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Abstract. Let G be a simple algebraic group, U be a maximal unipo-
tent subgroup of G, and X be the affine G-variety corresponding to the
algebra of regular functions on the homogeneous space G/U. We classify
all subgroups H of G such that the restricted action H : X is stable, and
that H is either a simple or a semisimple irreducible subgroup of G.
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1. Introduction

Let G be a reductive algebraic group acting regularly on an affine algebraic
variety X. The ground field K is supposed to be an algebraically closed field
of characteristic zero. Let us recall that the action GG : X is stable if there exists a
non-empty open G-invariant subset Xo C X such that any G-orbit in Xy is closed
in X. For more details on stable actions see [11], [12], [8], [15]. Stable actions, in
some sense, are the best actions from the point of view of invariant theory and that
is why it is important to know whether an action is stable or not. In the recent
work [15] E. B. Vinberg obtained a sufficient condition for an action G : X to be
stable in terms of some weight semigroups assigned to the action (Theorem 3.2).
The present paper can be considered as an application of this result.

Suppose that H and F' are reductive subgroups of G and consider the H-
action on the affine homogeneous space G/ F' by left multiplication. A well-known
result due to D. Luna [8] states that the action H : G/F is stable. It is natural to
consider the same action for a non-reductive subgroup F'. But the problem is that
the homogeneous space G/F' is not affine. Hovewer if GG/ F' is quasi-affine and X
is an affine G-equivariant embedding of G/ F' then the question about stability for
the action H : X makes sense.
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Let U be a maximal unipotent subgroup in G and let X = G/U =
Spec K[G/U] be the affine G-variety corresponding to the algebra of regular
functions on the homogeneous space G/U. The variety G/U is the smallest affine
embedding of G//U. In [15], a criterion for the action H : G/U to be stable is
given. Namely, this action is stable if and only if the rank semigroup =Z(G/H)
contains a strictly dominant weight. E. B. Vinberg formulated the problem of
classifying of all connected reductive subgroups H in G with this property.

We say that a reductive subgroup H is large in G if the action H : G/U is
not stable. As a motivation for this term let us note that if the action H : G/U is
stable then the action H; : G/—U is also stable for any reductive subgroup H; C H,
see Corollary 5.4. Some equivalent conditions for a reductive subgroup to be large
are given (Theorem 5.1) in terms of the co-isotropy representation of the pair
(G,H). As a corollary, one obtains that a reductive subgroup H is large in G
if and only if the maximal semisimple subgroup of the identity component H° is
large in . Here we make use of results from [10]. So the classification problem
reduces to the case when H is connected and semisimple. If G is a simple group
and H is either a simple or a semisimple irreducible subgroup of G we give a
complete classification of large subgroups, see Tables 1-3. These results show that
there are not too many large subgroups and “in general” the action H : G/U is
stable.

The author is grateful to E. B. Vinberg for setting the problem and to
M. Brion and D. A. Timashev for useful discussions.

This paper was written during a stay at Institut Fourier (Saint Martin
d’Heres, France). The author wishes to thank this institution and especially
M. Brion for invitation and hospitality.

2. Notations

We consider algebraic varieties and algebraic groups over an algebraically closed
field K of characteristic zero. All topological terms refer to the Zariski topology.

G is a connected reductive group;

FO is the identity component of an algebraic group F';

T C B are a maximal torus and a Borel subgroup in &;
U is the maximal unipotent subgroup in B;

=(G)4 is the semigroup of all dominant weights of G/;

VA is the irreducible G-module with highest weight A;
Vix = V¥ 1s the dual module to Vi

V' is the subspace of F-fixed vectors in a F-module V;

w1, Wy, ..., wp b 1s the set of all fundamental weights of a semisimple

s 2, s g P
group G, r =rk G.

For a subset {\;,..., Az} in a semigroup = we denote by < Ay,..., A; >

the smallest subsemigroup with zero containing Aq,..., Ag.
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3. Preliminaries

1) Let X be an affine GG-variety. The decomposition of the algebra of regular
functions
K[X]= & K[X],
AEE(X)

where A € Z(G)y and K[X], is the sum of all irreducible G-submodules in
K[X] isomorphic to Vi, is called the isotypic decomposition of the algebra K[X].
Here =(X) is the subset in Z(G)4 consisting of all dominant weights such that
K[X]x # {0}. This subset is a subsemigroup in =Z(G)4, see [13]. The semigroup
=(X) is called the rank semigroup of a G-variety X. In particular, if H is a
reductive subgroup of G then we get the rank semigroup =(G//H) for the affine
homogeneous space G/ H . It follows from Frobenius reciprocity that

E(G/H)={)cZ(G)y | VI £ 0}

By definition, the rank of an affine G-variety X is the rank of Z(X) as of a
subsemigroup in a free abelian group.

A reductive subgroup H C G is said to be spherical if any isotypic compo-
nent of the G-algebra K[G/H] is an irreducible G-module, or, equivalently, the
restricted B-action on (G/H is quasihomogeneous, see [6, 1. 3. 6 ].

2) Let us define a linear representation of H corresponding to the pair
(G, H), which will play an important role in the sequel. Denote by g and §
the Lie algebras of the groups G and H respectively. One has the natural H-
representation in the quotient space g/h. Let m be the dual space to g/h.

Definition 3.1.  The linear representation (H : m) is said to be the co-isotropy
representation for the pair (G, H).

The H-module m can be identified with the H-module h* = {z € g |
(z,h) =0}, where (, ) is a G-invariant non-degenerate scalar product on the Lie
algebra g.

In [10], the close connections between the rank semigroup =(G//H) and the
stabilizer of general position (the s.g.p.) S for the co-isotropy representation are
investigated.

3) Now let us recall Theorem 10 from [15].

Theorem 3.2.  Lel G : X be an action of a connected reductive group on an
affine vartety and let H be a reductive subgroup of G. Assume that

S(X) —E(G/H) = { A=y | N E(X), pe=(G/H) }

is a group. Then the restricted action H : X is stable.

W —_—

Note that, for two semigroups =;,=2, C Z" C R", the condition “=; — =,
is a group” is equivalent to each of the following ones:

1) =y and =, are not separated by a hyperplane in their linear span;

2) the convex cones spanned by =; and =, have a common relatively interior
point.
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Remark 3.3. We say that a point A € = is a relatively interior point of the
cone C(Z) spanned by = if A belongs to the interior of the cone C(Z) in the
subspace spanned by =.

4. Special actions

An action GG : X is called special if the stabilizer of any point in X contains a
maximal unipotent subgroup of the group G'. In terms of isotypic decomposition
it turns out that the action GG : X is special if and only if

K[ XZWK[X], C K[X]|x4p forany A p e Z=(X),

see [13, Theorem 5]. In particular, any action of a torus is special.

A G-variety X is said to be a S -variety if the action G : X is special and
G has a dense orbit in X, see [14].

Consider the irreducible G-modules Vi, Vi, ,..., Vi, with highest weights
Ay A, .. A,y € Z(G)4 and the highest weight vectors vy, € Vi, , vy, € VA,,...,
vy, € Vi, Let X(Ai,Aq,...,Ax) be the closure of the G-orbit of the vector
vy, +Un, + ...+ vy, 10 the G-module V\, & V\, @ ... & V), . This variety is a
S-variety.

It is shown in [14] that any S-variety is isomorphic to a variety X (A1, Aq,
«ooyAk). If B =1 then the variety X(A) is the closure of the highest vector orbit
and is called a HV -variety.

Let H be a reductive subgroup in G. We are interested in stability
of the restricted action H : X(A1,A2,...,A;). Here the semigroup =(X) is
<AL AL, AL > see [14].

Proposition 4.1.  [15, Proposition 7] Let G : X be a special action. If the
restricted action H : X is stable then =(X) — (Z(X) N Z(G/H)) is a group.

If the cones spanned by < A1, Ag,..., Ay > and Z(G/H) have a common
relatively interior point then the action H : X (A1, Az,..., Ax) is stable (see Theo-
rem 3.2). If the cone spanned by =(G//H) does not intersect the relative interior
of the cone spanned by < Ay, g, ..., Ax > then the action H : X(A1, Az,..., \g)
is not stable (see Proposition 4.1). But these two cases do not exhaust all possi-
bilities.

A subgroup H C G is said to be symmetric if there exists an involutive
automorphism o of the group G such that H = G7. It is proved in [17] that
the action H : X(A) for a symmetric subgroup H is stable if and only if < A >
N Z(G/H) # {0}. Moreover, in this case the action is either quasihomogeneous
or stable with one-parameter family of closed orbits of maximal dimension.

This nice alternative does not hold for a non-symmetric spherical subgroup
of GG. As an example, one can consider the natural action SL(n) : K™ and restrict

this action to SL(n —1) C SL(n).

Problem 4.2. Let H be a reductive spherical subgroup in G. When is the
restricted action H : X (A1, Ag, ..., Ag) stable ¢
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There is one case, where Theorem 3.2 and Proposition 4.1 give a criterion for
stability. Namely, suppose that G is semisimple and set X = X (w;,ws,...,w,).
The dense G-orbit in X is isomorphic to G/U and X can be considered as
the smallest affine embedding of the quasiaffine homogeneous space G/U. This
embedding plays an important role in representation theory. Sometimes it is
denoted by G/U. Recall that a dominant weight is said to be strictly dominant if
it is not orthogonal to any simple root.

Here Z(X) = Z(G)4+ and we have

Proposition 4.3. [15, Corollary 1] The action H : X (wy,ws,...,w,) is stable
if and only if the semigroup =(G/H) contains a strictly dominant weight.

In the next section we study subgroups with this property.

Proposition 4.4.  Let H be a reductive spherical subgroup in a semisimple
group G. Suppose that Ay, Aqg..... Ap are dominant weights and the intersec-
tion A = Z(G/H)N < A, Ay, ..., Ay > is a free semigroup. Then for X =
X (A, Aay ..oy M) the algebra of invariants K[X]7 is free.

Proof. We have K[X]| = @K[X]\, dim K[X]{ <1, and dim K[X]{ =1 iff
A € A. The product fg of two non-zero H-invariants f € Vi and ¢ € V#H is a
non-zero element of K[X]¥, . Hence the algebra K[X]" is the semigroup algebra
for the semigroup A. |

Corollary 4.5.  Let H be a connected semistmple spherical subgroup in a simply
connected semisimple group G. Suppose that X = X(wi,wsq,...,w.). Then the
algebra K[X|7 is free.

Proof. In this case A =Z(G/H) and this is a free semigroup, see [10]. |

5. Main results

Let us propose some characterizations of the class of reductive subgroups we are
interested in. In this section we suppose G' to be a connected semisimple group
and H to be a reductive subgroup of G. Set X = X(w;,wy,...,w,). Say that a
G-invariant subvariety 7 of a G-module V' is essential if it generates the vector
space V.

Theorem 5.1. The following properties are equivalent:

(1) The action H : X is nol stable;

(2) There exists an essential subvariely 7 in V\, & ... 5 Vo, & W, where
X = njwg, n; >0 and W ois a G-module, such that the restricted action H : 7 is
not stable;

(3) The semigroup =(G/H) is contained in a proper face of the posilive
Weyl chamber;

(4) The stabilizer of general position S for the co-isotropy representation
m of the pair (G, H) has posilive semisimple rank;
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(5) gHg= ' NU # {e} for any g € G.

If, in addition, H is a spherical semisimple subgroup in G then condilions
(1)-(5) are equivalent to

(6) dim H +rk(G/H) > dim B.

Definition 5.2. A reductive subgroup H of G is called large if it satisfies the
conditions (1)-(5).

Remark 5.3. H is large if and only if its maximal connected semisimple sub-
group is large. This follows from the property (4). In the sequel, we can suppose
H to be connected and semisimple.

Corollary 5.4. Let H, C Hy C G be a chain of reductive groups.

1) If either Hy is not large in Hy or Hy is not large in G then Hy is not
large in G;

2) If Hy is large in G then Hy is large in G.

Proof. 1) follows from statement (4) of Theorem 5.1 and 2) follows from
statement (3). n

This corollary can be considered as a motivation for the term “large”.

Proof of Theorem 5.1. (1) < (3) follows from Proposition 4.3.

(1) = (2). It follows from the construction that X is an essential subvariety
mv, &...6V,,.

(2) = (3). For an essential subvariety Z the semigroup =(Z) contains a
non-zero multiple of any fundamental weight. Suppose that the action H : Z is not
stable. If Z(G/H) contains a strictly dominant weight then =(7) and Z(G/H)
have a common relatively interior point. This contradicts Theorem 3.2.

(3) & (4) follows from results of [10]. Namely, S° is a regular reductive
subgroup in G [10, Th.l and Th.3]. The semigroup =Z(G/H) is contained in a
proper face of the positive Weyl chamber if and only if there is a simple co-root
that is orthogonal to all elements of Z(G//H). This is the case iff the corresponding
S Ly-triple is contained in S [10, 5.1].

(1) & (5). If the action is stable then the stabilizer of general position is
reductive. But this stabilizer is gHg~' N U for some ¢ € (Z, so it is a unipotent
subgroup and that is why it i1s trivial. Conversely, if the stabilizer of general
position is trivial and H is semisimple, we can apply the Popov criterion for
stability [11]. Here the variety X is factorial, see [14]. It is obvious that (5) holds
iff it holds for the maximal connected semisimple subgroup of H. So Remark 5.3
concludes the proof.

(1) & (6). It is well known that H-invariants separate generic H-orbits on
a factorial variety. So the action H : X is stable iff the dimension of the generic
fiber for the quotient morphism X — X//H is equal to dim H. This means that
dim X = dim H + dim X//H. We can assume without loss of generality that G
is simply connected. Then dimn X = dim B and dim X//H = rk(G/H), see the
proof of Proposition 4.4 and Corollary 4.5.
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6. The classification

In order to classify all large subgroups we need just to classify all connected
semisimple large subgroups, see Remark 5.3. In this section such a classification is
obtained in cases, where (& is simple and H is simple or semisimple and irreducible.
The latter condition means that the minimal representation of G restricted to H
is irreducible. For exceptional simple groups we list all connected semisimple large
subgroups.

Theorem 6.1. 1) All connected simple irreducible proper large subgroups of
classical groups are listed in Table 1;

2) All connected simple reducible large subgroups of classical groups are listed
in Table 2;

3) All irreducible large semisimple subgroups of simple groups are simple;

4) All connected semisimple proper large subgroups of exceptional groups are
listed in Table 3.

Comments. We use notation and numeration of simple roots as in [9].
Let my,..., 7 be the fundamental weights of H and R(¢) be the irreducible H -
module with highest weight ¢. Denote by [ a one-dimensional H-module and by
m R(¢) the module R(¢) & ...3 R(¢) (m times). Let R(¢)R'(¢) be the tensor
product of representations of two simple groups, where ” corresponds to the second
factor.

The column “Embedding” contains the H-decomposition of the first fun-
damental representation of the group G. In the column “m” the co-isotropy
representation for the pair (G, H) is indicated. In the column “s.g.p.(H : m)” the
Lie algebra of s.g.p. is given. In the last column the rank rk(G/H) is indicated.

TABLE 1

G H embedding | m |s.gp(H:m)| r

L[ SL(22n),n > 1| Sp(2n) R(m) R(my) n A; n—1

2 SO(T) (i R(my) R(my) A, 1

3 SO(8) Spin(7) | R(ms) | R(m) D, 1

Remark 6.2.  There is a misprint in Table 1 from [7] concerning the rank
semigroup of the spherical pair (Fg, SL(6) x SL(2)). The rank semigroup here
is generated by w; + ws, wy + wy, 2ws and 2wg. To show this one has to note
that this pair is symmetric (the involution is defined by the Weyl group element
of maximal length) and the results of [17] can be applied. Hence SL(6) x SL(2)

is not large in Fjg.
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TABLE 2
g h embedding m s.g.p.(h :m) r
sl(n) sl(n), r(m) & m i, mr(m)®m r(r,_1)® oyt 2n — 2n
n<2n—1 m=n-—n & m2 i
sp(2n) sp(2n), r(m) & 2m i, | 2mr(m) dm2m4+1)i Con—n 2n — 2n
n < 2n m=n-—mn
so(n) so(n), r(m) @ m i, m r(my) @ 2=l so(2n—mn) | n—n
n<2n—2 m=n-—-n
so(2n) | sl(n) | r(m) @ 1) | r(m) Br(Tas) i (5] a1 (%]
s0(8) go r(m) @i 2 r(m) @ 3
s0(9) spin(7) r(ms) @i r(m) @ r(ms) s 2
so(10) | spin(7) r(ms) 21 r(m) @2 r(ns) B aq 4
Remark 6.3. It is sufficient to find all minimal large subgroups in G (see

Corollary 5.4) but for convenience of the reader we list all subgroups.

Proof of Theorem 6.1. We shall use the characterization (4) from Theorem 5.1.
Our first goal is to find all pairs (G, H) such that the stabilizer of general position
for the co-isotropy representation is not finite.

Let us say that an irreducible H-submodule W in the adjoint module
Ad(G) is nice if the s.g.p. for the representation H : W is finite.

To check this condition, one can apply Elashvili’s Tables [3], [4], where all
representations of simple groups and all irreducible representations of semisimple
groups with infinite s.g.p. are listed.

If W is a nice submodule in Ad((G) then it is not isomorphic to a submodule
of the adjoint module Ad(H) and W is contained in the co-isotropy module m.
Thus H is not a large subgroup in G in this situaton.
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TABLE 3
G H embedding m s.g.p.(H : m)

1 |G, SL(3) R(my) & R(ms) @ 1 R(m) & R(m,) Ay
2 | Fy Spin(9) R(m1) & R(ma) & 1 R(7ms) B;
3| Fy Spin(8) R(m) @ R(m3) @ R(ma) @2 1 | R(my) & R(m3) & R(m4) A,
4 | Fg Spin(10) R(m) @ R(ms) @ T R(my) @ R(ms) b T As
5 | Fe F R(m) &1 R(m) D,
6 | Fs Spin(9) R(m) & R(ma) &2 1 R(r) ®2 R(ry) & T A
7 | B L R(m) @ R(ms) @2 1 R(m) @ R(ms) @ 1 D,
8 | Ky | Spin(12) x SL(2) R(m)R'(71) & R(me) R(ms) R (1) 3 A
9 | E; Spin(12) 2 R(m1) @ R(we) 2 R(ms) @31 3 A
10 | Fs Fr x SL(2) R(m) R (m1) @ R(me) & R (27m4) R(m) R (1) D,
11| Fy E; 2 R(m) @ R(me) ®3 T 2 R(m) @31 D,

Otherwise we calculate explicitely the co-isotropy representation and find
the s.g.p.. Here Table 5 from [9] is very useful.

Denote by V' the first fundamental representation of the group G, V =

R(¢1) @ ... 3 R(¢x) for H, and L a vector space with trivial H-action.

Case 1.1. G = SL(N) and H is a simple irreducible subgroup.
Here Ad (SL(N)) 2 V ® V* — [. By assumption, V = R(¢) for some
highest weight ¢ of the group H. Then R(¢ + ¢*) is contained in Ad (SL(N))
and is a nice submodule with only one exception: H = Sp(2n) and V = R(m;),

see Table 1.
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Case 1.2. G = Sp(2N) and H is a simple irreducible subgroup.

Here Ad (Sp(2N)) = S?*V, V = R(¢), and R(2¢) is a nice submodule in
Ad (Sp(2N)).

Case 1.3. G = SO(N), N >6 and H is a simple irreducible subgroup.

Here Ad (SO(N)) = A?V and if V = R(¢) and a is a simple root that
is not orthogonal to ¢ then R(2¢ — a) is a H-submodule in Ad (SO(N)). It is
possible to find a simple root « such that R(2¢ — «) is a nice submodule in all
cases except for:

1) H = Spin(7) and V = R(m3), see Table 1.

2) H=_G5 and V = R(m), see Table 1.

In order to avoid many cases, one can use the criterion for an irreducible
representation of a simple group to be orthogonal, see [1].

Case 2.1. G = SL(N) and H is a simple reducible subgroup.

Set V = R(qbl) B...D R(qbk). The module Ad(SL(N)) contains the H-
submodule R(¢; + ¢}), which is nice unless ¢1 = m, H = SL(n) or Sp(2n).
Assume ¢ = 7.

For H = SL(n) if ¢, = m; then m contains the submodule 3 R(m 4 m,,_1)
and the s.g.p. is finite. If ¢, = m,_; then m contains R(m + m,_1) & R(2m) &
R(2m,_1) and the s.g.p. is finite. If V = R(m;) & L then it is easy to compute m
as a H-module and all cases with an infinite s.g.p. are given in Table 2. In other
cases m contains a submodule R(m + ¢2) with finite s.g.p.

For H = Sp(2n) if ¢ = m; then m contains 3 R(2m;) and if V = R(m )& L
then m contains R(m3)@2 R(m;). Inother cases m contains a submodule R(m;+¢;)
with finite s.g.p.

Case 2.2. G = Sp(2N) and H is a simple reducible subgroup.

Analogous to the previous case.

Case 2.3. G = SO(N),N > 6 and H is a simple reducible subgroup.

Here the submodule R(2¢; —a) or the submodule R(¢; + ¢) is nice in the

majority of cases. In all remaining cases explicit computations allow us to find m.

For the classification of maximal semisimple irreducible subgroups in clas-
sical groups see [1].

Case 3.1. G = SL(N) and H = SL(n) ® SL(m), nm = N.

Here V = R(m)R'(m). Then R(my + mpq)R' (71 4+ mn—1) C m and this is
a nice submodule.

Case 3.2. G = Sp(2N) and H = Sp(2n) ® SO(m), N =2nm, n > 1,
m>3, m#4orn=1, m=4.

Here R(2m)R'(2m1) C m is a nice submodule with some low-dimensional
exceptions.

Case 3.3.1. G = SO(N) and H = Sp(2n) @ Sp(2m), n > 1, m > 1,
N = 4nm.

Case 3.3.2. G = SO(N) and H = SO(n) ® SO(m), n > 3, m > 3,
n,m#4, N =nm.

In these two cases the submodule R(2¢; — a)R'(2¢2) or the submodule

R(2¢1)R'(2¢2 — @) in m is nice with some low-dimensional exceptions. For exam-

ple, for SL(2) x Sp(4) C SO(8) the Lie algebra of the s.g.p. is one-dimensional.
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Let G be an exceptional simple group. The classification of all semisimple
subgroups in G is obtained in [2]. Firstly maximal semisimple subgroups are
considered. There are three types.

Type I. H is a maximal regular semisimple subgroup of maximal rank, see
Table 5 in [5]. There exist 15 possibilities. The co-isotropy representation can be
found with the help of Table from [16]. In four cases we obtain large subgroups,
see 1, 2, 8 and 10 in Table 3.

Type II. H is a maximal regular semisimple subgroup of non-maximal rank
(it is contained in a maximal reductive subgroup of maximal rank). There are two
possibilities, see Table 6 from [5]. It is not difficult to compute m here and to
show that these subgroups are large, see 4 and 7 in Table 3.

Type I1l. H is a maximal L-subgroup, see [5, p. 207]. There are 14
possibilities (we do not consider subgroups of rank one as they cannot be large).
The co-isotropy representations are given in [2], Tables 24 and 35. Using Elashvili’s
Tables one can check that there is only one large subgroup, see 5 in Table 3.

Secondly we have to consider all maximal semisimple large (see Corol-
lary 5.4) subgroups in cases 2, 4, 5, 7, 8 and 10 in Table 5. Case 2 leads to
3, cases 4 and 5 lead to 6, case 8 produces 9 and 10 produces 11. All other possi-
bilities correspond to non large subgroups. To complete the classification, we have
to consider maximal reducible semisimple (not simple) subgroups in spinor groups,
but in these low-dimensional cases it can be checked that the s.g.p. is finite.

The consideration of maximal large subgroups in subgroups 3, 6, 9 and 11
gives no large subgroups in the initial group.

The proof is completed.

Corollary 6.4.  (of the proof) For a simple irreducible subgroup H in a simple
group GG the following conditions are equivalent:

(1) H is a large subgroup in G ;

(2) rk(G/H) < rk(G).

These conditions are not equivalent in all other cases. Namely, consider

1) SO(5) C SO(8), here rk(G/H) = 3;

2) GL(2) C SLs, here rk(G/H) = 1;

3) SL(2) ® Sp(4) C SO(8), here rk(G/H) =3.

Here H is not a large subgroup. These cases are exactly the cases, where
the identity component of the s.g.p.(H : m) is a torus.

7. Remarks

The previous results give a geometrical description of the H-action on the variety
X = G/U. Namely, suppose that a reductive subgroup H C G is not large.
Then the generic fiber of the quotient morphism X — X//H is isomorphic to
H. Moreover, if H is a spherical semisimple connected subgroup in a semisimple
simply connected group G then X//H is an affine space (Corollary 4.5) and one
can consider X as a total space for a multiparameter contraction of the action
H : H by left multiplication. In particular, the quasi-affine homogeneous space
G//U contains an open affine subset that fibers over (K*)" with the fiber H.
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Example 7.1. Set G = SL(2n + 1) and H = Sp(2n) with the natural inclu-
sion. Here =(G/H) is Z(G)4 and the (G-equivariant action of a maximal torus
T C G on X defines an effective action T': X//H. This implies that GG/U contains
an open affine subset isomorphic to Sp(2n) x (K*)**.

Finally, consider another consequence of Theorem 3.2.

Proposition 7.2.  Let H be the stabilizer of general position for an action
G : X of a reductive group G on an affine variely X . Suppose that H is reductive.
Then for any reductive subgroup Hy C H the induced action Hy : X is stable.

Proof. By the Luna theorem [8], one has to consider only the case H; = H.
Moreover, one can suppose that the action GG : X is quasihomogeneous. Then
G/ H is an open orbit in X and the groups of rational B-semi-invariants K (X )®)
and K(G/H)®) coincide. Any rational B-semi-invariant is a quotient of two
regular B-semi-invariants. Hence the semigroups =(X) C Z(G/H) have the same
rank and contain a common relatively interior point. ]

If H is not reductive then the statement does not hold. The action
SL(n): K™ and the restricted action SL(n — 1) : K™ provide a counter-example.
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