 (S0 onto PW,. r(C") for all R >r > 0.

Proof. It only remains to show that the normalized spherical Laplace trans-
form maps zoR(SZ)I’VO onto PW, r(C) for all R >r > 0.

We define an auxiliary function Z¢ by:

Py _1(cosht;)
—d B d _ C H] )\J 5 J
Ex(expt) = Z cH(wA)Bux(expt) = [Tic, (N5 = A7) 61(t)

weW, ;
11, Py, -

cosh tj)

— cd(—/\)c H (F(/\j)

J

for \i # £X\; (i #7) and t; # ¢, (i # j). Hence 9§ = Y wew, =¢ \, and we can

rewrite the inversion formula as:

o |W| o ’d a d\
IO =T Je E T TR
— d\
= |W| mnﬁ F(A )5 (a )m,

for all @ € A7, by Wpy-invariance of the measure dA.
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Consider the wave packet Zg € C*°(S%)"° of g € PW, g(a}) defined
by the inversion formula(e) (for a € A7 ):

Zota) = S [ stvesto s
d\

=Wl sNE vy

Fix r > 0 and assume that ¢ € C,.. There exists A, > 0 such that (\,,t—rt,) =
—e <0 (t, =(1,...,1)). This yields the following estimate:
|25 in, (X 1) /¢ (=X = pAo) | < e(14 [N 4 pho|) "/ 2etCorrtod e

for ¢ > 0 and A € :R", for some constants ¢ not depending on A. By Cauchy’s
theorem and a contour shift we get:

_ g(A) Ei(exp?)
Zg(expt) = |W]| o 00 =N dA

Q(/\_l_,u/\o) ")\—{—u)\o(exp t) )\
ik Co(A + pAo) (=X — pho)
—0 for p— oc.

= |W|

By continuity and Wy-invariance this shows that Zg is identically zero on
S%\ exp C;.
An easy calculation shows that (for a € A7 ):

Zg(a) = ||VVIT//;|| . Q(A)lbf(a)m

av -2
= [ Pausta) || ax

which we recognize as the inverse Fourier transform of P*g € Hr(C), whence
Zg(a) = 0 for a € S9\ exp Bg by the Paley-Wiener theorem for the spherical
Fourier transform on M¢?.

Since P Lo f = Ffé for all f € C°(5%)"0, the above also yields:
PYLTg = F(Ig)" = P¥g,

for all g € PW(C"™), hence Lemma 7 implies that £°Zg = g for all ¢ € PW(C")
and we conclude that £° maps TR(SA)WO onto PW, g(C") forall R >r > 0.m

5. The Abel transform on M = SU(n,n)/SL(n,C) x R

The Abel transform A of an H-invariant function f on the semigroup S is

defined as (cf. [3],§8):
_”/ f(na)dn
N
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for a € A, whenever this integral exists (we put f(z) =0 for + € NAH\S). It

has the following connection to the spherical Laplace transform (for A > 0 and
otherwise by analytic continuation):

L) = / a " Af(a)da = La(AF)(N),

where L4 1s the Euclidean Laplace transform on A with respect to the cone
Cmax , see [3], Proposition 8.5.

Using the explicit expression of the spherical functions from Theorem 3,
we get (modulo constants):

H</\? - /\3>£(f)(/\> = /t e et flexpt)det (Q)\ (Cosht )) ;(t) dt

i<j
= / f(expt)det <Q>‘._1_(cosh t]-)> 51(t) H sinh ¢ ;dt
tn Sty 1>...00>1 >0 vo2 ;

- (expt)e @, _1(coshwt;)dq(t) | | sinht;dt
Z /tn>tn_1>...t2>t1>o H Ai—3 J H 7

wEWo ;

(expt) H Q)\ cosh wt ;)01 (wt) H sinh t;dt

wEWy ln>tn—1>--~t2>t1>0 j

= flexpt)dy(t HQ)\ (cosht;)sinht; 3 dt

Cmax

= LY (flexp:) - 61)(\) = EAA?(J((QXP ) - 00)(A),

where LY is the n-fold tensor product of the Laplace transform £; on the
ordered symmetric space S0,(1,2)/50,(1,1) of rank 1:

= AOO f(t)Q)‘_%(cosht) sinh tdt,

for f € CP(R4), and AP is the n-fold tensor product of the Abel transform
Ay on S0,(1,2)/50,(1,1):

A f(t) / f(7)(2cosht —2cosh7)™ 172 sinh 7dr,

for f € CX(Ry), see [3],810 for details (we have identified A~ in the rank 1
case with R4 via the map a; — t).

We furthermore have:

[I 5 =D et =ca | [1&F - DA ) (V)
i<j i<j
which implies that:

[1(2 —2) A(f) | = AP (flexp ) - 61),

i<j

by injectivity of the Laplace transform £ 4. Finally, inverting one coordinate at
a time, we get by [3],§10:
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Theorem 9.  Let f € C°(5%)"°. Then:

fewn =0 T (G a) | e (H(a% - a,%>Af) (exp7)

k<l

X H ((coshtj — cosh Tj>_1/2 SiIlth) dry...dr,,
J

for t € a—, for some constant c.
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