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Abstract. Infinite dimensional fiber spaces arise naturally in the theory of
representations of C*—algebras. Often there are cases where one has to deal with
more general notions of differentiability. In order to create a unified framework,
we introduce the notion of a D-space and a D—group action within a given
category D. Then we present a self-contained account of the type of manifold
structure of D—orbit spaces and principal bundles which may be applicable in
infinite dimensions.

1. Introduction

The last half of the twentieth century has seen an exponential rise in the
number of theories of calculus on vector spaces at ever increasing levels of generality
and being applied to even more general theories of manifolds and Lie groups.
Thus we witness the evolution of several new branches of mathematics treating
such subjects, often referred to collectively as synthetic differential geometry (for
the relevant background literature see e.g. [10] [14] [15] [17] [18] [21] [27], and
references therein). In this paper we consider some aspects of the general problem
of when an orbit space actually becomes a manifold. Here we do not propose an
exhaustive treatment of this problem, but instead choose to isolate some of the
essential ingredients of the current theory. In particular, we aim to provide a self-
contained account of certain fibrations arising from quotient spaces as applicable
to the general geometric theory of Banach spaces and Banach algebras. Thus
in approaching the subject from a somewhat different perspective, we remark
that there are several compelling reasons which motivate such attention, in part
originating from the first named author’s work on the subject and that of other
authors. More specifically, in the study of representations of C*—algebras there
are certain fiber spaces that arise very naturally (see e.g. [2] [3] [4] [5] [6] [8] [9]
[12] [25]), but these fiber spaces are not locally trivial; nevertheless, they can be
classified and thus play an important role in the subsequent analysis. The main
point is that in the topological classification (see [4] [8] [22]), the resulting cocycles
often have differentiable representatives as soon as the notion of differentiability
is extended beyond that for maps on manifolds in the usual sense. So it is of
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interest to extend some of the standard constructions which work for differentiable
manifolds, into a more general framework involving differentiable maps.

In keeping with a categorical framework, we introduce the notion of a D—
space from which we can formulate a theorem (Theorem 5.1) concerning orbit
spaces under a D—group action, applicable to any manifold theory (in possibly
infinite dimensions) for which the differentiability of a map is of a local nature
such that differentiable maps satisfy the obvious sheaf-theoretic properties. For
completeness, we apply this result to establish several interesting corollaries, some
of which may be implicit in the existing literature on the subject in some form
or another, but whose proofs are perhaps less elementary than those presented
here. In particular, Corollary 5.4 provides a shortened proof of the known fact
that the quotient of a Banach Lie group by a Banach Lie subgroup is a Banach
analytic manifold (see [29]). Corollary 5.6 asserts that Banach homogeneous
spaces (by any reasonable definition) are manifolds, and extends certain results
of [26]. Such results are essential when studying the manifold structure of spaces
of projections in Banach and C*-algebras (see e.g. [1] [19] and references therein).
The techniques of our more general framework enable us to show that certain
natural orbit spaces do indeed have manifold structures and the same train of ideas
can be extended to discuss the corresponding principal bundles which subsequently
arise. For the background on calculus on Banach spaces we refer to [15] [16] [21],
and to [29] for the functional analytic viewpoint (for closely related topics, see also

e.g. [7] [11] [23] [24]).

2. D-—maps and D—spaces

To begin, if D denotes a category, we take X € D to mean X is an object of
D and say that f is a D-map to mean that f is a morphism of D . A (covariant)
functor F': D — C, of categories D and C, is forgetful if F' is injective on D—maps
(in effect, if f,g: X — Y are D-maps and F(f) = F(g), then f = g). Further,
suppose F' satisfies the following condition: if f: X — Y is an isomorphism of
D,if F(X)=F(Y) and F(f) =1d, then X =Y . Of course, the isomorphism
f appearing in this preceding condition will then have to be Idx because of the
injectivity assumption on F'. We can then regard the ‘Hom’ sets of D as subsets
of the corresponding ‘Hom’ sets of C, so for instance,

Homp(X,Y) C Home(F(X), F(Y)) .

Consequently, we can think of X € D as F(X) € C with some kind of extra
structure which makes it a member of D, and then f € Homp(X,Y) simply
means that f: F(X) — F(Y) is a C—map which preserves this extra structure
appropriately. Then for 7 € C, we write Z € D to understand that there is a given
X €D with F(X)=Z7 . Soif X,Y €C, we say that f € Homg(X,Y) is a D-
map when it is understood that we are given Xp,Yp € D such that F(Xp) =X
and F(Yp) =Y, and f € Homp(Xp,Yp) C Home(X,Y) . Likewise, if X,Y € D,
we say that f: X — Y is a C—map to mean that f: F(X) — F(Y) is a C—map.

Let TOP denote the category of (topological) spaces and continuous maps.

Assume now that F' : D — TOP is a given forgetful functor that satisfies the
following conditions:
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(FO) Thereisa P € D with F(P) a point and every X € D admits some
D-map X — P .

(F1) If X € D and A C F(X), then there is a given A|* € D so that
the inclusion map 7 : A — F(X) is a D-map i : (A]*) < X, where with some
abuse of notation, we write A|* = A and understand A|X to be the element of
D making A € D . We call A|X the D-structure that A inherits from X, and
suppose that

F(X)*=X.
(F2) For f: X - Y a D-map, AC F(X), BC F(Y), with f(A) C B,

the restriction map
f|§:A|X—>B|Y7
defined by f, is also a D—map when A and B have the inherited D—structures.

(F3) Let X € D and f a TOP—map of X . If U is an open cover of X
such that f|U is a D-map for each U € U, then [ is a D-map.

(F4) D has finite products and F' is product preserving. Consequently, the
ordinary coordinate projections on the D-product are the D—maps determining
the actual product structure. Thus a map into a finite product is a D—map if and
only if each component is.

(F5) If X € TOP possesses an atlas of charts with codomains in D such

that the overlap transformations are D—maps, then there is a unique Xp € D, so
that F(Xp) = X and each chart of the atlas is a D-map.

For simplicity, we say that [ is a D-diffeomorphism to mean [ is an
isomorphism of D, and say that X is a D-space to mean that X is an object of
D . Before proceeding, let us comment on some consequences of these assumptions.
Notice that by (F2), if f in (F2) is a D-diffeomorphism with f(A) = B, then
f1% is a D-diffeomorphism of A onto B . Also, if X € D and Y € TOP and
f:Y — X a homeomorphism, then by (F5) there is a unique Yp € D such that
f:Yp — X, is a D—diffeomorphism. In addition, from (F5) it follows that the
disjoint union of D-spaces is again a D-space in a unique way such that each
canonical injection is a D—diffeomorphism onto its image. Moreover, P is a final
object in D and for any X € D, we see that the coordinate projections

™ XxP— X, 17" :PxX—X,
are D-diffeomorphisms. If XY € D and A C X, B C X, then using (F1), (F2)
and (F4), it follows that
(Ax B)|"Y = (A[Y) < (B]")

whereas if A C B C X, then using (F1) and (F2) and the forgetful property of
F, we find that A[PX = A]X; so we can drop the superscripts when there is no
confusion.

Combining (F1), (F2) and (F4), we see that fiber products (equivalently,
pullbacks) exist in D. Specifically, if f: X — B and ¢ : Y — B, are D-maps,
then the fiber product of X and Y over B, denoted by X xpg Y, is the usual
subset of X x Y, also bydenoted f*Y |

XxpY =fY={(z,y): flz) =g(y)} S X x Y,
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which following (F1), implies X xgY € D . We denote the usual coordinate
projections by

XX XY — X, 1" XxY —VY.

Then in bundle terminology, P = f*Y is the pullback of ¥V via f over X,
considered as a bundle with projection 7¥|p, and #¥|p : f*Y — Y, is the
induced bundle map covering f into the bundle Y over B having projection
g (the resulting commutative square is then clearly a pullback diagram in D).

The simplest example of course is just to take D = TOP and F = 1d .
Then we have a trivial theory whereby differentiability is in effect just continuity,
every space is a D-space and every continuous map is a D—map.

Example 2.1.  As a non—trivial example of such a category D and a forgetful
functor F' satisfying (F0)—(F5), let us start with a category of topological vector
spaces and continuous maps with finite products coinciding with the topological
products (for instance: Banach spaces, Fréchet spaces, tame Fréchet spaces and
tame continuous linear maps, locally convex topological vector spaces, Lipshitz
k-differentiable manifolds modeled on convenient vector spaces [10] [15]) together
with any of the various notions of differentiability for maps which satisfy the sheaf
property with a chosen level of differentiability, say C'* for k € {0,1,2,... ,00,w} .
We then form the category M of C*—manifolds and C*-maps of such manifolds
modeled on the open subsets of the linear spaces in the chosen category of topolog-
ical vector spaces. Next define, C*—maps on arbitrary subsets of manifolds in M
using local extendability as is easily generalized from [20]. Finally, as our example
of D, let us define C* M-TOP to be the category of spaces having a specified atlas
of homeomorphic charts (the set of chart domains being an open cover) to arbitrary
subsets of manifolds in M so that the overlap transformations are all C*-maps,
with the obvious definition of C'*~map from one such object to another, by decree-
ing for local charts, ‘pre-” and ‘post—" results always in a C* -map. Clearly then,
we can view M as a subcategory of C*M-TOP . Taking the obvious forgetful
functor F from the category C*M-TOP to TOP, conditions (F0)—(F5) are clear.
Observe here that if X € D is locally D-diffeomorphic to a member of M, then
X € M . In view of this, we refer to a member of C*M-TOP, as a C*—space.

Remark 2.2.  In order to position our definitions within the prevailing liter-
ature, we should mention that our above category D is an example of a site (a
category with the Grothendieck topology see e.g. [21]). In particular, it is an
LSS (local structure on sets) category as in [18] with F' followed by the forgetful
functor of TOP into SET. But here we axiomatize the extension of the domain
category and forgetful functor to all possible subsets of manifolds to induce the
relevant structures on subsets via the local extension of differentiable maps (see
Example 2.1 above). Putting it another way, our main interest here is in extending
the category to admit all subsets from subobjects, instead of taking more general
limits of atlases that in turn generalize the traditional glueing techniques for man-
ifolds. Tt appears that the extension via limits as in [18] would also apply in this
case. However, we do not pursue the possible consequences here since our interest
concerns simplifying the developments needed in showing that certain objects are
manifolds. It is possible that such considerations may apply to an LSS category
in order to simplify a proof that a given object is an A-space (objects in a model
category). But this remains a subject for further investigation.
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Remark 2.3.  In dealing with Banach spaces, one should be aware of the follow-
ing. If £ C F is a closed vector subspace of a Banach space F', and if X C F is a
submanifold of F, then it does not necessarily follow that X is also a submanifold
of I' . For instance, £ may not admit a complement in F' .

In view of this last remark and that in §5 we will have more to say concerning
Banach manifolds and Lie groups, we state the following lemma :

Lemma 2.4.  Suppose that M is a C* ~Banach manifold which is modeled on
a Banach space E and let X C M . Then X is a C*—Banach submanifold if and
only if X has the property that for each x € X, there is an open set U in M
with x € U and a C* —retraction r : U — UN X . Moreover, Tyr is a continuous
linear retraction of T,M onto T, X .

Proof.  Suppose the local retraction r exists at € X . After making U
smaller and using a local chart on M at =, we may as well assume that M is a
Banach space and = 0 . Let p = r/(0) and ¢ =1 —p . Thus p and g are
continuous linear idempotents in £(F), the Banach algebra of continuous linear

endomorphisms of F . Define h: U — E by
h(u) = p(r(u)) + q(u —r(u)) .

Then A'(0) = 1, so by the inverse function theorem, there are open sets V and
W containing 0 and both contained in U, so that A}Y : V — W is a C*-
diffeomorphism. Set R =V Nr=Y(V),and T = h(R) . Tet f =hlk: R T .
Then we have f(RN X) =T NIn(p) . Thus X is a submanifold of M, and the
remainder of the proof follows from the chain rule. The converse of course, is an
easy consequence of the definition of a submanifold. ]

3. D-groups and D—bundles

Now any algebraic or topological concept which can be defined in terms
of sets or spaces and commutative diagrams of maps, naturally extends to the
corresponding D—concept. Thus we can speak of a D-semigroup, by which we
mean for instance, a D—-space S furnished with a D—map ¢ : S x S — 5, which
is an associative multiplication. In turn, there is the notion of a D-action of S on
a D-space X, but here we need not have to assume that ¢ is a D-map. We also
have the notion of a D—group whereby multiplication and inversion must both be
D-maps. Clearly, any subgroup of a D—group is again a D-group. We can also
speak of a D-bundle (following e.g. [13], where a bundle is a triple £ = (p, X, B),
with p a continuous map) as a triple £ = (p, X, B) where p: X — B is a D-
map, and accordingly a D-bundle map (a commutative square of D-maps), so
the category of D-bundles and D-bundle maps then admits finite products and
arbitrary disjoint sums. In turn, we can consider a D-group bundle (that is, a
given D-group acting on X so that the fibers are orbits and p is taken to be an
open, surjective map) and a principal right D-bundle with group H, meaning we
have a D-group bundle with a given free D—group action of the D—group H on
the right, so the resulting transition map

T=1:XxpX — H,

unique such that z7(z,y) =y, is in fact a D-map.
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Note that local-triviality is not built in here. However, just as in [13], each
local D—section defines a D—trivialization, so being locally D—trivial is the same
as having local D—sections defined in a neighborhood of each point of the base
B . Now the categorically minded reader may observe that in the continuous case,
the map p is a ‘quotient’ map (the base space is topologically the orbit space)
when ¢ is a continuous group—bundle, but in our situation we do not require p
to be a ‘quotient map’ in the category D. However, if a D—-bundle has local D -
sections whose open domains cover the base B, then the map p onto B s clearly
a ‘quotient” map in the category D relative to the functor I, in the sense that the
map [ from B to the D—space ', is a D—-map if and only if f o p is. When this
last condition holds, we call p a D—quotient.

Observe that properties (F0)-(F5) applied to any injection of a factor into
a product of D-spaces, make that injection a D-diffeomorphism onto its image.
In particular, if we have a D-action o : G x X — X, then for ¢ € (G, the map

Ly: X — X,z gz,

is a D—diffeomorphism of X onto itself. Likewise for Ry, if a is a right D-action.
Note that there are no assumptions on the operations of G on itself ; it is only
required that the action a: G x X — X is a D—map.

Let us call p: X — B a hereditary D —quotient if p is a D—map and for each
open set U/ C B, the restriction p|” : p~'(U) — U is a D—quotient as described
previously. Note that the disjoint union of hereditary D—quotients is again a
D—quotient. This means that when patching together a bunch of D-bundles or
hereditary D—quotients, we can simply take their disjoint union and need only
consider one. The following proposition is then clear from the definition.

Proposition 3.1.  Suppose that £ = (p, X, B) is a D-bundle such that every
point of B is in the interior of the domain of some D —section of & . Then p is a
hereditary D —quotient.

Proposition 3.2.  Suppose that X is a D-space and p : X — B is a con-
tinuous surjective map with ¢ = (p, X, B) and suppose that ( = (q,7Z,C) is a
D -bundle where q : 7 — C is a hereditary D—quotient. Let U be an open
cover of B such that for each U € U, there is a TOP -bundle isomorphism
vu = (hu; fu) + EJU — (Vi covering fu : U — Vir, where Viy is an open set
in C and hy : p~"(U) = ¢ " (U) is a D-map. Then B has a D-space structure
such that the following hold.

(1) fu:U — Vi is a D—diffeomorphism for each U € U .
(2) p:X — B is a hereditary D —quotient.

(3) &€= (p,X,B) is a D-bundle, locally D-bundle isomorphic to ¢, such
that

pu = (hus fu) < €U — (Vo
is @ D—bundle isomorphism for each U € U .

Moreover, any one of these facts uniquely determines the D —space structure

on B .
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Proof.  Suppose that U, W € U and that UNW = A . Then hw o h;' is a

D—diffeomorphism covering

fwo fg'« fulA) = fw(A) .

Since g : Z — C' is a hereditary D-quotient, it follows that fu o f;' is always
a D-map and hence is a D—diffeomorphism. Thus (1) and (3) of the conclusion
result as immediate consequences of property (F5). If W is any open subset of B
and g : W — Y is any map such that go (p|") is a D-map, then by property
(F3), we can after restricting, assume that W is contained in some U € U .
Then using ¢u|lw = (hu|w; fulw), we see that as g : Z — C is a hereditary
D—quotient, g o (fu|w)™" is a D—map, and hence g is a D-map since (fr|w) is
a D—diffeomorphism. ]

4. Local D-models

Suppose ¢ = (p, X, B) is now a fixed TOP-bundle and we are given a group
H which is a D—space, but we make no assumptions on the relation of the group
operations to the topology or to the D—space structure of H . Suppose also that
ax : X x H — X is a given continuous map which is algebraically a right action of
H on the D-space X . Suppose that p is (topologically) equivalent to the orbit
map, that is, p is an open surjection and the orbits are fibers. We point out here
that the natural map onto the orbit space is always open, because the continuous
action determines a continuous action of the associated discrete topological group.
Now let ay : Z x H — Z be a given D—map which is algebraically a right action
of H on the D—space Z . Let ¢: Z — C be a continuous map and again, one
that is equivalent to the orbit map. Further, let ¢ = (¢, Z,C) . We would like to
make B a D-space so that p is a D-map, and the same for ¢ . This motivates
the following definition.

We say that & is D-modeled on ¢ over U to mean that U/ C B and there
is an H-equivariant D—diffeomorphism ¢ : p~"(U) — ¢~ (W) where W C C .
Of course it follows that ¢='(W) is H-invariant in 7 and ¢ induces a unique
homeomorphism ¢/H : U — W, unique such that (¢/H) o p|” = go ¢ . Thus if
U and W are open sets, we call ¢ a local D—-model for £ on ¢ al any b € U or
at any c € W .

Let us say that & is weakly D-modeled on ( at b € B or alt ¢ € C', to mean
that there is an open neighborhood U of b in B, an open subset W C ', and
an H-equivariant D-map ¢ : p~' (U) — ¢~ ' (W) which restricted to some open
subset R C p~'(U), is a D-diffecomorphism ¢|g : R — T onto an open subset T
of g7' (W), with b € p(R) or ¢ € ¢(T) . Here we call ¢ a weak local D-model for
Eon alt b oralc.

Proposition 4.1.  Suppose thal the action of H on 7 is free, that the transition
Junction T4 is conlinuous al the point (z,z) of the diagonal in Z x Z . Suppose
o p7(U) = ¢ " (W) is a weak local D-model for £ at b, with R C p='(U)
an open subsel and p|lp : R — T a D-diffeomorphism onto the open subsel
T C g ' (W), with b € p(R) and z € T N (p~'(b)) . Then there is an open
neighborhood Uy of b in U and an open subset Wy of W, so that the restriction
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of o : p7H(U) = ¢ " (W) to ¢y : p~'(Uy) — q~"(Wy), is a H-equivariant
homeomorphism. If in addition, the action ax : X x H — X is a D-action,
then the map @o: p~' (Up) = ¢~ (W) is an H —equivariant D -diffeomorphism.

Proof.  Choose x € RN p~*(b) with z = p(z) . Since p and ¢ are open maps,
after replacing U and V' with p(R) and ¢(T') respectively, we can assume that
p~'(U) = RH and ¢~ ' (W) = TH . As ¢ is H-equivariant, this means that
the resulting restriction of ¢ is now a surjective map ¢ : p~H(U) — ¢ 1(W) .
Since the action of H on X is continuous, there is an open neighborhood R; of
z € R and an open neighborhood V. of the identity ¢ € H, so that RiV. C R .
Let T' = ¢(Ry) . Then T is an open neighborhood of z € T', and as ¢ is H-
equivariant, it follows that 71V, C T . Now, using the continuity of 7, at (z,z),
choose an open neighborhood Ty of z € Ty, such that

TZ(TO Xc To) cVv..

Again using the fact that p and ¢ are open, on setting Ry = Ry Ny~ (Tp), we now
let Uy = p(Ry) and Wy = ¢(Ty) . Then Uy and Wy are open sets and b € Uy .

Now suppose u; € p~H(Uy), for i = 1,2, and p(uy) = p(uz) . We can
then find z; € Ry and h; € H, such that w; = x;h;, + = 1,2 . Then as ¢ is

H —equivariant, we have

e(a1)hi = (a1h1) = @(ur) = o(uz) = p(x2hs) = p(x2)hy .

Thus 77(p(z ),cp(,rg)) ( )~ . Since (p(z1),p(x2)) € To xc To, it follows
that we have hy(hy)™ . Again using the H-equivariance of ¢, the above
equation gives

p(1hi(h2)™') = @(xa) .

Taking into account that z1h;(hy)™' and x3 now both belong to R;V. C R, and
©|r is injective, it follows that the two are equal, and therefore, uy; = x1hy =
z2hy = uy . Consider now any h € H and the right action R, of h on either
X or Z . On X we have a homeomorphism, whereas on 7 we find R} is a D-
diffeomorphism. As ¢ is H—equivariant, we have the usual translation result that
©|rn : Rh — Th, is a homeomorphism and in the case ax : X x H — X is also
a D-action, then it follows that ¢|gs : Rh — Th is a D—-diffeomorphism. Thus,
o pH(U) = ¢~ (W) is a local homeomorphism or a local D—diffeomorphism
as the case may be, and hence with ¢y = o|p™"(Uy) : p~'(Us) — ¢ '(Wy),
it follows that ¢¢ is an H-equivariant homeomorphism or H—equivariant D—
diffeomorphism, again as the case may be. ]

Suppose we have a group (G acting on both X and Y and we consider some
subset A C X together with a map f: A =Y . For g,h € G, let us take gfh
to denote the map gfh : ™' A — Y given by gfh(z) = g[f(hz)], for z € h™*A .
Then the following is straightforward.

Proposition 4.2.  Suppose that p : X — B is a D-map, that G is a group
which is a D-space and we are given transilive D—-actions of G on the left of X
and B such that p is G—-equivariant. If s : U — X s a local D-section of p,
then for each b € B and each x € p~'(b), there is a local D-section t of p such
that t(b) = x and with t = hsg, for some g,h € G .
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5. The main theorem and corollaries

Combining the above propositions, we now arrive at the main theorem:

Theorem 5.1.  Let £ = (p, X, B) and ( = (¢, Z,C) be as above and suppose
that the following conditions hold.

(1) The action of H on Z is free and the lransition map
T=T7:/4 Xc/Z — H,

s continuous at each point of the diagonal in Z X¢ Z .
(2) B is a D-space and p is a D-map which is a hereditary D —quotient
and that both actions are D —actions.

(3) There is a weak local D-model ¢, as defined above, for € on ( at each
ceC .

Then C has a unique D —space structure such that the orbit map ¢/H is a
D —diffeomorphism whenever ¢ is a local D-model for & on ( .

Moreover, ( = (q,Z,C) is a principal right D—-bundle with structure group
H, and a continuous map [ of C to the D—space Y s a D—map if and only if

foq s a D-map. Thus B and C are locally D—diffeomorphic and & and ( are
locally D —isomorphic D —bundles.

If in addition, & s locally D—trivial, then so too is ¢, H s a D—group

and the transition map 74 above, ts a D-map. Thus both are principal right D —
bundles with structure group H . On the other hand, if £ is just a principal right
D —bundle, then so too is (, even without local triviality.
Corollary 5.2.  Suppose conditions (1) and (2) of Theorem 5.1 hold and in
addition we have a D-action of the group G on the left of 7 commuting with the
right H —action. Suppose that & is weakly modeled on ( at some point of each
G —orbit. Then in addition to all of the conclusions of Theorem 5.1, C' admits
an induced left G —action, unique such that q is a G—equivariant D-map. If € is
locally D —trivial, then the induced action of G on the left of C' is a D—action of
G on its left, unique such that q is a G'—equivariant D —-map.

Proof.  Since the left action of G commutes with that of H on the right, if
g € G, then the left action L, : Z — Z of g on Z is H—equivariant. hence the
induced map L,/H : C' — C, defines an action of GG on the left of C', unique such
that ¢ is G—equivariant. Since the right H-actions are D-actions, L, : 7 — Z
is a D—diffeomorphism which is H-equivariant. Thus if ¢ is a local D-model on
(at c€C,andif d=(L,/H)(c), then L,p is a local D-model on ¢ at d € C .
Our hypothesis that ¢ is weakly modeled on ( at some point of each G'—orbit, now
implies (3) of Theorem 5.1, so the conclusions of the latter are now in effect. If ¢
is locally D—trivial, which simply means here that ¢ has local D—sections whose
open domains cover B, then by Theorem 5.1, the same is true of ( and hence the
same is true of G x ( . So by Proposition 3.1, the induced left action of G on C
is a D-action. ]

Corollary 5.3.  Suppose that G is a D-group and that H is a subgroup of G .
Suppose also that there is a subset K of G such that e € K, KN H = e, and the
multiplication of G restricted to K x H is a local D —diffeomorphism at (e, e) onto
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a neighborhood of e € G . Then G/H is a D-space in a unique way such that the
orbit map q: G — G/H is a D-map and is the projection of a D -locally trivial
right principal D -bundle with structure group H . Moreover, the multiplication of
G induces a unique D—action of G on the left of G/H so thal q is G -equivariant
and G/H is locally D—diffeomorphic to K .

Proof. let X = K x H and p = 7% with B = K . Define ¢ : X — G by
@(k,h) = kh . Then ¢ is obviously H-equivariant and by hypothesis, it is then
a weak local D-model at e € G . Since the left GG-action is transitive on G, the

conclusion now follows by the previous corollary. ]

Corollary 5.4.  (see also [29]) Suppose that G is a Banach Lie group and that
H is a Banach Lie subgroup of G . Then G/H is a Banach analytic manifold in
a unique way such that the orbit map q : G — G/H is an analytic map and the
multiplication of G induces a unique analytic left action of G on GJH , such that
q is G'—equivariant. Moreover, ( = (¢,G,G/H) is an analytically locally trivial
analytic principal bundle with structure group H . A map [ of G/H is analytic
if and only if f o q is analytic. Likewise, when analytic is replaced by smooth
throughout.

Proof. Since H is an analytic submanifold of &, there exists by Lemma 2.4
a local analytic retraction r of some neighborhood U of the identity e € G onto
U N H . Then passing to the tangent bundle, the map T.r : T.G — T.G is seen
to be a continuous linear retraction whose image is T.H . Now let K = Ker T,r,
again let X = K x H, and define ¢ : X — G by ¢(k,h) = (expk)h . Further,
let us take A : G x G — (G to be multiplication in G . Then with the natural
identification

Tiew)(G x G) = T.G x T.G

it is easily computed that T(.oA(u,v) =u +v . Thus as T oexp = Id, it follows
that T.e is the linear homeomorphism of K x H onto T.G which is simply the
restriction of the addition map. This means that ¢ : X — G is a local analytic
diffeomorphism at (0,¢), and as ¢ is clearly H-equivariant, by Corollary 5.3,
G//H has a unique analytic manifold structure so that ¢ is an analytic map which
has local analytic sections, and the remaining conclusions are clear. ]

Suppose that G is a D—group and there is a D—action of G on the left of
the D—space X . Let B be an orbit space of this action, so B is automatically a
D-space since B is contained in X . Let # € B, such that B = G, and let G,
denote the isotropy subgroup of G at = . It is natural to ask if when G/G,. is a
D-space as above, is GG/G, always D-diffeomorphic to B 7 Let ¢q: G — G/G,
be the orbit map and p” : G — B be defined by p”(g) = gz . Let h: G/G, — B
be the unique bijection with h o g = p” . Next, observe that G acts on the left of
both itself and B, and both ¢ and p” are G—equivariant. Thus if s is a section of
p” over U C B, then gsg™' is a section of p” over gU . In order that G/G, and
B are at least homeomorphic, we need to assume that p” is an open map onto
its image. As G acts transitively on B, if s is a local D—section of p”, then the
sections gsg™' for g € (7, have domains covering B and so insure that p” is open
and is a hereditary D—quotient by Proposition 3.1. Thus under the hypothesis of
Corollary 5.3, Theorem 5.1 tells us that ¢ is a hereditary D—quotient, and therefore
on finding a single local D-section of p”, it follows that h is a D—-diffeomorphism.
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Continuing with Banach Lie groups, the above observations result in a
further corollary. The reader can take the class of differentiability to be either
smooth or analytic throughout. But first, we establish the following proposition.

Proposition 5.5.  Suppose that p: X — B is a C*-map with B a C*-space
and X a C*-Banach manifold. Then the following hold.

(1) If for x € X and b € B, s is a local C* -section of p with s(b) = z,
then Tm (s) is a C*-Banach submanifold of X, and s is a C*-diffeomorphism
onto Im (s) . Moreover, Im(T,p) = T, B and Ker (T,p) topologically split T, X .

(2) If p has local C* —sections whose domains cover B, then B is a C* -
manifold.

(3) If p has local sections whose images cover X, then B is a C* ~Banach
manifold, p is a submersion, each fiber of p is a C* —submanifold of X, and for
each fiber F' and each point © € F, we have T, F = Ker (T;p) .

Proof.  Commencing with (1), let U be the domain of s, so U is an open subset
of B and then let W = p~'(U) C X . Further, set

f=p W -—U,r=s0of W -—sU)CW.

Then r is a C*-retraction of X onto s(U) and by Lemma 2.4, s(U) is a C*-
submanifold of X, and for z € s(U) = M, we have T,M = Im (T,r) . Since
fIM = 571, it follows that s is a C*-diffeomorphism of U onto M . Thus Tps is
a linear homeomorphism of T, B onto T, M and the remainder of (1) now follows

by applying elementary linear algebra and the chain rule to the equations r? = r
and r = so f . For (2), we note that B is then locally C'*-diffeomorphic to a
C*-Banach manifold, and therefore (3) follows from (1) and (2). ]

Corollary 5.6.  Suppose that the Banach Lie group G acts smoothly on the
subset X C M where M is a manifold. Let B C X be an orbil and let x € B .
With regards to the above notation, the following are equivalent.

(1) p” has a local smooth section.

(2) p® is open, G, is a Banach Lie subgroup and for each g € G, Im (T,p")
topologically splits Ty M .

(3) p* is open, Ker (T.p”) topologically splits T.G' and for each g € G,
Im (T,p") topologically splits T, M .

(4) p* is open, and for each g € G, Ker (T,p”) topologically splits T,G
and Im (T,p") topologically splits T, M .

(5) B is a Banach submanifold of M and p* is a submersion.

(6) The bundle £ = (p*, G, B) is a smoothly locally trivial smooth principal
bundle with structure group G, a Banach Lie subgroup of G, and (Idg,h) is a
smooth isomorphism of principal bundles.

(7) h is a smooth G —equivariant diffeomorphism.

Moreover, in the case that M = X, conclusions (2), (3) and (4) need only
be checked for g = e .

Finally, all of the above statements remain true when ‘smooth’ is replaced
by ‘analytic’ throughout.
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Proof. Let H = G, . Suppose that (1) holds. By Propositions 4.2 and 5.5,
(2), (3) and (4) hold. If (2) holds, then by Corollary 5.4, h : G/H — B is a
smooth (respectively, analytic) homeomorphism. As p® = h o ¢, then from the
chain rule we have Ker (7,q) C Ker (T.p”), and by Proposition 5.5, we know that

Ker (T.q) =T.H . Thus T.H C Ker(T.p") .

As before, let L, denote left multiplication by g on G and by L7 the
left action of g on X . Since p” is GG—equivariant, we have L7p” = p"L,, so in
choosing a local smooth (respectively analytic) extension of Ly at y = p”(k) = k=
to a neighborhood in M, we see that T} L, maps Ker (T;p”) into Ker (T,zp"), for
any g,k € GG . Since L is a homomorphism of G into the diffeomorphism group
of GG, it follows that the map

T.L, : Ker (Typ") =5 Ker (Tyrp”)

is an isomorphism for each g,k € G, and so in particular, Ker (Typ”) splits T},G
for each k € G . This translation argument also demonstrates that (3) implies

(4)-
If v € Ker (T.p"), then define the curve ¢ by ¢(t) = exp(tv), for any t € R .
If k = exp(tv), then we have p”c(t) = p”(k), and hence

(p"c)'(t) = (Tep”)(kv) = (Tap”) o (TrLy)(v) = 0 .

Thus p®c(t) must be independent of ¢ and taking ¢t = 0, gives exp(tv)z = z, for
all ¢t . Thus ¢(t) = exp(tv) € H, for all ¢, and therefore v = ¢'(0) € T.H . Hence
we conclude that T, H = Ker (T,p") .

It now follows from the same type of translation argument that for any

g € G and F the fiber of ¢ : G — G/H containing g, we have
Ker (T,q) = T,H = Ker (T,p") .
Since p” = h o q, differentiating yields
Top” = (Tyh) o (Tyq)

and since T;p” and Tyq are both surjective, it now follows that T,,)h is a linear
homeomorphism onto Im (7,p”) which topologically splits T,, M, by hypothesis.
As h is a homeomorphism onto its image, then h is an embedding of manifolds

and therefore B is a submanifold of M . Thus (2) implies all the others.

Of course (5) implies all the others, so it merely remains to show that (4)
implies (5). The latter in the case X = M is a result of Raeburn [26] (Proposition
1.5, p.372). The argument there proves that = has an open neighborhood in B
which is a Banach manifold. However, for X # M, the translation argument
breaks down, since the translations of the group action are not defined on all of
M . But in view of the hypothesis of (4), we observe that if y is another point
of B, then p¥ = p”R, for suitably chosen g € G, and therefore the hypothesis of
(4) also applies to the point y . Thus y has an open neighborhood in B which
is a Banach submanifold of M and thus B itself is a Banach submanifold of M .

Then clearly, p” must be a submersion, as we can apply the above cited result of
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[26] directly to the case of G acting on B . Indeed, if F,F and K are Banach
spaces with /£ C FF C K and F and F both topologically split in K, then
there is a continuous linear retraction r” of K, and its restriction to F defines a
continuous linear retraction of F' onto F . Finally, (1)-(5) are equivalent to (6)
and (7) in view of Theorem 5.1 and the above corollaries. ]

Remark 5.7. We can say that z = (gi;) is a D—cocycle with values in the D—
group (7, relative to the open cover (U;) of the D—space X, if each g;; is a D-map
of Uj; =U;NU; into G . Then from (F5) in §2, we see that the principal bundle
defined by the cocycle is a principal D—bundle which is D-locally trivial. Likewise,
if a:G x F — F is a D—action, then the fiber bundle with fiber F' and cocycle
z, 1s a D-bundle. The resulting uniqueness establishes a bijection between the
usual sheaf cohomology group H'(X,Gp) and the set of D-isomorphism classes
of D—locally trivial principal D—bundles over X with structure group G, where
Gp denotes the sheaf of germs of G—valued D-maps. On the other hand, if
¢ = (p, P, B) is a D-locally trivial principal right D-bundle with structure group
G, and if we let G act on the right of Px F by (z,v)g = (zg,¢g~'v), then the action
is free and the transition map is 7((z1,v1), (22,v2)) = 7p(21, 22) which moreover,
is a D-map. If h is a D-local trivialization of ¢, then h x Idg is a local D-model
and therefore by Theorem 5.1, (P x F)/G has a unique D-space structure such
that the orbit map is a D—map and a local D—quotient. Consequently, the map
q: (P x F)/G — B induced by the first factor projection (P x F) — P, is a
D-map, and some routine diagram chasing shows that {[F] = (¢, (P x F))/G, B),
is a D-locally trivial D-bundle with fiber F'. Moreover, if £ is D-isomorphic
to the bundle defined by the D-cocycle z, then £[F] is also defined by the same
D—cocycle.

In particular, if K C H C G is an inclusion of subgroups, let us denote
by Ky the maximal subgroup of K which is normal in H and observe that
if the required transversal subsets exist such that Corollary 5.3 can be applied
to make each of the resulting orbit maps D—quotient maps, then the quotient
H/Kpy is a D-group, and the naturally induced map G/K — G/H is the
projection of the D—bundle with fiber H/K associated to the D-locally trivial
principal D-bundle G/Kyg — G/H with structure group H/Kg . The unique
map (G/Ky)/(H/Ky) — G/H is a D-diffeomorphism as the image of the local
transversal subset of G for H in G/Kp , gives a local transversal subset for H/ Ky
in G/Ky . For Banach Lie groups, this can be problematic because one has to
determine Kz and check that it is in fact a Lie subgroup. Apart from that, the
result holds for Lie groups. However, as shown in [28] , there are some interesting
examples where Kp is trivial. On the other hand, if K is normal in H, then
Ky = K and so there is no problem.
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