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Abstract. A class of Lie bialgebras and Lie quasi-bialgebras related to
a triangular decomposition of the underlying Lie algebras is discussed. New
examples are presented.

1. Introduction

A Lie bialgebra is a vector space which is simultaneously a Lie algebra and a Lie
coalgebra, both structures connected by a cocycle condition. This fundamental
concept was introduced by Drinfeld [5] as the infinitesimal counterpart of the no-
tion of Poisson-Lie group: a Lie group which is a Poisson manifold, both structures
related by imposing the multiplication to be a Poisson manifold mapping. Poisson-
Lie groups appear naturally in deformation-quantization theory. Their quantiza-
tions are the quantum groups. The subsidiary notion of Lie quasi-bialgebra was
again introduced by Drinfeld in his approach to the quantization of classical so-
lutions of the quantum Yang-Baxter equations [7]. Being more flexible that Lie
bialgebras, the context of Lie quasi-bialgebras allows to use twistings, a technical
tool that became very useful.

In this article, we present a unified way to endow Lie algebras with addi-
tional data (a so-called “triangular decomposition” or “quasi-triangular decompo-
sition”, see Definition 3.1), a Lie bialgebra or Lie quasi-bialgebra cobracket. Then
we provide a systematic iterative way of constructing Lie algebras with quasi-
triangular decomposition, analogous to a construction of Witt [14].

The paper is organized as follows: in §2, we recall the necessary definitions
and results, mostly due to Drinfeld. In §3. we introduce the notion of Lie algebra
with quasi-triangular decomposition and show that a Lie algebra with (quasi)-
triangular decomposition is a factorizable Lie (quasi)-bialgebra. Examples of Lie
algebras with triangular decomposition are given in §4: some of them were known,
as Kac-Moody Lie algebras [6], extended Heisenberg algebras [4]; some of them
are new, e. g. motion Lie algebras with respect to the adjoint representation.
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As a byproduct, we provide new examples of classical r-matrices. In Section §5,
we discuss more examples arising form the analogue of Witt’s construction; in
particular, we endow many generalized Heisenberg algebras with Lie bialgebra
structures. These examples are also new, see however [12].

Parts of this paper generalize results from the unpublished preprint [1]. We
thank F. Levstein for his interest in this work and B. Enriquez for many interesting
conversations during his visit to FaMAF in August 1998. We are also grateful to
the referee for his (her) careful reading of the typescript.

2. Preliminaries

For simplicity of the exposition, we shall work over C. We collect in this section
the necessary definitions and theorems, due mostly to Drinfeld [7], [5]; see [3] for
further properties of Lie quasi-bialgebras. By abuse of notation, ad will mean a
representation which is tensor product of copies of the adjoint representation.

Definition 2.1. A Lie quasi-bialgebra is a triple (g,d,¢), where g is a Lie
algebra, § : g — Ag Cg®gisa l-cocycle and ¢ € A’g C g ® g ® g such that
the following axioms hold:

Alt(0 ®id)d(z) = ad z(¢), z € g; (1)
Alt(0 ® id®1id)(¢) = 0, (2)

where Alt is the alternation map and “l-cocycle” means that ¢ is linear and
§([z,y]) = adz(d(y)) —ad y((z)). Examples of 1-cocycles are the 1-coboundaries:
if r € g®g, then Or : g — g® g, the map given by dr(z) := adz(r) —r, is called
the coboundary of r. Furthermore, if ¢ = 0 we say that (g,d) is a Lie bialgebra.
So that equation (1) becomes Alt(§ ® id)d(z) = 0 and equation (2) is identically
satisfied. The equality Alt(d @ id)d(z) = 0 is called the co-Jacobi identity.
Definition 2.2.  Let (g,0) be a Lie bialgebra. A Lie subalgebra h C g is a Lie
subbialgebra if 6(h) Ch®b.

Definition 2.3. A Manin pair is a data (p,p1,p2), where p is a Lie algebra
provided with a p-invariant, symmetric, non degenerate bilinear form < | >:
p xp — C, p; is an isotropic Lie subalgebra of p and p; is an isotropic subspace
of p complementary to p;. That is, py S Py =p, < pilp; >=0, 1 = 1,2. If py is
a Lie subalgebra of p, we say that (p,p1,p2) is a Manin triple.

The terminology “Manin pair” is justified as follows: to a Manin pair
(p,p1,p2) corresponds a Lie quasi-bialgebra structure on p;; and changing the
complementary subspace p; amounts only to a twisting of this structure, so that
up to twisting only the pair (p,p;) counts. See below for details. We remark that
Drinfeld does not fixes the isotropic complement p, since he is interested in the
notion of Lie quasi-bialgebra up to twisting.

We now recall the relation between Manin pairs and Lie quasi-bialgebras.
Let (p,p1,p2) be a Manin pair such that p is finite dimensional. Then there
is a Lie quasi-bialgebra structure on p;. Indeed, the restriction of the bracket
to Py @ P2 — p = P & Py has two components: [, ], : P2 ® p2 — Py and
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[,]1 192 @ P2 — py1. Since py ~ p5 and py @ Py ~ (P2 ® p2)*, the first defines by
transposition a cobracket § : p; — p; ® py; that is, < (z)ju @ v >=< z|[u,v] >,
T € Py, u,v € py. Similarly, the second defines an element ¢ € p; ® p; ® p;. Put
¢ = —tp. Then (p;,d,¢) is a Lie quasi-bialgebra.

Conversely, let (g,d,¢) be a finite dimensional Lie quasi-bialgebra. Put
p=gEg", pp =g, p» = g and endow p with the canonical scalar product. Let
O g*®g* — g* be the transpose of the bracket and let § : g*®@g* — g be induced
by ¢. Take 6* — 0 as the commutator in g*; it takes values in g & g*. Then [z,]]
can be uniquely defined for x € g, [ € g* so that p is a Lie algebra and the scalar
product in p is invariant. Explicitly, if {z;} is a basis of g, {2’} is the dual basis
in g* and

B cfj;vk, §(z;) = d{kxj Qxp, and ¢ =Yz, ® r; @z (3)

(here and below, summation is assumed for repeated indices), then {z;} U {z'} is
a basis of p and

< x|ad >=5g, < milz; >=0, <z'le! > =0,

[:pi, :cj] = dzjxk — ¢iﬂx1, [, :cj] = d‘zk:vk + c{i:vl.

(4)

It is clear from the preceding discussion that psy is a Lie subalgebra if and only if
¢ =0.

Example 2.4.  We recall that, for a Lie algebra g and a g-module V', the
motion Lie algebra g x V' is the vector space g & V' with the bracket

[(z,u), (y,v)] = ([x,y], 2.0 — y.u), r,y € gyu,v € V.

If (g,0,0) is the trivial Lie bialgebra with underlying Lie algebra g then
p =g & g* is the motion Lie algebra with respect to the coadjoint representation.

Remark 2.5. If (g,d) is a finite dimensional Lie bialgebra and (p,p1,p2) is
the corresponding Manin triple, there is a one-to-one correspondence between
subbialgebras q C g and subalgebras q of p; = g such that g N p, is an ideal of
p2.

Let (g,0) be a finite dimensional Lie bialgebra and let (p,pi,p2) be the
corresponding Manin triple. The double of g is the Lie bialgebra 9(g) whose
underlying Lie algebra is p and whose Lie cobracket is dr, where r is the image of
the canonical element of g ® g* under the embedding g ® g* — 0(g) ® 2(g) (the
canonical element is e; @ €', where ¢; is a basis of g and €' is the dual basis in
g*). Let (q,91,92) be the Manin triple corresponding to the Lie bialgebra d(g)
and identify g, with p by means of the bilinear form (|); the Lie bracket in g,
denoted [, s, is

[, v]s = [vr,ua] + [ua, va],
where wu;,v; belongs to p; and the bracket in the right hand side is that of p.
Indeed, (§(z)lu@v) = 32;(([z, el [u)(e']v) +(eilu)([z, €|v)) = ([z, 32, ("[v)eid [u) +
([z, 2o eilu)ellv) = ([z, vi][u) + ([, ua][v) = (z|[v1, u]) + (z[[ua, v]) . Here, z € g,
U,V € (2.
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Remark 2.6.  Let now (p,ps,p2) be a Manin pair with p not necessarily finite
dimensional. We decompose again [z,y] = [z,y]i + [z,y], for z,y € p, and let
§:(p2)* — (p2 ® p2)* be the transpose of [, ],. Identifying p; with a subspace of
(p2)*, the space of those x € py such that §(z) € p; ®py is a Lie subalgebra of p; .
Let {x; : ¢ € I'} be a basis of p; and assume that there exists a family {z": ¢ € I'}
in py such that (z;]z/) = §/. If the support of the family (d}'); e; is finite for
each k, then 6(p1) C p1 @ py.

Let ¢! be given by [z%,29]; = —¢¥!'z;. If the support of the family
(¢“"); j1er is finite then it defines ¢ € py @ p1 @ p1 and (p1,d,¢) is a Lie quasi-
bialgebra. In fact, a weak version would be that ad z(¢%') € p; @ p; @ py for any
T EP;.

We now recall the notion of twisting of Lie quasi-bialgebras [7]. If r is an
element of g ® g, then set

;,\:: [TIZ, T'13] + [TIZ, T'23] + [TIS, TZS]; (5>

the identity 7 = 0 is the classical Yang-Baxter equation (CYBE). If r = riiz; @ z;,
then 7 = 77*z; @ x; ® x;, where, keeping the notation from (3),

sj th i is th j is gt k

-
r = et ettt el ettt (6)

7
Let (g,0,) be a Lie quasi-bialgebra and let r € A*g. Put
8, = 6(z) + ad ar, &=+ AL ®@id)r — T (7)

Then (g,9,,¢,) is also a Lie quasi-bialgebra; we shall say that it is obtained from
(g,0,¢) by twisting via r. If (g,9) is a Lie bialgebra, 7= 0 and Alt(é ® id)r =0
then (g,d,) is a Lie bialgebra. These hypotheses hold if r € A*gy where go is an
abelian subalgebra of g such that §(go) = 0.

Lemma 2.8 below is stated in [7] without proof; we include one for com-
pleteness. We need the following elementary linear algebra facts:

Remark 2.7. (a). Let W be a vector subspace of a vector space V. Fix a
complement U of W in V, 1. e. V =W @ U. There is a bijection between
the set of all complements of W in V and hom(U, W). Explicitly, if Z is such
a complement and x € U then write ©+ = ow + xz, with aw € W, 25 € Z and
define ¢z(z) := xw. Conversely, if ¢ € hom(U, W) then Z := the image of @,
where ®(z) := z — p(z), is a complement of W.

(b). If in addition V' is provided with a non-degenerate symmetric bi-
linear form (,), W is isotropic and admits an isotropic complement U then
there is a bijection between the set of all isotropic complements of W in V' and
{ € hom(U, W) : (¢(z),y) = —(x, ¢(y))}-

(c). If in addition V' is finite dimensional, there is a bijection between the
set of all isotropic complements of W in V and A*W. Explicitly, let (z;) be a
basis of W and let 2/ € U such that (xi,xj) =8 . Ifr=riz;® z; € N*W then
the subspace V, := (z' + r¥'z;) of V is an isotropic complement of W .

Lemma 2.8.  Lel (g,d,¢) be a finite dimensional Lie quasi-bialgebra and let
(p,p1,p2) be the corresponding Manin pair. Then changing the isotropic comple-
ment of Py amounts to twisting the corresponding Lie quasi-bialgebra. Fxplicitly,
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if r € N*°g and w = p_, corresponds to —r as described in Remark 2.7 (¢), then
the Manin pair (p,p1,u) corresponds to the Lie quasi-bialgebra (g, 6., ¢, ).

Proof. let x,,...,7, be a basis of p; and :v],... ,2™ be the dual basis in
P2 so equatlons (3) and (4) hold. Tet u',. " be the basis in u given by
ut = a2t + T”;v Let 7 have the same meaning as in (6) Then

[u',w!] = [ray 4+ ', 1% + apal]

= (2", 2] + 5[z, xp] 4 g, 2] 4 P g, )
=dY2® — ¢ xg+r¥diag + M, af
+ Zld] Ts+ pil ]lac + r”r]kclskxs
=diu® + e ut 4 r”cilu — ¢y,
—<u@u ®id | Alt(0 @ id)r > 7Ry
It follows that ¢, = ¢ + Alt(6 ® id)r — ' and

5,n(1't) = disz- ® z; + rkjc;klz ® z; + r”(, T @ x;
= 0(zy) +ad wt('r' ka) ® z; + r* e @ ad z(xg) = 6(xy) + ad x4(r).
|

Definition 2.9. A Lie quasi-bialgebra (g, d, ¢) is quasitriangular if there exists
r € g® g, such that:

1. the coboundary of r is the cobracket of g, i.e. dr = ¢, and
2. 7= ¢. (The definition of 7 is given in formula (5).)

So that if g is Lie bialgebra (i.e. ¢ = 0), then it is quasitriangular if and
only if dr = 0 and r satisfies the classical Yang-Baxter equation. The following
result is also stated in [7] without proof; a proof appears in [3].

Lemma 2.10.  Lel (g,0,¢) be a finile dimensional Lie quasi-bialgebra and let
(p,p1,p2) be the corresponding Manin pair. Lel u be a subspace of p such that
p=p1Du, and lel r € g® g be the lensor associated to u (i.e. p, =u). Then

(a) [p1,u] Cu if and only if the coboundary of r is the cobracket of g.

(b) [p,u] C w if and only if the coboundary of r is the cobracket of g and
r=¢. In other words, (g,0,¢) is quasitriangular if and only tf p1 admils a
complementary ideal in p.

Proof. (a). Let PR be a ba51s of g = p; and :v " be a dual
basis in g* = py. Let u' = 7"“xj —I— z'; then [;vl, ] = (r clt —I— d7 );ck + cil:vs.
Thus [z;,u ] € u if and only if (7" Clt + dZ );vk + l;v = asl(rksxk + x ) for some
scalars asl This happens if and only if ¢}, = o', and rc}, + di* = ¢, r* or

di* = rlick 4 r¥el for all j,k,1. On the other hand,
Or(ar) = (rfch + r¥'ci ), © o, = —(rcly + 1V ch)ox @ . )

That is, [pi,u] C u if and only if diF = rfick + r¥ci, for all j, k1 if and only if
Ir(z)) = d¥zp @ 2; = §(xy).
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For (b), we can assume that d9r = § by (a). We have [z!,u*] = (r**d!! —
M)y + (TSkCi,p + dék);vp. Thus [2',u*] € u if and only if [2),u*] = (TSkclsp +
dF)(r'Pay + aP), ve. PR — G =Rl et 4 diFr'* . Thus

sk_wl t sk_tw [ sk _tw [ wl_ts k kw_ts I _ lkt
el Fritre,, +r¥trte, i rtel, + rtrte,, = ¢

The second and the third term cancel because of the antisymmetry of the bracket.
Performing some permutations in the others terms, we have

sk _wl t ts_wl k ts _kw I lkt
rrtel,, +ritrel, +ritrite,, = ¢

That is, u is an ideal if and only if 7= ¢ and dr = 4. [ |

Definition 2.11.  [13]. A quasitriangular Lie quasi-bialgebra (g,r) is factoriz-
able if the map g* — g, @ — (@ ®id, r+7(r)), is a bijection, where 7 is the usual
transposition.

3. Lie algebras with quasi-triangular decomposition

In this section we introduce the notions of “Lie algebra with quasi-triangular
decomposition” and “Lie algebra with triangular decomposition”; these definitions
are inspired by [6, Ex. 3.2] and are related to but not the same as the notion
discussed in [11]. We show that such a Lie algebra has a canonical structure of
quasitriangular Lie quasi-bialgebra. We give two proofs of this fact; the second one
uses the double and suggests a method of constructing Lie algebras with triangular
decomposition.

Definition 3.1. Let g be a Lie algebra. We shall say that the collection
(g0, 9+,9-,(])) is a quasi-triangular decomposition (QTD) of g if go is a subalge-
bra of g, g, g+ are subspaces of g such that g = g-SgoPgs+,and (|):gxg—C

is a g-invariant, non degenerate, symmetric, bilinear form such that

0= (g+lg+) = (g-]g-) = (g+]90) = (go|g-).

Furthermore, we shall say that (go, g+, 9-,(|)) is a triangular decomposition
(TD) if go is abelian, g_, g4 are subalgebras of g and [g4, g0] C g4 -
In what follows, we shall simply say “g is a Lie algebra with quasi-triangular

decomposition or triangular decomposition”, without mentioning the data defining
it. We shall use the notation z = x4 +2g+a_ for x € g, if z; € g;, j € {+.,0,—}.

Theorem 3.1.  Lel g be a finile dimensional Lie algebra with QTD (respec-
tively TD). Then g admils a canonical structure of Lie quasi-bialgebra (resp. Lie
bialgebra), which is quasitriangular. If g has another structure of QTD with the
same non-degenerate invariant form then the corresponding structures of Lie quasi-
bialgebra are related by a twist.

Proof. Let p = g x g with the product Lie algebra structure, p; = {(a,a):a €
g} and py = {(a— + ap,ay —ag) :a_ € g_, ay € g4, ag € go}. Then p;y is a Lie
subalgebra of p and p, C p is a subspace complementary to p;. Let < | >: pxp —
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C be the bilinear form defined by < (z,y)|(u,v) >= (z|u) — (y|v). Then < | >
is p-invariant, non degenerate and < pq|p; >= 0. If (z,y) = (2= + 29,24 — 20)
and (u,v) = (u_ + ug, uy — ug) belong to p,, then

< (2,9)|(u,v) >= (2,u) = (ylv) = (zoluo) = (=2o| —uo) = 0;

that is < pa|pz >= 0. Hence (p,p1,p2) is a Manin pair and p; ~ g has a structure
of Lie quasi-bialgebra. If g has a TD, then p; is a Lie subalgebra of p and g has
a structure of Lie bialgebra. Since u = {(0,z) : = € g} is an ideal complementary
to p1, @ is quasitriangular by Lemma 2.10.

Let (gg,9,,92,(])) be another QTD of g; its Manin pair is (p,p1,9),
where py = {(a- + ag,ay —ag) : a_ € g_,aq € g, a5 € gy}. The corresponding
bilinear form is again < (z,y)|(u,v) >= (z|u) — (y|v); we have two Manin pairs
that only differ in the complement of p;, so Lemma 2.8 applies. ]

Remark 3.2. § =0 if and only if [g4+,9+] = [9-,9-] = [g,90] = 0.
Let g = gy & go B g— be a finite dimensional Lie algebra with TD, and
consider on g the structure of Lie bialgebra provided by Theorem 3.1.

Lemma 3.3. (a) by =goP g4 and b = gy B g_ are Lie subbialgebras of g.
As Lie algebras, b3 = bg.

(b) v(by) is isomorphic as a Lie algebra to the direct product g x go.
Proof. (a). Keep the notation of the proof of Theorem 3.1. The subspace
orthogonal to by (resp., b_) in py is 0 x g4 (resp., g— x 0) which is clearly an
ideal of py, and clearly py/(0 x g4 ) (resp., p2/g- x 0)) is isomorphic to b_ (resp.,
b ), as Lie algebras. Notice that the pairing (, ) between by and b_ is

(z,y) = (zolyo) + (2]y). (10)

(b). Let T :0(b;) — gxgo be the linear isomorphism Y(z 4+ ¢, yo+y-) =
(x4 + 20+ Yo+ y—, 20 — Yo). We want to show that T([u,v]) = [T(u)Y(v)]; it
suffices to consider u =z € by, v =1y € b_. Let us write [z,y] = [z,y]; + [z, y]2,
where [z,y]i € by, [z,y]: € b_. We deduce easily from (10) that

fe.vh = e, + lesdo, [0l = [ u)- + Sl ol (1)
Indeed, if u € b, ([z,y]y,u) = (z, [y, u]) = («|ly, u]) = ([, yl+ + 5[z, ylo, u). Now
(11) implies our claim. ]

Let {z;: j € J} be a basis of g4, {y;} be its dual basis in g_, {h; : 1 € I}
is an orthonormal basis of go. Then the dual basis of B = {z;} U {y;} U {h;} in
p, is constituted by the vectors

1 o
;= (y3:0), yi=(0.—x;) and ki =g(hi,=hi), jediel  (12)

Corollary 3.4.  Let g be a finile dimensional Lie algebra with TD. Then the
Lie cobracket on g provided by Theorem 3.1 is Ory, where, in the notlation above,

T0:Z$j®yj+1§zhi®hi- (13)

jed iel
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This gives a new proof of the quasitriangularity of g.

Proof.  Preserve the notation of the preceding proof. The orthogonal of the
ideal Y710 x go) is {(u,v) € ?(bs) : ug = vo}, clearly a Lie subalgebra of the
dual of (bs). Then 9(by)/T7H0 X go) =~ g inherits a Lie bialgebra structure
and the canonical projection is a morphism of Lie bialgebras. We claim that
this Lie bialgebra structure coincides with the structure defined in Theorem 3.1.
Let {(u,v) € 0(b}) : ug = vo} — Py be the application (u,v) — (v,—u); it
is easy to check that it is an isomorphism of Lie algebras. Since the introduced
isomorphisms preserve the corresponding dualities, the claim follows. Let r be the
canonical element of 9(b). It is easy to see that the image of r under the above
projection is ry; the latter satisfies CYBE because the former does. ]

Corollary 3.5.  4(go) = 0.

Proof. If H € go, then write [H,z;] = > . ¢;i(H)z;. It follows from the
invariance of the bilinear form that [H,y;] = —>_. ¢;;(H)y;. Hence 6(H) =

ZjeJ[Hvxj]®yj+2jeJ$j®[H’yj] = 0. u
Corollary 3.6. A finile dimensional Lie bialgebra with TD is factorizable. =

Lemma 3.3 and Corollary 3.4 suggest the following method of constructing

Lie algebras with TD.

Theorem 3.2.  Let b be a finite dimensional Lie bialgebra. Consider b C 0(b)
the double of b. Assume thal

(a) there exisls an abelian subalgebra by such that, as vector spaces, b = hd[b, b];

(b) bt = [b*,b%]; there exists an abelian subalgebra 6 such that, as vector spaces,

b* = b @ [6%,6%], and h* = [b,b];

(¢) for any x € Yy, there exisls a unique T € E such that adz coincides with

adz on b* C 0(b).

Given h in By, let T be the unique element ofa such that <;c|72\> = (z|h),
for all x in b.

Let g. = [0,b], g_ = [0°,b"], go = {h+h : h € b}. Then

g=:9-Dgo Dot

is a Lie subalgebra of o(b) with TD. The non-degenerate invariant bilinear form
is the one inherited from o(b).

Proof.  First, we remark that if z € ), u € b and w € b*, then
< ad(z)u|w >=< [z, ul|lw >= — < ul[z,w] >= — < u]ad(z)w > .
By (¢) we know that ad(z)w = ad(Z)w, hence
— <ulad(z)w >= — < ulad(Z)w >= — < u|[z,w] >=< ad(T)u|w > .

Thus, ad(Z) coincides with ad(z) on b.
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Let v = {z — 2 : z € h}, then v is an ideal of ?(b). In fact if u € b, then
[u,z — ] = [u,z] — [u,z] = 0 (see above). In an analogous way, for (c), we obtain
that if w € b*, then [w,z — 2] = 0. So, [r,9(b)] = 0 and clearly t is an ideal.

Let z€tt,s0oz=utw,ue€b,web and <ulr—7 >+ <wlz—7 >=0
for all z € h. For (a) and (b) we have u = hy +u; and w = sy +wy, with hy € b,
uy € [b,b], s €hand w € [6*,6%]. So, 0 =< zlz —Z >=< h+u| -7 >+ <
s1+wilr >=< by| =7 >+ < sy|lz > . Thus, < hy|T >=< s¢1]z > for all z € b,
then by hypothesis s; = f;\l This implies that

tt=g-©g Do =0

As v is an ideal, g is also an ideal. In particular, g is a subalgebra of d(b).

4. Examples.

Example 4.1. A Lie algebra g with TD such that go = 0 is equivalent to a
Manin triple (g, g+,9-).

Example 4.2.  Let g be a Lie bialgebra with TD. If we twist via r € A?go then
(g,0,) is a Lie bialgebra (use Corollary 3.5).

Example 4.3.  Let g be a Lie algebra and let < | > be a non degenerate
invariant bilinear form on g. Then (g,0,0,< | >) is a QTD. It is a TD if and
only if g is abelian.

Example 4.4. Let g = € & p be the complexification of a decomposition of
a real simple Lie algebra. It is known that the representation of £ on p 1is
either irreducible or a direct sum of two irreducible components; in the latter
case, the corresponding symmetric space is hermitian. See [9]. Assume we are in
the hermitian case, 1. e. that p = p; B p2 as €-modules, with p; and p; irreducible.
Then (&, p1,p2,(])), where (|) is the Killing form, is a QTD. It is seldom a TD;
only when g = sl(2,C).

Example 4.5. Let A be a symmetrizable complex matrix of size nx and let
D = (dy,...d,) be an invertible diagonal matrix such that DA = A'D. Let
g = g(A) be the Lie algebra defined in [10, §1.2] and let g = g(A) be the
corresponding contragradient Lie algebra [10, Ch. 1]. We preserve the notation
b, nt, e, fi, af, ete. from loc cit. Tet h; = d;a). Let t be the unique maximal
ideal among the ideals intersecting h trivially; then g ~ g/vr. Then g has a
well-known triangular decomposition, cf [10, 1.2, 2.2], which gives rise to a Lie
bialgebra structure by the method of Proposition 3.1. Tt is well-known [6] that the
corresponding cobracket is given by

(S(hz) =0, (5(62) = %(Q @ h; —h; ® 62') and (S(fZ) = %(ﬁ Qh; —h; ® fﬁ)
(14)

Alternatively, it is not difficult to see that formula (14) determines a Lie bialgebra
structure on g or g. Indeed, [2, Ch. 1T §2 Prop. 8] allows to define the 1-cocycle
on g or g. The co-Jacobi identity is also easy to check; it suffices to verify it on
generators.
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Example 4.6.  Let g be a Lie algebra and (h,ny,n_,(|)) a triangular decom-
position of g. Let [ = g x g be the motion Lie algebra with respect to the adjoint
representation, cf. Example 2.4. Take

b=hxbh, [ =nyxny, and [_=n_xn_.
Thus [ =14 S loB -, Let k(|): [ x [ — C be defined by
k((2, y)l(u,v)) = (2lu) + (ylu) + (z]v).

Then (lo, [+, (-, k(])) is a TD of [.

Now, we assume that g is a simple Lie algebra and g = ny $ h B n_ is
the usual decomposition, where b is a Cartan subalgebra, ny is the span of the
positive, resp. negative, root vectors. In this context, (|) will be the Killing form.
Let A be the Cartan matrix of g, ® be the root system of g, ® be the set
of positive roots and Il = {ay,...,a,} be the set of simple roots. We choose
an € g0 — {0}, @ € ®, (g, is the root space) and H;,m; € b such that:

(Hi|H) = ai(H), VH €Y, aa,a-a,) = Hi, (aala—a) =1, (Hilm;) = d;;.
Let us consider the following elements of [:

Lo = (aa70)7 Yo = (O,G_a), U = (O,GQ), Vo = (a—On _a—a)a a € (I)a
hi = (H;,0), ;= (m;0), ri=(0,H;), si=(m;,—m; 1=1,...,n.

Then it is clear that {z,,uq}aeat+ (resp. {hi,riti<icn) is a basis of [ (resp.ly),
whose dual basis is {ya, Vo facat+ (resp. {li, s }1<i<n )
Applying (4) and (12), we obtain the cobracket 4:

1 1 1
5(xiozi) = §xiai A r; + §uiai A (hZ — T‘Z') 5(uiai) = §uiai A r; 5(h2) = 5(7‘2) = 0.

The corresponding r-matrix is given by

1
0= Y T @Yot ite @ Vot 5 Y (melmi)(hi @ hy—ri@r)  (15)

agdt 7t

Note that (15) is a new example of a classical r-matrix.

Remark 4.7.  Let V be a g-module and consider the motion Lie algebra gV,
i. e. with the Lie bracket given by [(z,y), (u,v)] = ([z,u], zv — uy). Suppose that
g @V admits a non degenerate invariant bilinear form (|). Then (V|gV) = 0.
If V is irreducible and non trivial, (V|V) = 0 and we obtain a monomorphism
of g-modules V' — g*. Assume that g is simple: then V ~ g*. If in addition g
is finite dimensional, identify g* with g via the Killing form. Then any invariant
non-degenerate bilinear form on g& V' is a(z|u) + b(y|u) 4+ b(z|v), for some scalars
a, b. Let ¢ be a scalar and let T. be the Lie algebra automorphism of g & V',
T.((z,v)) = (z,cv). By using an appropriate 7., we may assume that an invariant
non-degenerate bilinear form on g & V' is a multiple of the one considered in
Example 4.6.
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Example 4.8.  The extended Heisenberg algebras have a quasitriangular Lie
bialgebra structure considered in [4] as well as their quantizations. It is easy to
see that the Lie bialgebra structure arises from a TD; see Example 5.6 below.

Example 4.9. Let £ = C[t,t7!] be the algebra of Laurent polynomials in ¢.
Recall that the residue of a Laurent polynomial P is defined by Res P = the
coefficient of P at degree —1. Let ¢ : £L x L — C be defined by ¢(P,Q) =
Res %Q. Then

§D<PaQ) = _qb(QaP)’ (16)

d(PQ,R)+ ¢(QR, P) + 6(RP,Q) =0 (P,Q, R € L). (17)

Let g be a Lie algebra with QTD. As in [10], consider the loop algebra L(g) :=
L ® g, with the bracket [, ]o given by [P ® z,Q ®@ ylo = PQ ® [z,y], P,Q € L,

ry € Lot o £(g) < £g) = C, $(P©0.Q 0 y) = (ely)6(P,Q). Tt is casy
to check, using (16), (17) and the symmetry and invariance of (|)), that ¢ is a
2-cocycle on L(g):

¢(a7 b) = _1/](67 a)a
Lb([a’ b]O’ C) + ¢([b’ C]O’ a) + ¢([C’ a]O’ b) =0, a,b,c e /:(g)

Denote by Z(g) the extension of the Lie algebra L£(g) by a l-dimensional center,
associated to the cocycle ¢. Explicity, £(g) = £(g)®CK and the bracket is given
by

[a + )\1[(, b + /\2[(]1 = [Cl, b]o + 'IJJ(CZ, b)[(, CL,b - E(g), /\17 /\2 - (C

The derivation t% : L — L extends to a derivation of L(g) by t%(m ® P) =
T ® t%P. Let ,CA(g) be the Lie algebra obtained by adjoining to Z(g) a derivation

D which acts on L(g) as t% and which kills K. In other words, ﬁ(g) is ﬁ(g) =
L(g) & CK & CD with the bracket

[a+ MK+ Db+ XK 4 p2 D] = [a,blo + ¥(a,b) K 4+ p1 D(b) — p2D(a),

a,b e L(g),M, A2, p1, g2 € C. Even more explicity

[t @t + MK+ Dy @t" 4+ MK + puy D] =
[2,y] @ 1" b (2]y) K + pany @ " — pyma @ 1",

T,y €9, mn €L, A\, Ay, 1, p12 € C. We extend the form (]) to a form (|); on
L(g) by:

(P@z|Q @y): = Res(t™' PQ)(z|y).
Then we extend further (|); to a bilinear symmetric form (|) on /3(9) imposing
(K[D) =1, (K|L(g) ® K) =0 and (D|L(g) & D) = 0. It is easy to see that ()
is non degenerate and £(g)-invariant (see [10, p. 102]).
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We see, with all these coventions, that here are two QTD of ,CA(g), namely
(Go,G4,G_,(])) and (Go, Ly, L_.(])), where

Gy =gy @Clt, 17" @ go @ 1ClY],
Go=g-@ClL, 1™ ®go @17 Cit™,
Go=g0o®13®CK &CD,
Ly = (g- +g0) @ tCt] & g4 @ C[t],
Lo=(g++g0)@t'Clt™" B g- @ Clt™"].
If g is a Lie algebra with TD then these are TD of ﬁ(g) It can be shown that

these two QTD give rise to Lie quasi-bialgebra structures which are topological
twistings of each other.

5. A variation of Witt’s construction

We now discuss a family of examples arising from a construction due to Witt [14],
see also [8]. Let g be a Lie algebra, let V be a vector space and V* be the dual
vector space of V. Let 7:g — End(V) and p: g — End(V*) be representations
of g and denote g=V*P g V.

Lemma 5.1.  Let §:V x V* — g be a bilinear form. Then the bracket
[(Ayz,0), (XN 2",0)]
= (p(@)X" = p(a" ), [w, 2]+ B(v, N) = B(v', A), w(x)v" = 7(2")v), (18)

MN e V*, 2.2 € g and v,v' €V, defines a Lie algebra structure on g if and
only if for all x € g, v,v' €V and M, N € V*

[, 8(0, A)] = B(m(2)v, A) + B(v, p(x)A), (19)

m(B(v,\))v' = 7B, A))v  and  p(B(v,\))AN = p(B(v, X))\ (20)

Proof.  The antisymmetry of the bracket (18) is evident. A straightforward
computation shows that the Jacobi identity is equivalent to (19), (20). [ ]

Lemma 5.2.  Suppose thal g is provided with a g-invariant nondegenerate sym-
metric bilinear form < | >. Let < | >: V. x V* — C be the canonical bilinear
form. Extend these forms lo g in the following way

<Atzt oM+ +0 >=< N>+ <z’ >+ <o) >, (21)

v, €g, v, eV, AN eV,
Suppose that p = 7w with respect to the form on V x V* and define
B:VxV*—g by

< B, Nz >=<m(z)v|]A >, (z€gweV,Ae V™). (22)

Then the bracket (18) defines a Lie algebra structure on g if and only if the
equations (20) hold. In such case, the form < | > on g is g-invariant.
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Proof. It is clear that if v € V and A € V*, then [v,\] € g is the unique
element such that < z|[v,\] >=< w(z)v|A > for all € g. Hence, (22) implies
(19). Thus the bracket (18) define a Lie algebra structure if and only if (20) hold.
Let us check that the g-invariance of (21): let x € g, v € V and XA € V*, then

< z|[v, Al >=< (v, M|z >=< 7(z)v|A >=< [z, v]|A >
and
<z, Al >=< v|p(z)A >= — < B(v, )|z >= — < w(z)v|A >=<[v,z]|]A > .

We can deduce the other cases from the definition of < | > and the invariance of
the form on g.
|

Remark 5.3.  Instead of defining 8 by (22), we could define 7 by the formula
(22); then we should check that 7 is a representation of g.

Corollary 5.4.  Let g be a Lie algebra with QTD (respectively, with TD). Let
m:g — V be a representation and let p, B be as in Lemma 5.2. Then (go, 94 &
V¥ag- @ V,< | >) is a QTD (respectively, TD) of @ tf and only if the equations
(20) hold. In such case, the motion Lie algebra g &V is a subbialgebra of g.

Proof.  We leave the first part to the reader. Let (9, p1,p2) be the Manin triple
associated to (g,0) as in Theorem 3.1. Clearly, q = {(t,t) : t € g& V} is a
subalgebra of p; and gt Npy = {(v,0) : v € V} is an ideal of py, 50 gB V is a
subbialgebra of g. |

Example 5.5. We preserve the notation above. We assume that g is a finite
dimensional semisimple Lie algebra, the invariant bilinear form is the Killing form
and V' a finite dimensional representation of g. Let Cy be the value of the action
of the Casimir element on the adjoint representation and assume that the action
of the Casimir element on V has a single eigenvalue Cy. Then equations (20)
hold whenever
2dmV Oy
dimg + Cy
Indeed, let M =V & V* and let 1 be the symmetric bilinear form on M which
restricted to V' x V* is the usual evaluation and such that V' and V* are isotropic.
It is clearly g-invariant. On the other hand, it is clear that the Casimir element
acts on V* and a fortiori on M with a single eigenvalue Cy. The claim then

follows from [8, Th. 12.1].

Example 5.6.  We now consider the opposite situation to the example above.
Let g be a finite dimensional Lie algebra and let 7 : g — End(V) be a finite
dimensional representation. Let [ = gébg* be the motion Lie algebra corresponding
to the coadjoint representation. We extend 7 to a representation of [ of the same
name by letting g* act by 0. The bilinear form on [ given by evaluation between g

2.

and g*, and such that g and g* are isotropic, is invariant (e. g. by Example 2.4).
Let 6:V x V* — g* be the bilinear map given by < (v, A)|z >=< 7(z)v|A >,
veV, e V* z€g. Then equations (20) hold because g* C kerm; therefore
1:=V*@& 1[4V has a Lie algebra structure by Lemma 5.2. Furthermore, if g has
a TD then [ also does by Example 4.6 (note that the bilinear form considered in
Example 4.6 is not the same as the one coming from Example 2.4; however (22)

holds for both). By Corollary 5.4, [ also has a TD.
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Lemma 5.7. The Lie subalgebra ) = V* & g* oV, it is a 0f~[ is a Lie
subbialgebra.

Proof.  Let (p,pi1,p2) be the Manin triple corresponding to [ as constructed in
Theorem 3.1. By Remark 2.5, it is enough to show that h N p, is an ideal of p,.
This is not difficult to see using the definitions. |

Notice that h is a two-step nilpotent Lie algebra, or Heisenberg-type Lie
algebra since Heisenberg Lie algebras correspond to the case dimg = 1. Hence the
procedure just described allows to obtain many new Lie bialgebras with underlying
Lie algebra of Heisenberg-type and to provide many new examples of factorizable

Lie bialgebras.
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