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Abstract. We show that every irreducible unitary representation 7 of
an exponential Lie group G = exp @ is characterized by its generalized
moment set.

1. Introduction

Let G be a real Lie group with Lie algebra g, (7, ;) a unitary representation
of G and H® the space of C'* vectors of w. Let g* be the dual space of g. In
[8], Wildberger has introduced the moment map ¥, of 7. For all ¢ in H°\ {0},
U.(€) in g* is defined by:

e

The moment set I, of the representation 7 is by definition the closure in g* of

Xeg. (1.1)

the image of the moment map:
Uy H®\ {0} — g*.

Wildberger has given an explicit description of the moment set I, when
G is a connected simply connected nilpotent Lie group. More precisely, he shows
(Theorem 4.2 in [8]) that I is the closure of the convex hull of the coadjoint
orbit Or associated to m via the Kirillov theory, 1.e.

I = conv(Or).

This result has been generalized by Arnal and Ludwig [1] for connected solvable
Lie groups. Nevertheless, as shown in [8], the moment set does not characterize
the representation for nilpotent Lie groups.
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We can extend the moment map to the dual of the complex universal
enveloping algebra U(g) of g as follows:

~ 1 {dr(A)¢, & o

b)) = e (HEALE) cen(on acue a2
and consider the convex hull J(7) of the image of this generalized moment map
V.. Let us call the set J(7) the generalized moment set of 7, i.e.

J(r) = conv (@,,(Hoo \ {o})) .

Let U, be the subspace of U(g) consisting of elements A of degree less or equal
to n. By restriction to U, , we define:

J(m)" ={flu,, feI(m)}

In [2], we show:

Theorem 0. Let G be a simply connected nilpotent Lie group. Then there
exists an integer n such that, for any unitary wrreducible representations © and
p, one has J(m)" = J(p)™ if and only if © and p are equivalent.

In this paper, we use the set J(7) to characterize the irreducible unitary
representations of exponential groups. More precisely, we prove the following:

Theorem 1. Let G = expg be an exponential Lie group. Let m and p be two
unitary irreducible representations. Then w ~ p if and only if J(w) = J(p).

2. Preliminaries

Let g be a real Lie algebra, G its simply connected Lie group and let exp : g —+ G
be the exponential mapping. The group G is called an exponential group if
the exponential mapping exp is a diffeomorphism. In particular this condition
implies that G 1s solvable. Throughout this paper, we assume that G is an
exponential group.

It is well known that each irreducible unitary representation = of G is
associated to a coadjoint orbit O, in g* by the following construction:

Let f be in g*. We take polarizations in f, i.e. subalgebras fh such
that:

(f:[b,b]) =0

with maximal dimension. Among those polarizations, we can find one satisfying
the Pukanszky’s condition:

Hf=Ff+ht (here H = exp(h)).

For such a Pukanszky polarization, we define 7y y by:

G
mry = Indgxs
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where xy denotes the unitary character:
xflexp X) = et f(X) VX eh

of H.

Then 7y is irreducible and the class 7 of myp depends only of the
coadjoint orbit of f.

Moreover, the map f +—— [ry] defines a bijection K (the Kirillov
correspondance) between the space g* /G of orbits and the the space G of classes
of irreducible unitary representation of G [4], [5], [7].

Let now H be a closed subgroup of G and my a unitary representation
of H on the space Hr,. Let us describe explicitely the induced representation

T = Indgwo. Let dg be a left Haar measure on G and Ag the modular function
of G. Note Ay g the positive character of H defined by:

Ap(h)

Rel) = R

Let K (G, H) be the space of continuous functions F' on G, with compact support
modulo H and which verify:

F(gh)=Apa(h)F(g)  (9€G, heH).

G acts on this space by left translation. It is well known ([4]) that, up to a
multiplication by a scalar, there exists a unique G-invariant positive linear form:

Fe F(g) dg
G/H
on K(G,H).
Let K(G,H,mp) be the space of continuous mappings F : G — Hp,
with compact support modulo H and which verify:

F(gh) = A g(h)me(R)"F(g) (g€ G, he H).

If F belongs to K (G, H,mg), the function g — ||F(g)||%, belongs to K (G, H).
Set:

IFI2= ¢ IF)IE, di
G/H

The induced representation © = Indfl o of G is realized by left translation on
the Hilbert space H, obtained by the completion of K (G, H,m) with the norm
defined above.

Definition 2.1 Let h be a subalgebraof g, aset B = {Xy, -+, X} of elements

of g is called a coexponential basis to § in g if the map:
(t1,t2, -, ta;Y) — Eg(t1,ta,- -, ta;Y) = expti Xy exptaXa,...,exptg XgexpY

is a diffeomorphism from R? x § onto G.
For any subalgebra f, there exist coexponential basis (see [4], [5]). With

such a basis, we can realize the space H, of an induced representation = =
Ind% 7y as the space L*RY Hyy).
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3. Main lemma

The proof of theorem 1 will use an induction on the dimension of g. The following
lemmata allow us to pass from g to some subalgebra go of lower dimension.

Lemma 3.1.  Let G be an exponential Lie group. Let m and p be two ir-
reducible representations of G such that J(m) = J(p). Suppose there exists a
connected subgroup Go = exp(go) of codimension 1 and two irreducible represen-
tations mg and po of Go such that:

T = Indgoﬂ'o and p= Indgopo.

Choose a coezponential basis {X} to go in g, realize 7™ (resp. p) on the space
L*(R,Hnr,) (resp. L*(R,H,,) ). Suppose furthermore that there exists u in U(go)
such that:

(dr(u)(€))(t) = h($)E®)  and  (dp(u)(n))(t) = h(t)n(?),

for each & in HZ and n i H®, for every t, where h is a strictly increasing

C* function with h(0) > 0. Then:

J(mo) = J(po).

Proof. We recall that all C'> vectors of 7 are C'> functions of the variable
t in R with value in the space H7® . Moreover, if { is a vector in H® and ¢
a C> complex valued map with compact support, then £(t) = ¢(t)&y is a C
vector of 7 [6].

We fix such a vector ¢, so that:

?(0) =1, [Sollx, =1 and [|¢]l~=1.

Since J(r) = J(p), there exist normalized C'*° vectors ny,...,n, in H5°

and Aq,..., A\, in |0,1] with Z?:l Aj =1 such that for all A in U(g):

e (Har(6,6)) =9 [ T3 Aol )

This implies:

1)

(dn(A)E.€) = 3" Ni{dp(A)n;,m;) for all A in U(g). (3.1)

J=1
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In particular, for any integer k, we have:

(dm Z/\ (dp(u 77]77IJ>

Choose M > 0 and m < M such that the support of ¢ is contained in [m, M].
Then, for every odd k,

(an(ut)e.€) = [ BHOlEIE,
= [ sl

m

< (M) [igll7 = (h(M))".

Hence:
“+ oo

S [ HE 01 e = ZA (Aol )
=1 7=

= < dr(uf)E, &) < (h(M))*.
Thus, for each ¢ > 0, for all M + ¢ <t, we have 0 < (M + ¢) < h(t) and:

+ oo

n +00 n
POE+ SN [ O de <N [ @01 e <
j=1 : j=1

+e

This shows that:
ha) \*
A; < 1 — ] =
Z L o de<h<w+e>) :

Hence supp n; C|] — oo, M], for all j. Using the negative increasing function

t — h(t) — h(M) on | — oo, M|, one gets by (3.1):

ZA [ ranp g ZA (dpl = H(L) 05,
st - B
/ h(M))** o (t)dt.
The function t + (h(t) — h(M))?* being decreasing,
ZA [ o - sonptimoi a= [ o0 - aneo

< (h(m) — h(M))*".
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Then for each ¢ > 0:
Z A [ ) = BODPH IO de < (1) = BOL)H
If t<m —¢ then (h(m —¢) — h(;M))Qk < (h(t) — h(;M))Qk thus:

S [ o<t (500" o

Hence supp n; C [m, M] for each j.

Let now A be in U(go) and = a real number, for each integer k:

M ;- k
/m %«d”@‘l)ﬁ(t%f(tmo dt =

(izdr(u))Fdr(A)E,€)

(ivdr(u NEdp(A)n;, ;)

EIH

M

Il
Ly P
i1 10 -

/m Mh . dp(A)n;)(t),n;(t))po dt.

Let g(t) = ((dm(A)E)(1), € t>>ﬂo and g;(t) = (dp(A)n;)(1),1;(1)) 5y, then g and

g; are C*° functions with compact support. Hence:

/ SOyt = 3N, / () g (1)t
R = R

Let us make the change of variables s = h(t). We set 6(s) 90 and

6;(5) = B, sor

f(x )—/ 505 ds_z/\/ €50,(s)ds :Zj:/\jéj(x).

Then 6(z) = E;l:l Ajfi(z), by the injectivity of the Fourier transform. In

—~

particular 6(h(0)) = Z A;0;(R(0)), ie

3

A)n;)(0),7;(0)) po

j=1

Since

(dr(A)§)(0) = dmo(A)(£(0)) = dmo(A)&o
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and siumilarly for the representation p, we have:

po(A)n;(0),15(0)) p,
<dﬂ-0( Z/\ HnJ Hpo HTU((DH%O (32)

When A = 1, the formula (3.2) gives us

1= ZA 1773 (0)117,,-

I:Ience A — (dmo(A)(&0),&0)r, 18 a convex combination of some elements in
\I/,,O(?-[zg). So,
J(ma) C J(po).

By exchanging the roles of © and p, we are done. |

By exactly the same arguments we can prove the following lemma:

Lemma 3.2. Let G be an exponential Lie group. Let w and p be two
irreducible representations of G such that J(x) = J(p). Suppose that there
ezists a connected subgroup Go = exp(go) of codimension 2 and two irreducible
representations mo and po of Go such that:

= Indgo’ﬂ'o and p= Indgopo.

Choose a coezponential basis {X1,X2} to go in g, realize ™ (resp. p) on the
space L*(R*, Hr,) (resp. L?*(R?,H,,)). Suppose furthermore that there exist
uy, uz in U(go) and strictly increasing real C*° functions hy, hy such that
h;(0) > 0 and:

(dm(u1)(§))(t1,t2) = ha(t1)€(t1,t2)  and  (dp(ur)(n))(t1,t2) = ha(ti)n(t1,t2)
(dm(u2)(§))(t1,t2) = ha(t2)(t1,t2)  and  (dp(uz)(n))(tr,t2) = ha(t2)n(ts, t2).

for every & in HZ, n wn HZ® and real numbers t1, t2. Then:

J(mo) = J(po)-

4. An example

Before we give the proof of theorem 1, we present an example where there is no
polynomial invariant to separate the generic orbits. Let g, be the Lie algebra

spanned by X, Y7, Y, such that:

[X, Yl] = Y1 — OéYQ, [X, YQ] == OéYl + Yz and [Yl,YQ] =0.
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The group Go = expgq is called the Grélaud group. Let {X*, Y*, Y;*} be
the dual basis of {X, Y3, Y2} in g} . The coadjoint orbits of G, which are not
reduced to a point are the orbits Og of fg = cos 6Y;* +sinfY,* (0 < 6 < 2m). It
is easy to see that:

Oy = {SX* + et cos(f — at)Y]" + et sin(f — at)Yy', s, t € R}.

We consider the Pukanszky polarisation h = RY; & RY; in fy, we choose {—X}
as coexponential basis to § in g. The unitary irreducible representation w,
associated to the orbit Oy acts on the space L%(R) as:

m(expzX)E(t) = E(t + )
lepu () = e g
7r(exp y2Y2>§(t> _ e—ine“ Sin(e-l_at)f(t).

The self-adjoint operators :

d
idr(X) =1—
idm(X) i

idr(Yr) = el cos(f + at) and idr(Y3)= el sin(6 + at)

on LZ(R) characterize the representation . Since idm(Y7) and idn(Y32) are
multiplication operators, we could obtain the value of 6 which characterizes
the orbit Oy, directly from these operators by the following transcendental
expression:

GOT ] — idn (Y1) — dn(Y3) o~ balog(—dn(Y1)2—dr(V2)?) (4.1)
\/—dﬂ'(Y—] )2 — dn(Y3)?

But we can also use lemma 3.1. Indeed let fy, = cosY}* + sinyY," and
p the representation associated to Oy . Let us put:

do = ha To = Xfo PO = Xfy> U = (lX)Z + (ly)za h<t) = 62t'
If J(x)=J(p), then with lemma 3.1:
J(mo) = J(xs,) = J(po) = J(xy,)

and fg = fy, ™~ p.

5. Proof of theorem 1

Now we are going to prove theorem 1. It is clear that if 7 ~ p then J(7) = J(p).
We shall show the converse by induction on the dimension of G. It is obviously
true for one dimensional G.
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Let f (resp. ¢g) be an element of the Kirillov orbit Or of 7 (resp. O, of
p). If there exists a non trivial ideal a of g on which f vanishes, then dr(X) =0
for all X in a and since J(7) = J(p):

(dp E:Adﬂ )6, 6) =0, (X e€a, neH,.

Hence dp(X) = 0 for each X in a and g|, vanishes. Let G = G/A where
A =expaand p: G — G be the canonical projection. This p defines projections
(still denoted p) for the corresponding Lie algebras and enveloping algebras. We

can write f = fop = p'(f) and © = Top (resp. ¢ = Gop, p = pop). By

construction:
J(7) =p' (J(x)) =p" (J(p)) = J(p)

and 7 and p are equivalent by the induction hypothesis. Finally we get = ~ p.
We can thus assume than f does not vanish on any non trivial ideal.
In particular the center 3(g) of g satisfies dim j(g) < 1 and if 3(g) is one
dimensional, f is non trivial on 3(g).
Let a be a non central minimal ideal of g. Then a is abelian and of
dimension equal to one, two or three (see [3]). Let us call a/ the subspace:

of ={T eg, (f[T.a]) =0}.

We shall prove in the sequel that af = a?. Then according to [3], m and p are
induced from the subgroup Gy = expa/ = exp a9:

= Indgoﬂ'o, p= Indgopo.

Case 1 dim 3(g) = 0: Then the dimension of a is one or two.

Subcase 1.1 dim(a) =1: Take ¥ in a such that f(Y) =1, then g(Y)=a #0
and so:

af ={Ueg, [UY]=0}=a

Choose X in g such that [X,Y] = =Y as coexponential basis to a/,
then we have (see the notations of lemma 3.1):

(dr(V)E) (1) = ie'€(t),  (dp(Y)) (1) = ie'n(t) (€ € 2, n € )
Then: .
1

o [, dt = HdpV ) = 3o Ay (dx(V)E )

j=1
—ZA [0,

Hence o is non negative and if we replace g by Ad*(explogaX)g, one can
suppose that g(Y) =1.
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Now with R(t) = €', we can apply lemma 3.1 and the induction hypoth-
esis, thus = ~ p.

Subcase 1.2 dim a = 2: Then there exist X, Y7, Y5 such that a = RY; & RY,
with the brackets:

[X,Yl]zyl—OéYQ, [X7Y2]21/2+OKY17 QER\{O}
This is a generalization of the Grélaud group case. As in subcase 1.1, we have:
of ={U g, [U.Yi]=[UY2] =0} =0’

and
T = Indgoﬂ'o, p= Indgopo (go = af = a9).

Let us put fi = f(Y1), fo = f(Y2). Then f + f7 # 0 and since

f/?+f/§:€_2x(f12+f§) if f/=Ad*(eXp;L-X)f,

we can suppose that f + f7 = 1 and similarly g7 + g3 = 1 if g1 = g(V1),
g2 = g(Y3). Then:

—dr (Y +Y)E(t) = €€(t),  —dp(Y7+Y5)n(t) = e*'n(t) (£ € HT, ne HY).

As above, we get m ~ p.

Case 2 dim 3(g) = 1: Let 3(g) = RZ. Then both f(Z) and ¢(Z) are not zero
and since J(w) = J(p), we can choose Z such that f(Z)=g(Z)=1.

Subcase 2.1 dim a = 2: We choose a basis {Y, Z} of a such that f(Y) =0 (Z
is central and f(Z) =1). Thus:

UY]=AU)Y +pU)z  (Ucg)
with either A and p linearly independant in g* or A = 0 and p # 0 (see [4]).

Hence:

af ={U g, ulU)=0}=a’.

We choose X in g such that A(X) =0 and p(X) = 1. Then acting on g with
Ad*(exp g(Y)X), we can suppose g(Y) = 0. Then:

= Indgoﬂ'o, p= Indgopo (go = af = a’).
Moreover {X} is a coexponential basis to go and:
In(—iVIEW) = (1), dp(—iVIn) = ty(t) (€ € HZ, n e M),

and by lemma 3.1 and induction hypothesis, 7 ~ p.
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Subcase 2.2 dim a = 3: We choose a basis {Y1,Y2,Z} of a such that f(Y7) =
f(Y3) =0 (Z is central and f(Z) =1). Thus for each U in g:

(U] =MU) (Y1 + oY2) + 11 (U)Z,  [U,Y2] = AU) (Ya — oY1) + 12(U) Z
with A, p1 and sz linearly independant in g* (see [4]). Then:
of ={Ueg, mU)=p(U)=0}=0a.
Choose X1, X, in g such that:
MX1) = MX2) =0 and (X)) = 8.
Then {X;, X5} is a coexponential basis to g, acting with Ad*(exp g(¥1)X1)
and Ad*(exp g(Y>)X2) on g, we can suppose g(¥;) = g(¥3) = 0. Thus for any

§ in HY and n in HY:

dr(—iY1)€(ty,t2) = t1€(t1,t2), dp(—iY1)n(ty,t2) = tin(ty, t2),
dr(—iY2)€(t1,t2) = t2€(t1,t2), dp(—iYa)n(ti,t2) = tan(ti, t2).

This ends the proof of theorem 1 by using lemma 3.2 and the induction hypoth-

esis. ]
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