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Abstract. We extend the classification of irreducible finite dimen-
sional representations of almost simple algebraic groups over an algebraically
closed field of characteristic zero to certain non-connected groups G where
the component group is cyclic. We also extend some of Steinberg’s results
on the adjoint quotient G — T/W to these non-connected groups. These re-
sults are used to describe the geometry of #-conjugacy classes of G°, where 6
is an automorphism of the connected group G°. As an application, we show
that there is a “functorial” correspondence between virtual (finite dimen-
sional) characters of f-invariant representations of G' and virtual characters
of an endoscopic group H of G.
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Let k denote an algebraically closed field of characteristic zero. Unless stated

otherwise G will always denote a connected semisimple (linear algebraic) group
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over k. In this paper, we extend some results of Steinberg to non-connected
groups. Let § denote an (algebraic) automorphism of G of finite order which fixes
a “splitting” of G (this will be defined later). Let Gx < 6 > denote the semi-
direct product where the multiplication is given by (g,0)(¢’,0') = (g9o(g’),00')).
(G may be identified with a normal subgroup of G.

In one of our main results, we describe a twisted analog of the “adjoint
quotient G — T /W7, where T is a Cartan of G and W is its Weyl group, as well
as prove some basic facts regarding the geometry of “twisted” conjugacy classes.
As a corollary to this, we prove that a #-conjugacy class of (& is Zariski closed if it is
f-semisimple. As a related matter, we investigate the characters of the irreducible
finite dimensional representations of non-connected semisimple groups of the form
Gx < 0 >. In another of our main results, we prove that there is a natural
1-1 correspondence between the irreducible finite dimensional representations of
(Gx < 6§ > and those representations on a related “endoscopic” group (one must
be careful in interpreting this statement - see Remark 3.3 below).

In general, if X denotes an algebraic variety defined over k then we often

identify X with X (k).

2. Background on conjugacy classes

Let GG be a closed connected (algebraic) subgroup of GL(V'), where V is a finite
dimensional k-vector space, and let 6 be an algebraic automorphism of G of
finite order. Denote the semidirect product described above by G = G'x < § >.
Denote the connected components of G by G = G.1,G.0,G.0%,.... Without loss
of generality (taking V' to be the Lie algebra of (), we can (and do) assume that
@ is also a subgroup of GL(V).

Lemma 2.1.  Let G be as above and let X denote a variety defined over k on
which G acts. Then

(a) every orbil is open in ils closure,

(b) for each x € X, the (Zariski) closure G - x of an orbit G-z is a union
of G-z and other orbits of smaller dimension,

(¢) orbils of minimal dimension are closed.

For the proof in the connected case, see [10], §1.13.

Proof.  Since § acts on X, it is an isomorphism of X to itself. In particular,
the set of orbits of G.6° on X is the same as the set of orbits of G.1 2 G on X.
Therefore the Lemma above is a consequence of the connected case. ]

Proposition 2.2. (Jordan decomposilion) Lel G be as above. Fach g € G has
a decomposition g = su = us, where s € G is semisimple (as an element of G or,
equivalently, as an endomorphism on V') and u € G is unipotent (as an element
of G or, equivalently, u — 1 is a nilpotent endomorphism on V). Furthermore, g
determines s and u uniquely.

For the proof, see [10], §§2.1-2.4. As a consequence, we have the following
result.
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Corollary 2.3.  Let GG be as above. Let 6 denote an automorphism of G of
finite order. Then any .0 € G has a decomposition

g.0 = (s.0)u = u(s.0),
for some unique 5.0 semisimple in G and u unipotent. Equivalently,
g = sb(u) = us.

Definition 2.4. In the above corollary, we write gy_;s = s and gg_un, = u.
We call g 6-semisimple if g.0 € G is semisimple (i.e., if ¢ = gs_ss). We call g
0 -unipotent if gg_ss =1, so g = 0(u) = u for some unipotent w.

We call 2,y €G 0-conjugate if and only if y = g7'26(g) for some g € G.

Remark 2.5. The map

g = gg—ss
is not a morphism [8], §3.3. However, later we will construct a morphism (the
twisted analog of the adjoint quotient) which is closely related to this map.

A Borel pair of a connected reductive group G is a pair (B,T), where T
is a maximal torus contained in a Borel subgroup B of G'. An automorphism of
(G which preserves a Borel pair (B,T) will be called quasi-semisimple. Let W
denote the Weyl group of 7' and W denote the #-invariant elements of W .

Lemma 2.6.  Lel G denote a connected reductive group over k. Assume thal
0 is a quasi-semisimple automorphism of G which is of finite order and fizes a

Borel pair (B,T) of G'. Then
Na(T.0))T = W°,
where W s denote the Weyl group of T'.

Proof. = Write the Bruhat decomposition as G = BW B (where we have tem-
porarily identified W with a complete set of coset representatives of W in Ng(T')).
The lemma follows from the claim: if w € W and ¢ = bwd’ € BwB satisfies
gT0(g)~" =T then g € TwT and w € W’. We next prove this claim.

Let B = NT = TN, where N is the unipotent radical of B. Note that
since @ preserves T and B, it preserves N. Suppose that ¢ = tnwn’, for n,n’ € N
and ¢ € T. The equation g78(g)~* = T implies 6(g)T0(g)~" = 0(g)g™'T. The
theory of maximal tori implies ¢gf(g)™" € T and 6(g) € Ng(T). In turn, this
implies g € Ng(T') and that the image of 8(g)g~"' in W is the identity. This (by
the Bruhat decomposition) implies the claim, from which the lemma follows. m

For z € G, let
Co(z) = {g7"20(g) | g € G},
the 6 -conjugacy class of x. A splitting of GG is a triple (B, T,{X?}), where (B,T)
is a Borel pair of (G and {X} is a set of root vectors of T', one for each simple root
of T in B. Let W and W’ be as in the previous lemma. Let Ty = T/(1 — 0)T
denote the group of coinvariants of T'.
The lemma below, based on the work of Steinberg [11], is Lemma 3.2.A in

[4].
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Lemma 2.7.  Let GG denote a connected reductive group over k and assume
that the automorphism 6 is of finite order and fizes a splitting ' (B,T,{X}) of
G. If s € G is O-semisimple then

(a) each O = Cy(s) meets T,

(b) the image of ONT in Ty is a single W -orbit.

Remark 2.8.  This implies that there is a bijection 2
Gg_ss — Tg/We

(essentially the abstract norm map defined in in [4] §3.2) from the set of conjugacy
classes of #-semisimple elements of G to the quotient Ty/W?. The construction of
the above bijection should be compared with Corollary 5.4 below, which obtains
this mapping from a character-theoretic perspective.

3. Some representation theory

Let G be a connected semisimple algebraic group over k. Let 6 be an quasi-
semisimple automorphism of . Let G be as in the previous section.
If p is a finite dimensional representation of (7, let

p’(g9) =p(6(9), gE€G,

so p’ is irreducible if and only if p is. We call a representation p -invariant if
2 p. The purpose of this section is to classify such representations.

We denote the simple roots of (B,T) by A, the root system of (B, T) by
R = R(B,T), the root lattice of T C G by @ = Z[A] = Z[R)], the character
lattice by X = X*(T), and the (abstract) weight lattice by P = Q* (the dual
being taken with respect to the Cartan pairing), let P* denote the “cone” of
dominant (abstract) weights, and let Ay,...,A, € P% denote the fundamental
(abstract) weights. We have
QCXCP

Let A denote a dominant character and let p, denote the irreducible representation
whose highest weight is A. Let X T denote the “cone” of dominant characters. If
p=px, with A € Xt let

Xo(9) = xa(g) = trace(pa(g)), g€ G. (1)

Finally, let XY denote the subgroup of §-invariant characters in X and let
X% denote the dominant ones. We call such characters 0 -dominant.

It is clear that if A € X? then the restriction of A to (1 — )T is trivial
and hence X is well-defined as a character of Ty. Thus, there is a natural map

n: X*(T)? — X*(Ty). The kernel of the map t — t/0(t), T — (1 — )T, is

1As was pointed out by the referee, this condition is stronger than the notion of a quasi-
central automorphism in the sense of [1]; Lemma 2.7 holds for quasi-central automorphisms but
not Proposition 3.9 below.

2This is only a set-theoretic mapping since Gy_,, is not in general a variety.
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T%. Thus T/T? = (1 — 0)T. If we knew that T was connected (and hence
T,T% (1 — )T were all products of k*’s) then we could conclude Ty = T?. This
connectedness is proven in [11], §8. This also proves that each element ¢ € T' can
be uniquely factored ¢ = ¢,t5, where ¢; € T? and ¢, € (1—0)T (see also Corollaire
1.33 in [1]). From this fact, one can show that 7 is an isomorphism. These facts
are summarized in the following lemma.

Lemma 3.1.  Let G,0,T be as in Lemma 2.6. There is a nalural isomorphism
n: X*(T) — X*(Ty).

Furthermore, there is a (non-canonical) isomorphism Ty = T?. Indeed, each
element t € T can be uniquely factored t = t1ta, where t; € T? and t, € (1—0)T.

Proposition 3.2.  Let p be a finite dimensional representation of G. The
following are equivalent:

(a) p is 8 -invariant,

(b) p extends to a finite dimensional representalion of G.

Remark 3.3. In the introduction, we stated that one aim of this paper is to
provide a correspondence between irreducible representations of G and irreducible
representations of an endoscopic group. This is not exactly what we shall do.
In fact, our correspondence will between #-invariant representations of GG (which
extend to ) and irreducible representations of an endoscopic group. Be that as it
may, the remaining irreducible representations of GG can be provided with a similar
correspondence (though with a different endoscopic group) thanks to the following
well-known result.

Lemma 3.4. o [fp denotes an irreducible finite dimensional representation
of G then there is an irreducible representation p of G such that
— p"" = p, for some m|d and m is chosen as small as possible,
— p extends lo the non-connected group Gx < 6™ >,
~ P IndGy gmsp-
o Lel p be an irreducible finite dimensional representation of G and let 6 be

an automorphism of finite order d of G'. If all d of the representalions pgi,
0 <i<d—1, are inequivalent then IndSp is an irreducible representation

of G.
Proof of the Lemma. This follows from a far more general result of Mackey [6]
(see also Theorem 2, Ch III, §B of [5]). [ |

Proof of the Proposition. Let (p,V,) denote a finite dimensional representation
of G. If p? = p then there is an A € GL(V,) of finite order dividing d such that
p(0(g)) = A™'p(g)A, for all g € G. Define

p(g.0") = p(g)A™", ged, 0<i<d.
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where d denotes the order of #. It may be verified that this defines an extension
of p to G, so (a) implies (b).

To prove the converse, (b) implies (a), let p denote an extension of p to G,
so the image of G under 7 is also a semi-direct product. We may write

plg-0) =p(9)A™", g€G,
for some A € GL(V). Calculating

pgb(g)A™ = p(gb(g')-0) = B(g-0)p(g) = p(9)A™"p(g") = plg)p(6(g))A™,
we find that p(g)p(6(g'))A™" = p(g)A~ p(¢’). This implies (a). ]

The following lemma is, as we shall see, an immediate consequence of the
Weyl character formula.

Lemma 3.5. (a) If X € X then py = pf. Conversely, if A € Xt and
px = p4 then X € X,

(b) Let N denote the highest weight of p%, pxe = p%. Let V = XQR, so we may
extend the action of @ on X to V by linearity. These two actions (the above
action of § on V and the action of 6 on dominant weights 0 : A — ¥ ) are
compatible.

For V as in the above lemma, let V? denote the subspace of #-invariants

and, for any subset S C V,let S =SNV?.

Proof. (a) This follows from the direct construction of a representation with
highest weight A, as the referee pointed out. However, we give the following simple,
analytic proof.

We have A
Apo
v o— )
w APO ’ ( )
where py denotes half the sum of the positive roots of (B,T') and
Ap, — Z (_1)sgn(w)wlu

weW

is the alternating sum over the equivalence class [2], Theorem 24.2. Because of
this, if A € Xt then
Xoa = Xoye = Xpf-
This implies py = pi since the character determines the equivalence class of the
representation.
On the other hand, suppose py = p%. The character formula above implies

A (0(1) vt
Ap(0(1))  Ap(l)
for all t € T'. Since # permutes the set of positive roots (it must since it preserves

(B,T)), we have 8(pg) = po. Thus,

At (01) _ Ab)400 (1)
Ay (0(1)) Ap(t)
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which implies that py = p{ has highest weight #()). Since the highest weight is
unique, it follows that A = (\) = X’ as desired.

3

(b) Part (b) is a consequence of the above proof. ]

From this it follows that the irreducible, finite dimensional, #-invariant
representations are in 1-1 correspondence with the elements of X%t .

For w € W and x € X, define (wx)(¢) = x(w™"tw) for all ¢t € T'. Clearly,
wy € X. If x, x' € X then we define

!/

X ~X

if there is an element of the Weyl group w € W such that y' = wy. This is an

equivalence relation on X and the set of equivalence classes, i.e. W -orbits, will be

denoted by X/W . The classes in X/W are in natural 1-1 correspondence with the

set X since each class in X/W contains a unique dominant highest character.
If v,y € X? then we define

!
X ~o X

if there is an element w € W such that x' = wyx (we do not know if it suffices to
assume w € W in this definition). This is an equivalence relation on X°.

Now define
Symm[x] = Sy X,

for any xy € X. Note Symm[x] = Symm|[y'] if and only if x ~ x’. Let
Symmalx] = Sxmns

for y € X?.

The following well-known lemma describes how the restriction of a irre-
ducible character to a Cartan subgroup decomposes. We will prove the “twisted
analog” of this result.

Lemma 3.6.  (a) For A € X dominant,

T = Z m(p)Symm[,LL],

<A

p dominant

X

where the m(p) > 1 are inlegers satisfying m(X) = 1. (When G is simply
connected then all then m(u) =1.)

(b) For A € X dominant, there are ¢, € {£1}, for p < X a dominant
character, such that

SymmN = > eum/(p)xulr,

<A

pn dominant

and ¢, = 1. Here the m'(p) > 1 are inlegers satisfying m'(X) = 1. (When G is
simply connected then all then m'(p) =1.)
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For a proof, see [10], §3.4.
Recall X% C X denotes the subset of §-invariant dominant characters. If
p is @-invariant, let 7 denote an extension of p to G. Write

plg.0) = p(g9)p(0), g€ G,

for some p(6) € GL(V,). This is an abuse of notation since the extension is not
necessarily unique. p(f) is only well-defined up to a d"* root of unity where % = 1.
We shall fix an extension in the following definitions. First, we claim that the trace
of this endomorphism is, as a function of g, constant on the #-conjugacy classes.

Let
X7(9-0") = trace(p(g)p(9)"), g€ G,
and, if A € X% and p = p,, let

X3(9) = xp(9) = xz(9.0), ged. (3)

This will be called the 0-character of p. From the fact that p(g.0) is a class
function on G. < 8 >, it follows that

Xoly) = X0 (z7"yb(x)), z,y € G,

if p is a f-invariant finite dimensional representation of G.

Lemma 3.7.  (a) For A € X+,

Xilr, = > mg(p) Symmg|p]|z,,

n<A
p 6 — dominant

where the mg(p) > 1 are integers salisfying mg(X) = 1.
(b) For A € X | there are ¢, € {1}, for p < X a 0-dominant character,
such that
Symmg[|r, = oo emy(u)Xiln,

w<A

pu 6 — dominant

and ¢y = 1. Here the mj(u) > 1 are integers salisfying my(X) = 1.

Remark 3.8.  The “restriction” symbol |7, used above is a slight abuse of
notation (since Ty is not a subset of T'), which we hope the reader will pardon.
Worst, it is not clear it is well-defined. Tt must be shown that both the left-
hand side of (a) and the right-hand side of (b) above are well-defined. Let p
denote an irreducible finite dimensional (complex) representation of G and let 6
be a quasi-semisimple of (@ preserving a Borel pair (B,T). If p = p’ then, we
claim, the restriction of its “twisted character” Xg to Ty is well-defined. Indeed,
if p is f-invariant then the character x5 is constant on conjugacy classes. Since

X7(1.0) = x5(t'0(1)7".0) = x5(t't0(t)7".0), for all t,1' € T.
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Proof.  The proof of part (a) is analogous to Steinberg’s proof in the connected
case ([10], §3.4). The restriction of x4 to Ty is a sum of characters (weights) x in
X*(Ty), the multiplicity of each character occurring in the sum is the dimension of
the corresponding weight space. If X is any weight occurring in this decomposition
then there is a w € W and a dominant x € X*(7T}) (regarded as an element in
X*(T)? by Lemma 3.1) such that x’ = wy. Furthermore, these dimensions only
depend on the W-equivalence class of p with respect to ~4 above. By Lemma
3.1, only #-invariant weights can occur in this sum. The multiplicity with which
(the “highest weight”) A occurs in this sum is equal to the multiplicity of A in p, .
But this is equal to the multiplicity of A in p,, by construction (since they have
the same representation space). Thus mg(X) = 1, as desired.

Part (b) follows by inverting the (upper triangular) system of equations
given in part (a). |

Proposition 3.9.  Let § be as in Lemma 2.7. Assume that G contains no

irreducible component of Cartan type Ay, . Let GV denote the connected component
of G and let T denote the connected component of T?. The finite set R|r forms
a root system of the connected semisimple group G with mazimal torus T .

Proof.  This is a consequence of results in [9], §§12.16-12.19. [ |

4. f-conjugacy classes

Let G and G be as in the previous section.
The following theorem, one of our main results, is an extension of a theorem
of Steinberg to the non-connected case (see [10], §3.4, Theorem 2).

Theorem 4.1.  Lel G be a conneclted semi-simple group and let 6 be as in
Lemma 2.7.

(a) The restriction map
k[G.0)% — k[T.0)No(T-0)

is an isomorphism.
(b) The “restriction” map

k[T.0)Ne(T-0) — k[T,]"*
[ —res(f)

is an isomorphism, where ves(f)(t) = f(t.0), t € Ty (see Remark 3.8).

(¢) The functions {x8|r, | A € X} form a basis for the k-vector space
k[Tg]We. The functions {x» | A € X°*} form a basis for the k-vector space
k[G.0]9.

Now we begin the proof of the theorem.
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Proof. (a): Regarding the surjectivity of the restriction map, we need to know
that if two elements of 7.6 are (G-conjugate then they are Ng(7.0)-conjugate.
This is a consequence of Lemma 2.7.

To prove injectivity, let f € k[G.0]% be such that flry = 0. If 2 € G is
f-semisimple then there is a g € G such that g7'26(g) € T by Lemma 2.7(a).
Thus

f(z.0) = f(g~"20(g).0) = 0,
since f is a class function. Recall 2 € G is §-semisimple if and only if 2.0 € G is
semisimple. Note also the image of the inclusion

Ges — G

is dense (almost all of the elements in G, regarded as matrices, have distinct
eigenvalues). It follows from these facts that f is zero on a dense subset. This
implies that the restriction map is injective, which proves (a).

(b): We have Ng(T.0)/T = W by Lemma 2.6. Therefore,
E[T.0)NAT0) = k[T.0]V'T = k[T,|"".

This proves (b).

(c): The first statement is a corollary of parts (a), (b), and the proof of
Theorem 2(a) in §3.4 of [10]. The second statement follows from the first and
parts (a), (b).

This completes the proof of the theorem. |

5. Some corollaries

We list some corollaries of Theorem 4.1 above. These are all analogs of results of
Steinberg in the non-connected case.

Let GG and G be as in the previous section.

Definition 5.1.  We call G 0-simply connecled (resp., 0-adjoinl) and call G
simply connecled (resp., adjoint) if X% = P? (resp., X? = Q7).

The following result can be proven by modifying the proof of Theorem 2,
§3.4, in [10] and using the above proof.

Corollary 5.2.  Assume G is 0 -simply connected and let Ay, ..., A, denote a set
of O-fundamental weights. Then {xx.|r, | 1 < i < n} freely generates k[T’ as
a k-algebra.

Define k[Gg_ss.0] to be the vector space of functions on (.6 restricted to
(lg—ss.0. The result below is a component of the proof of Theorem 4.1(a).

Corollary 5.3. The map

E[G.0]¢ — E[Gy_,s.01°
f—res(f)

is an isomorphism of vector spaces, where res(f) denotes the restriction map.
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Corollary 5.4. The 6 -semisimple conjugacy classes of G are in 1-1 correspon-

dence with the elements of Ty/W?.

Remark 5.5.  This Corollary is the twisted analog of Corollary 2, §3.4 in [10].

See also Remark 2.8 above.

Corollary 5.6.  Let © = x9.0,y = yo.0 € G.0 be semisimple elements. The
following are equivalent.

(a) x,y are G-conjugale,

(b) x,(To) = xp(Uo), for all p=py, X € X**. Here Ty,y, € Ty denote the
image of Cy(xo) NT,Cy(yo) NT in Ty (which exists by Lemma 2.7).

Proof.  ° Follows immediately from the second statement in Theorem 4.1(c). =

Corollary 5.7. If [ € k[G.0) and = € G then f(z.0) = f(xg_ss.0), for
x €G.

Proof. This follows from the second statement in Theorem 4.1((:) and the fact
that xa(2.0) = xa(wg—ss.0), for all x € G and X € X, n

Corollary 5.8. A G'-conjugacy class in G.0 is closed if it is semisimple.

Proof.  We pick a basis of the vector space V', in the notation of §2 where
G C GL(V). We may identify each g € G with a matrix in GL(V).

For the proof, use the obvious twisted analog of the proof of Corollary 5
in §3.4, p. 92 of [10] (which relies on Corollary 5.6 above). In other words, fix a
(semisimple) element z.0 € G.0. Let mg denote the minimal polynomial of .6
and let

S={z0ec G| Xi(;co) = X?\(;c), for all A € X+€, and mg(z.0) = 0}.

S is Zariski closed and contains the conjugacy class of zg.0. Now let z.0 € 5. It
is semisimple since its minimal polynomial has distinct roots (it divides mg, which
has distinct roots by definition). The hypothesis to Corollary 5.6 therefore holds
and implies the statement of the corollary. ]

6. Character relations and endoscopic groups

Let 6 be as in Lemma 2.7. As in Lemma 3.1, we fix an isomorphism
T = T,

The goal of this section is to show that, if G is a simple, simply connected (hence
f-simply connected) group and if 6 is an automorphism of order d preserving a
splitting (B, T,{X}) then there is a simple connected group H associated to G, 8
such that

31 thank the referee for this short proof.
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1. X% is in natural 1-1 correspondence (defined in Lemma 3.1) with the
dominant characters of H, X7, which we denote by

/\H)\H,

2. there are distinct Ag; € X7 such that we have a character relation

XA (As((1).0)) = 2_; Gixam(1); (4)

for all ¢ € Ty, where x§ is as in (3) above, Ty is a regular torus, and Ay is
a map (to be defined below) from the semisimple conjugacy classes in (.6 to
the semisimple conjugacy classes of H. Here the (; € C (possibly all zero)
depend on the extension of p, from G to G'x < 6 > chosen in the definition
of the #-character.

As in [4], we have the following definition.

Definition 6.1. A group H as above is called a 0 -endoscopic group.

Define H to be the group H = GY = {g € G | 0(g) = g}. Since G is
simply connected, H is connected, by Steinberg’s Theorem 8.1 in [11]. H has
maximal torus Ty = T?, root lattice Qu, character lattice Xy = X*(Ty), and
weight lattice P, such that

Qn = Z[R(B,T)|s) C Xu C Py = Q#,

by Proposition 3.9. Furthermore, the Dynkin diagram of H is the “folded”
Dynkin diagram of G (see [9], §12.18 and Theorem 12.19). We have Ty = Ty,
Wy = WY (see [11], §8). This implies H has property (1) of an endoscopic group.
Furthermore, there is a 1-1 correspondence

Ag : Ca(Gy_ss.0) = Cr(H,y,), (5)
defined using the correspondences
Cr(Hss) <+ T /W,
Ca(Goss.0) < Ty /W,

and the non-canonical isomorphism
Ty /Wy = Ty /WP, (6)
The following theorem is our other main result.

Theorem 6.2.  Assume G and 0 are as in Theorem 4.1 above. In addition,
assume G is simply connected. Let H = GY be as defined above. There is an
tsomorphism of vector spaces

k[G.0)° — k[H]H,
induced by the restriction maps k[G.0]¢ — k[Tg]We, K[HY — k[Ty)"®, and (6).
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Proof. This follows from Theorem 4.1 and (6):

[

k[G.0)% — k[T.0)NT9) — k[Ty]"".

Remark 6.3.  The equality claimed in (4) above, which is property (2) of an
endoscopic group, is a special case of Lemma 3.7, using the definition of X7 .

7. Irreducible representations of G, G simple

In this section, we use Dynkin diagrams to describe those irreducible finite dimen-
sional representations of G which extend to representations of G. This forms an
important component of the complete description, which may be found in Remark
3.3 above. No proofs are given in this section. All statements are either proven in
[2] or may be derived by modifying arguments there.

We remark that a relationship between the automorphisms of G and the
automorphisms of the Dynkin diagram of G is given by Proposition 1.4.1 in [7].

G simply connected of type A,

I thank the referee for pointing out that if n is even the restrictions of the
roots in this case do not form a restricted root system in the sense of Proposition

3.9.

)\1 /\2 /\n—l /\n

Here

A1, the 1 — st fundamental weight < the irreducible repn k"',

2
Az, the 2 — nd fundamental weight <+ the irreducible repn /\ kT

and so on. The last node on the far right end is associated to the contragrediant
of the standard representation:

An, the n —th fundamental weight <+ the irreducible repn /\ kT

Let 6 denote the automorphism 0(g) = J 'g7'J, where J denotes the skew-
diagonal matrix whose skew-diagonal (top right to bottom left) is given by 1, —1, ...,
(=1)"*'. Then @ preserves the usual Borel pair (B,T) where B denotes the
upper triangular subgroup and T the diagonal torus. Write the simple roots
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A = {oq,...;a,} of (B,T) as usual, oq(t) = t1/ts,...,an(t) = t,/t,41, where
t = diag(ty, ..., tn41). If we write the Dynkin diagram as usual, with «; in place of
A; above, then # acts on the roots by

0: a0 Qnpri,

and on the weights by
9 : /\Z < /\n-l-l—i;

for 1 <1 < n. The #-fundamental weights are then given by

k2 AZ? 1 = nZi’

where 1 < < %

G simply connected of type D,

A1, the 1 — st fundamental weight <+ the irreducible repn k%",

2
A2, the 2 —nd fundamental weight <+ the irreducible repn /\ k"

and so on. The third to the last node on the far right end is associated to the
representation:

n—1

An—2, then —1 — st fundamental weight <+ the irreducible repn /\ k"
The top node on the far right is associated to the Spin*t representation:
MA_1, then —th fundamental weight < the irreducible repn Spin™.
The bottom node on the far right is associated to the Spin™ representation:
An, the n —th fundamental weight <+ the irreducible repn Spin~.

Assume n > 3. If n > 4 then the only non-trivial diagram automorphism
is that which exchanges the two nodes on the far right end and leaves the others
fixed. Let 6 denote this automorphism (even when n = 4). In this case, the
f-fundamental weights are then given by

T { Mt 0(0) =X+ dpasi, i=n—1,
N = .
)\Z', 7,<TL—],
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where 1 <1 <n—1.

Now assume n =4 and let 6 denote the diagram automorphism such that
0:01 — ag— az, 0(az) = ay.

Using the fact that
Al =an +ag+ jag + o,
Ay = a1 + 205 + oz + ay,
A3 = ja1 + g + az + jou,
Ay = %(11 + az + %(13 + ay,
we find that
0 : )\1 — )\4 — )\37 9()\2) = )\2.

Therefore, the §-fundamental weights are then given by

X-— )\1+)\4+)\3, 7:]
C )‘25 7:27

where 1 <7 < 2.

G simply connectled of type Fg

Ao
o
A A3 As X6
o o ) ) o
A4

Let 6 denote an automorphism of G which acts on the roots by
0: 0y & ag, a3 &> a5, Q4 &>y, Qg &> as.
Then from the table 1, [3], p. 69, we find that
0: X & Xgy Az A5, Ao A, A & A

The #-fundamental weights are then given by

MAde, =1,

1] et i=3,

i Ay, i =2,
Ny, i=4,

where 1 <7 <4.
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