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Abstract. We present a solution to the problem of finding the index of
parabolic subalgebras of GL(n) and expose their relationship to interesting
combinatorial objects, namely, Meanders.

1. Introduction

In this paper we provide an explicit computation of index for a family of subalge-
bras of GL(rn). This moves the problem of finding Frobenius parabolic subalgebras
of simple Lie algebras one step ahead; a partial solution of this problem was pro-
vided by A. G. Elashvili in [1, 2]. Surprisingly the answer involves consideration
of Meanders—an object rarely seen before in representation theory.

2. Index of Lie algebra, definitions

The definitions presented below are done, in part, to settle on notation used
throughout the paper. For more extended discussion of them the reader might
consult the sources mentioned in the references.

All vector spaces in the material below are assumed to be finite dimensional.

Definition 2.1. A Lie algebra g is a vector space together with a bracket

operation [-,-] that satisfies the following conditions:
[X,Y]=—[Y,X] (skew-symmetry) (1)
(X, Y, 7]+ [Z,[X,Y]| + [Y,[Z,X]] =0 (Jacobi identity) (2)

The bracket operation on a lLie algebra g gives rise to a skew-symmetric
form. Let f be a linear function on g. Then

By(X,Y):= f([X,Y])

is skew-symmetric in X and Y. The dual space of g we will denote by g*. It
possesses a natural action of the Lie algebra g (called the coadjoint action):

ady : f— By(=X,")
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Definition 2.2.  The index of the skew-symmetric form By is defined as dim ker By.

The index varies with f, for example when f = 0, the index of By is equal
to dimg.

Definition 2.3.  The index of a Lie algebra g is defined by the following for-

mula:

indg = H}inind By

Proposition 2.4. The set of [ such thalt ind By = indg s open in g* under
both Zariski and Fuclidian topologies.

Proposition 2.5.  Consider Q@ = By as a skew-symmetric form over g with
coefficients in polynomials over g* (i.e. we allow f to vary). Let r be the mazimal
number such that A" is non-zero. Then

2r +indg = dimg (3)

Example 2.6.  Let us compute the index for the Lie algebra gl(n) of n x n
matrices. The dual space of this algebra can also be realized as n X n matrices:

F(X)=tr(FX)
By can be computed explicitly:
Br(X,Y)=tr(F[X,Y])=tr(FXY — FYX) =tr(FXY — XFY) = tr([F, X]Y)

The last term shows that X € ker By if and only if [F, X] = 0. When all
eigenvalues of F' are different, the space of all X that satisfy this condition has
dimension equal to n.

Since  has polynomial coefficients and because the set of all F with
distinct eigenvalues is open, the number r should be equal to half the rank of
Br in a generic point F', which can be assumed to have distinct eigenvalues.

Hence indgl(n) = n.

3. Meanders

The picture above gives a clear idea of what a meander is. The mathematical
definition is given below:



DERGACHEV AND KIRILLOV 333

Definition 3.1.  The target space T is R* with an embedded line L. The
source space M determines the type of the meander and is a disjoint union of
circles, segments and points (one can also consider points as segments with 0
length).

The meander representation is defined as an embedding of M into the target
space T' that satisfies the following conditions:

e The endpoints of segments must map into L
e Single points must map into L
e The embedding is transversal to the line L.

The meander is defined as an equivalence class of meander representations
under homeomorphisms of the target space.

It is useful to mark all intersection points of the embedding and the line
L. The meander can be split into an upper half and a lower half, each of which
consisting of a number of arcs and a number of points on the horizontal line L.
Each arc defines a transposition of two marked points.

Definition 3.2.  The product of transpositions over all arcs in the meander is
the permutation associated to this meander.

Since the product can be taken in different orders, the associated permuta-
tion is not unique. However the following statement is true:

Theorem 3.3. The number of cycles in a decomposition of the associated per-
mulation is unique to the meander. It can be compuled as lwice the number of
circles plus the number of segments plus the number of isolated points.

Proof.  Arcs that are disjoint define transpositions that commute between
themselves. Thus the associated permutation can be represented as a product
of commuting permutations that correspond to a single circle or segment.

Let us first concentrate on a single segment. By enumerating the points we
can reduce this case to the following proposition:

Proposition 3.4.  The product of transpositions (1,2),...,(n,n+1) in any or-
der is always a full cycle.

Proof.  We will proceed by induction. The cyclic change in the order the
product is taken can be achieved by conjugation which does not change the number
of cycles in a decomposition. Thus the cases n = 1,2 are true.

Assume that case n — 1 holds. By cyclic reordering we can put (n,n 4+ 1)
at the very end of the product. Now by assumption the product of the other
transpositions is a n-cycle that does not include the number n 4 1. Multiplication
by (n,n + 1) produces an (n 4 1)-cycle thus proving the proposition. ]

The circle case is solved by the following proposition:
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Proposition 3.5.  The product of transpositions (1,2),...,(n,n+ 1) and (n +
1,1) in any order is a product of two cycles.

Proof. Indeed, by cyclic reordering we can always achieve that (n +1,1) is at
the very end of the product. By the proposition above, the product of the previous
transpositions is a full (n+ 1)-cycle, the product of which with (n+1,1) produces
two disjoint cycles which lengths add up to n + 1. ]

This completes the proof of the theorem. ]

4. Seaweed algebras

© 0

by
Seaweed algebras are subalgebras of the full matrix algebra. An example is shown
in the picture above. The shape is fixed and the numbers ay, .., as and by, ..., by are

invariants of this particular seaweed algebra. The precise mathematical definition
is below.

Definition 4.1.  Let k be an arbitrary field. Fix two ordered partitions {ay}zzf
and {bj}jj of the number n. Let {e;};_; be the standard basis in k™. A sub-

algebra of Mat(n) that preserves the vector spaces {V; = span (e, ..., €4 4. 4a;)}
and {Wj = span (€p,4..4b, 415 -5 en)} is called a subalgebra of seaweed type.

The dimension of the seaweed algebra is equal to
k !
: b?
4
ISE AP
=1 7=1
Seaweed algebras are associative. The standard bracket operation [X,Y] = XY —

Y X gives the structure of a Lie subalgebra of gl(n). When one of the partitions
is just {n}, we obtain a parabolic subalgebra.

) |§w

It is convenient to distinguish special places in the matrix of an element of
a given seaweed algebra.

O
O O e
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The diagonal entries are colored gray. The entries on the medians of small
triangles are colored black. All other places are colored white. We assign color to
matrix units according to the place of their non-zero entry.

Definition 4.2.  The seaweed algebra g’ dual to given seaweed algebra g is the
algebra of matrices obtained by exchanging {a;} and {b;} in the definition 4.1.

For X € ¢’ and Y € g we have (X,Y) := tr (XY). Thus the dual space
g* can be realized as the dual algebra g¢’.

Each seaweed algebra has a meander associated to it. It is produced by
connecting each black entry with the gray entry in the same column or row on the
picture of the matrix.

The role of the horizontal line L is taken by the main diagonal of the matrix.

5. Main theorem

Theorem 5.1. The index of a seaweed algebra is equal to:

o lwice the number of circles in the associated meander plus the number of
segments plus the number of isolated points

o the number of cycles in the permulation corresponding to the associated
meander.

The proof splits naturally into four parts: first one has to establish the the
index is at most the number of cycles in the associated permutation, then prove
the theorem for seaweed algebras with connected meanders which makes it possible
to prove that the estimate is precise for all algebras. We finish with the argument
that the theorem is true for algebras over any field of sufficiently large (depending
on the size of the matrices) or 0 characteristic. In the first three parts we will

assume that our algebra is defined over C.

6. Proof, part 1: estimate of the index

Recall that in section 2. we established that the maximal number r such that A"Q)

is non zero satisfies

2r +indg = dimg.
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Here  is a skew-symmetric form with coefficients in polynomials over g*.
If we restrict these polynomials to a subset of g* the maximal number ¢ such that
g-th power of Q is non-zero should not exceed r, thus satisfying

2g+indg < dimg

This produces an estimate for ind g:

indg < dimg — 2¢q

The trick now is to specify a subset of g*, such that the computation of ¢
is both feasible and possesses the necessary precision.

Consider g* realized as the dual algebra g'. Let F denote the family of
elements F' € g* which have all white and gray matrix entries set to zero.

For example (algebra (2,2,2):(3,3)):

f1,3
0

OOOOEHO

O OO oo O

O OO o O

;HOOOOO

OO;HOOO
o]

0
faz2
0
0

5

We will denote the black entries of F' by fi;.

Recall that if F;; and FEj; are two matrix units (matrices with all compo-
nents equal to 0 except (i,7) and (k,) set to 1 correspondingly) their commutator
is

[Eijs Brg] = 6u By — 8By
Recall also that F;; is dual to F;;. Then

!
Q= Z Sk Z Eix N Ep; + Z Jix Z Eix N By
i=k

i [k,l]
For matters of exposition it is useful to split €|, into 3 forms:
Qs =wo+w +ws

where
Wy = Z fz,k Z Ei,k A El,z’
€]k, I[NZ
wy = Z Jir (Err — Ep) AN Eng

wy = Zfl,k Z Eiy N Ey;

i (k1]

Since in wy all monomials are wedges of different pairs of white units the
rank of wg is equal to the number of white units.
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The rank of wy is computed by considering each component of the meander
graph separately.

Segments: let us change the numbering of the vertices so that the chain con-
sists of edges {(1,2),..,(m — 1,m)}. This corresponds to the following summand
of wy

m—1

v = (Bii — Eigri1) AN U

i=1

Here t; is the corresponding black unit times plus or minus the correspond-
ing f. variable.

The rank of the form v is easy to compute: it is equal to 2m — 2. Since ~
involves 2m — 1 elements, we are losing exactly 1 dimension.

Circles: similarly to the case of of a chain we will change the numbering so
that the cycle consists of edges {(1,2),..,(m —1,m),(m,1)}

This corresponds to the following summand of wy:

m—1

v = Z (Bii — Figrim1) AN+ (B — Evp) At

=1

Here t¢; correspond to black entries and are equal to plus or minus black
entry times the corresponding f, variable.

The rank of the form v is easy to compute: it is equal to 2m — 2. Since ~
involves 2m elements exactly 2 dimensions are missing.

The forms wp and w; contain wedges of different matrix units. Thus the
rank of wg + wy is the sum of the ranks of wy and wy. Since wgy has rank equal
to the number of white units and w; has rank equal to the number of black and
gray units minus the number of cycles in = we conclude that the dimension of the
kernel of wy + wy is equal to the number of cycles in the associated permutation
(which we will denote by J).

. dim g—3 dim g—3
Consider now forms p; = (wp +wi) 2, po = (wo+wi +w2)” 2 and
dimg—p p=J

py = (wo +w2)” 2 w;”  (here p is the total number of black and gray matrix
units).
The forms wy and wy do not have terms with gray entries, while each term

of w; contains exactly one gray entry. Thus if the expression p}, is non-zero,
dim g—p p—3J .
should be non-zero as well. The form pj =w, > w;? is non zero (the powers

are equal to half the ranks of the corresponding forms) allowing us to concentrate
dim g—
on the (wy + wy) . component of pf.

dim g—p
2

mg—
% summands, we can represent w, as a

Since wy has exactly &
monomial in 1-forms times a monomial in f,.

Our goal is to prove that the addition of wy cannot introduce any terms to
cancel out products with this monomial as a coefficient.

Indeed, each pair of wedge products in w; consists of exactly one white
matrix unit which lies in the same triangle as the black unit corresponding to
this pair. Moreover, this unit must lie to the top or right of the black unit for the

triangle in the upper half of the matrix (bottom or left for the triangle in the lower
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half). This implies that there are no pairs corresponding to the black units on the
boundary of the matrix form of our seaweed algebra.
Thus if we try to construct a product of elements of wy + w, with the same

monomial coefficient in f, the pairs corresponding to boundary units would have
dim g—p
to be taken from wy and to the same degree as in w, > . But this implies that

we cannot take any pairs from wy corresponding to the next-to-boundary black
units - since all white units to the top and right (in case of upper triangles, bottom
and left in case of lower triangles) already participate in the product. Continuing
we get that the only way to form a product with the same monomial in fi is to
use wedges only from wg. Thus ) is non-zero and the rank of wg + wy + wy is at
least dimg — 3.

This concludes the first part of the proof.

7. Proof, part 2: single component meanders

Proposition 7.1. The statement of the theorem holds for all seaweed algebras
with connected meander.

Proof.  We will consider three cases when the meander has only one component
separately.

The case when meander consists of one marked point is trivial: it corre-
sponds to the base field C. The algebra is commutative and the index is equal to
1.

If the meander consists of one segment, than the index can not exceed
1. But every seaweed algebra has a center, thus the index is at least one. The
invariant of the coadjoint action on g* is the trace.

The case when the meander consists of one circle is slightly less trivial. First
of all observe that each marked point on the horizontal line must have upper and
lower arcs connected to it. But arcs in the upper(and lower) half of the meander
are disjoint. Thus the number of marked points is even.

Moreover none of the numbers {a;} or {b;} can be odd, since this would
imply that the meander has a marked point which is connected to only one arc.

Hence, the dimension of our algebra is even. But since trace is an invariant
and the rank of the form € is always even (€ is skew-symmetric), we obtain that
the corank of € is a positive even number, which can only be 2. ]

8. Proof, part 3: the estimate is precise

Let g denote a seaweed algebra. Let M denote it’s meander graph. For each
subset S C {1,..,n} (n is the size of the matrices in g) we can construct a
subalgebra gs of matrices with entries with one or both coordinates outside of S
set to 0.

Each meander component defines a subset M; C {1,..,n} of marked points
on the diagonal. The meander associated to the seaweed algebra gl is exactly
the component corresponding to M;.
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The embedding g, — g induces the projection g* — g|jvlz which has a
natural section: gl can be embedded into g* as g*|,, -
Let us define the set $ as follows:

1. For each algebra 9|Mi pick a generic point h; € ‘7:|Mi'

2. Let! $; be a manifold containing h; of dimension ind 9|M¢ that is transversal
to coadjoint orbits in g|jwi . (This is possible because at h; the form By, has
the smallest possible kernel - and thus the orbit that passes through h; has
the maximum possible dimension. Consequently in a small neighborhood
of h; the dimension of tangent spaces to the orbits does not vary and the
tangent spaces themselves change smoothly, insuring the existence of );.)

3. Let = 9H14+...+ Hr, where k is the number of components of the meander
of g. The sum in taken in the sense of matrix representations of elements of

$;.

We will prove that the stabilizer of an element H € § is a direct sum of
stabilizers of images H; of element H under the projections on dual spaces of
9|Mi :

The stabilizer of the element H is nothing else but the kernel of the form
Q|f_ evaluated in H, 1.e. By. An element X belongs to the kernel of By if for
every element Y € g we have

(H,[X,Y])=0

Considering matrix representations of H, X and Y, we can restate this as
following:

(H,[X,Y]) = tr (H[X,Y]) = tr ([, X],Y)
That is, [H, X] should be orthogonal to g.

Now if H € g is the sum of components H; corresponding to different
components of the meander graph, the image of H under the projection on QD\AZ
would be exactly H; (in view of the matrix representation of g|,,. ).

Since for seaweed algebras of which the meander has one component the
theorem is true, we deduce that the stabilizer of H; has the needed dimension (1
or 2 depending on whether the component is a marked point, segment or circle).
This stabilizer consists of matrices X; such that [H;, X;] is orthogonal to g, .
But, since 9|Mz- is obtained by selecting elements with both indices in the set
M, [H;, X;] is orthogonal to the whole algebra g. Now the observation that X;
commutes with H; with j # ¢ implies that X; € stab .

Thus we have proved that for elements of § the stabilizer has at least
dimension dimg — J. However, we know from the first part of the proof that for
the point A = hy+..+hy the dimension of the stabilizer is at most dimg—7. Thus
(possibly reducing $) by intersection with open neighborhood of £ ), the dimension
of the stabilizer for points of (reduced) §) is exactly dimg — 7.

Tt was pointed out to us by E.B.Vinberg that one can simplify the proof by choosing
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To complete the proof, it is sufficient to show that ) is transversal to orbits
of generic elements of §).

We will make use of the following lemma:

Lemma 8.1.  Let $ be a submanifold in the dual space g* of a Lie algebra g.
Let H € §. Let ad™ denote the coadjoint representation of g. Then Ty +
ad*[g](H) = g* tf and only if the image of Ty$H under the map g* — stab?, is
stab ¥,

Proof. Indeed, by definition, stab g is the largest subspace of g such that the
projection g* — stab}; maps ad *[g](H) to 0. [ |

Now consider projections p; : ¢g* — g|jwl Note that the image of £
under the projection p; produces $) corresponding to the algebra g|M¢' These
projections commute between themselves (again we consider the algebras gl,,.
embedded into gl(n)). Since we know that the theorem is true in the case of
algebras with connected meander graph, this implies that the image of §) under
the projection onto the direct sum S of stabilizers of H; in g|jwz is S. But we
know that the stabilizer of H in g is equal to this direct sum. This implies that
Tu$+ ad*[g](H) = g*. And because of the fact that dim$) + rank |, = dimg
for generic H, we have that § is transversal to the coadjoint orbit of H.

Thus for an open subset of g* all orbits passing through points in this subset
have dimension exactly equal to dimg — J. This is equivalent to the statement
that rank Q|; = dimg — J for H in this subset. However |, has polynomial
coefficients. This implies that rank Q| < dimg — J for all F' € g* - which is
precisely the statement of the theorem.

9. Proof, part 4: fields of arbitrary characteristic

Now that we know that the theorem holds over C, let us examine what happens
when we consider a different field. Let us choose a basis in g of matrix units.
Then € is composed of polynomials with integral coefficients. Wedge products
of © thus also have integral coefficients. This means that if the characteristic of
our field & is sufficiently large (a rough estimate is (2 dimg)dlmg?;mdg) or 0, the
number r such that A"} is non-zero is independent of k.

10. Examples and discussion

Theorem 5.1 makes it possible to compute the index of a seaweed algebra in time
linear in the size of the matrix. This is much easier than trying to compute the
rank of ) which is at least n*. Here are two examples of application of the theorem

5.1:
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Example : (2,4,2):(3,5)

o ]

[(12)][(36)(45)] [(78)] - [(13)] [(48)(57)]
= (1632)(47)(58) (right multiplication)
The index is 3.

Example: (3,7) : (10)

[(17 3)] [(47 10)(57 9)(67 8)] ’
[(]’ ]O)(Q’ 9)(3’ 8)(4v 7)(5v 6)] =
= (1,4, 7,10,3,6,9,2,5, 8)
The index is 1.

We do not know any formula for the index in elementary functions. In the
special case of a maximal parabolic subalgebra of gl(n), it is possible to come up
with a simple expression. (To our knowledge, this problem was first solved by

A.G.Elashvili [2].)
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Maximal parabolic: (k,m): (n)

k m
n
Exercise 10.1.  Prove that index of the maximal parabolic algebra (k,m) : (n)

is equal to the greatest common divisor of £ and m using both the direct method
and by computing the number of cycles in the associated permutation:

As was pointed to us by A. G. Elashvili, the proof of the Main theorem
implies that in the dual space of any seaweed algebra there exists a Zariski open
set of functionals f € g* such that the stabilizer subgroups are conjugate to each
other.
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