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of second order differential equations

with Lie symmetries
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Abstract. The most difficult part of solving an ordinary differential
equation (ode) by Lie’s symmetry theory consists of transforming it into
a canonical form corresponding to its symmetry type. In this article, for
all possible symmetry types of a quasilinear second order ode, theorems are
obtained that reduce the transformation into canonical form to solving linear
partial differential equations (pde’s) or certain Riccati equations. They
allow it to determine algorithmically the finite transformation functions to
canonical form that are Liouvillian over the base field of the given ode.
The knowledge of the infinitesimal symmetry generators is not required.
Fundamental new concepts that are applied are the Janet base of a system
of linear pde’s and its decomposition into completely reducible components,
i. e. the analogue to Loewy’s decomposition of linear ode’s.

1. Introduction

The most powerful methods for obtaining closed form solutions of nonlinear or-
dinary differential equations (ode’s) are based on Lie’s symmetry theory. Yet for
more than fifty years after his death it has virtually never been applied for solv-
ing practical problems, only during the last decade some activity in this area has
emerged. The collection of solved equations by Kamke [1] for example does not
even mention his name, although almost all solutions given there are the conse-
quence of a symmetry. This is essentially due to two reasons. On the one hand,
for any nontrivial example the amount of calculations necessary for applying Lie’s
theory makes it impossible to be performed by pencil and paper. Secondly the
theory as described by Lie does not allow it to design solution algorithms in a
straightforward manner because various parts of it are not constructive.

After Lie had recognized that the symmetry of an ode is the fundamental
new concept for finding its solutions in closed form, he has described essentially two
versions of a solution procedure based on it. Originally he applied the symmetry
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group of an ode only for recognizing a certain canonical form of the given equation
that may be integrated more easily, and it is indicated how the transformation to
it may be achieved. Lie has outlined this proceeding already in 1883 [8] but never
came back to it. In a second version of his integration theory the infinitesimal
generators of the Lie algebra corresponding to the symmetry group have to be
determined explicitly and a canonical form is constructed from it. This proceeding
is described in Lie’s book on the subject [2], see also the books by Olver [3] and
Bluman and Kumei [4].

In this article the original approach of Lie is completed such that it may
be applied for solving ode’s. Based on the third part of Lie’s series of articles
[8], a complete and optimal answer for obtaining the transformation functions
to canonical form is obtained without solving the determining system for the
symmetries. For each of the eight possible symmetry types of a quasilinear second
order ode a theorem is derived that describes the simplest possible system of
equations the solutions of which are the transformation functions to the desired
canonical form. These systems are not obtained by simplification according to
some heuristics but by transforming them algorithmically into a Janet base. For
any of these systems there are algorithms available allowing it to determine its
solutions in well defined function fields, e. g. solutions that are Liouvillian over
the base field. In this way Lie’s approach may be formulated much more precisely.
Thi! ! s is the subject of Section 3. 1

n the subsequent Section 2 a few results on the symmetries of a second
order ode are given without proof in order to make this article sufficiently self-
contained. In Section 4 some extensions of the results presented in this article are
discussed, in particular its relevance for designing solution algorithms based on Lie
symmetries. A good survey on the computer algebra software that is available in
this field may be found in Hereman’s review [5]. For questions concerning complete
reducibility and the unique decomposition into completely reducible factors the
reader is referred to Loewy’s article [7].

2. Symmetries of Second Order ODE’s

A group of point transformations of the x — y—plane with r parameters is deter-
mined by equations of the form

j:f(xvyvalv"war)v g:g(‘r7y7a17"'7a7‘>

with suitable constraints for the functions f and ¢g. If not stated otherwise, it
is assumed that the parameter values a, = 0 for £ = 1,...,r correspond to the
identity transformation © = x, y = y. They define uniquely a set of r infinitesimal
generators

U, = &(:v,y)é)x + 'I]Z'<.'L',y)ay (1 <i< ,,.)

by
of(x,y,ar,...,a
£Z<l)y) = ( : ’a;; ’ T> |a1=...=aT=0;
aQ(rv Y,y .,y a/r) |
0a7;

ni(z,y) =
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The notation 0, = d/dx etc. is applied throughout this article. The second
prolongation U(?) of U is by definition

U@ = €0, + 00, + (M, + @,
with
¢V = o+ (ny — &)y — &y,
(P = e+ (2nay = &)y’ + (g — 2600y = €™ + (ny — 262)y" = 3&,9'y".

U® contains the information how derivatives up to order two are transformed
under the action of the group.

Let an ode of order n be given as

w(m,y,y',...,y(")) =0. (1)

If not stated explicitly otherwise it will be assumed that w is polynomial in
the derivatives with coefficients in some base field which is usually the field of
rational functions in the independent and the dependent variable, i. e. w €
Q(z,y)[y,-..,y"™]. The Lie symmetries of an equation (1) are those point trans-
formations * = ¢(u,v) and y = (u,v) with v = v(u) leaving the equation
invariant. They may be determined as follows. The second prolongation of a gen-
erator U with a priori unspecified coefficients £(z,y) and n(z,y) is applied to w.
The resulting expression U*)w must vanish mod w. This leads to a set of linear
and homogeneous partial differential equations for the functions ¢ and 7, the so
called determining system of the respective ode. Its representation in terms of a
Janet base is particularly important [9], [10]. Its general solution depends on a
finite set of constants, each of which corresponds to a one-parameter group of the
equation w = 0. The totality of generators forms a Lie algebra corresponding
to its symmetry group. A symmetry type comprises all groups that are pairwaise
equivalent w.r.t. to point transformations.

The first fundamental result of Lie to be applied is a complete classification
of all possible symmetry types of a second order quasilinear ode. He showed that
for any such equation with a non-trivial symmetry there are either 1, 2, 3 or 8
generators. More precisely, there are eight symmetry types one of which contains
a parameter, they are completely described in the subsequent Theorem. The
enumeration of groups g is essentially the same as in Lie [8], part L.

Theorem 2.1.  (Lie 1883) Any symmetry generator of a second order quasilin-
ear ode is similar to one in canonical variables u and v as given in the following
listing. In addition the corresponding Janet base is given where a(u,v) and 3(u,v)
are the coefficients of 0, and 0, respectively.

One-parameter group

St =gyt {0,}. Janet base {a,B,,5,}-
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Two-parameter groups

53,1 =g {04, 0,}. Janel base {ay, ay, By, By}
83y =8t {0u,udy +v8,}. Janel base {ay, By, By — -3, 0t} -

Three-parameter groups

832,1 =gi0: {0 + Oy, udy + 00y, u?dy + v*d, }. Janel base
{amﬂqmﬁu oo+ uzu(ﬁ - (X),(qu - ﬁau - ﬁ(ﬁ - (’Y>}

33’2 =gi3: {0y, 2udy + 00y, u*0y +uvd,}. Janet base {ov, — %ﬁ, Qyy By — %ﬁ, B} -
832’3 =gr: {0, 0y, uly, + vy}, v # 1. Janet base {a, Bu, By — cy, iy } -
832’4 =gy withr =1: {0y, Oy, u0y + (u + v)dy}. Janet base {ay, By — aw, By —

Qy, auu}.

Fight-parameler group:

S =gz {04, 0y, udy, v0,, udy, v0y, u*dy + uvdy,, uvd, + v*0,}.
‘]('LTLEt b(j’se {a’U’U7 /B’U/Mj /\3’U4’U7 /‘3’[/1/7 auuu’ /\3'U/U/U} .

This listing shows in particular that there does not exist any second order ode
allowing a group of point symmetries with 4, 5, 6 or 7 paramelers.

In general an ode is not given in canonical variables but in actual variables
z and y. Let them be related to each other by v = o(z,y) and v = p(z,y). In
order to apply Lie’s theory the symmetry type has to be identified for the equation
in actual variables. This problem has been solved in terms of a set of criteria for
the coefficients of the Janet bases for the respective determining systems [9]. In
order to fix the notation, the types of Janet bases that actually do occur in this
theorem are given below.

\.7'1(’2172):5207 T]x—I—aT]:O’ ny_I_bn:O
jl(;’ﬂ n+al=0,+b6=0,&+c=0.

§x+a7]+b§:07 §y+077+df=0,

j2(?3;2) :
’ e+ pn+ 9 =0, ny +rn+ s =0.
j(2,2). §x+a77+b§:075y+07]‘|‘df:07
MUyt ple A g4 rE =0, Noe + une + vy 4 wé = 0.
j(2,2)_ §y+a§x‘|‘b77‘|‘cfzoa77x‘|‘d§m‘|‘€77‘|‘f§:07
36 -

77y+p§x+q77+7“§:0, {ow + uls + vy + w = 0.
(2,2) §x +an+ b6 =0, ny +d§y +en+ fE=0,
Ny +py +aqn+ 18 =0, &y + uy + vn+ wf = 0.

A Janet base type is determined by its leading terms. The coefficients a,b, ..., v, w
depending on z and y are in the base field of the ode from which they originate.
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Theorem 2.2.  (Schwarz 1996) The following criteria provide a decision proce-
dure for the type of symmetry group of a second order ode if its Janel base for its
determining system in a total-order lexicographic term ordering with n > €, y >«
1S given.

One-parameter group

St Janet base of type jl(im or 31(7272)-

Two-parameter groups

52271 : Janet base of lype ‘72(;’2) with a =d and p=s.
82272 : Janet base of lype ,72(’23’2) with a #d or p# s.

Three-parameter groups

S;l : Janet base of type ",73(,2672) with p=1 and ad+1# 0, or of type j?)(%’Q) wilh
p=0,d#0.

S_%Q : Janet base of lype jg(i’Z), of type ‘,’73(’26’2) with p=1 and ad+1 =0, or of
type jS(?Q) with p=d=0.

83, Janet base of type ‘73(’26’2) with p # 1 and 4ad + (p+1)* # 0, or of type
Jg(%’Q) with p # 0 and p* # 4d.

83?’4 : Janet base of type Jg(;’Q) with p # 1 and 4ad + (p + 1) = 0, or of type
jg(%’z) with p # 0 and p* = 4d.

Fight-parameler group

Sg : Janet base of type {&yy, Naws oy, My, Eozas Exay } -

To each symmetry type there corresponds a canonical form of a quasilin-
ear second order ode allowing this symmetry. In general this canonical form is
not unique. By definition, the totality of transformations leaving its structure
unchanged is called its structure tnvariance group. For quasilinear equations of
second order the canonical form and its structure invariance groups are described
in the subsequent theorem. The structure invariance groups given there have an
important meaning for the respective differential equation. In the first place they
describe the degree of arbitrariness for the transformation functions to canonical
form. This is an extremely important information on the solutions of the systems
of pde’s describing these transformations as it will be seen later on. Secondly
they are a necessary prerequirement in order to obtain definite statements on the
existence of exact solutions and for designing solution algorithms.



416 SCHWARYZ

Theorem 2.3.  In canonical variables v and v = v(u) the second order quasi-
linear equations with non-trivial symmetries have the following structure invari-
ance groups of point transformations w = o(z,y) and v = p(z,y). The unspecified
functions r(v') and r(u,v’) are assumed to be rational in its arguments.
One-parameter group

St v" 4 r(u,v’) =0 allows the pseudogroup uw = f(x), v =g(z) +cy, [ and g
undetermined functions of x, ¢ constant.

Two-parameter groups

53,1 0"+ r(v) =0 allows v = a1z + axy + az, v = a4 + asy + ag.

822’2 : 0"u 4 r(v') =0 allows u = ayx, v =ayr + azy + ay.

Three-parameter groups

S?il : v"(u — v) + QU'(U' + av/o' + 1) =0 allows

y — ar(z + az) Y- ai(y + az)
1—a1a3(x+a2)’ 1—a1a3(y—|—a2).

83,0 v"0®+a=0, a#0 constant, allows

ar(z + as) asy
u = , U= .
1 +a4($+a3) 1 +a4($+a3)

1
n-
S35 v" 4 av =T = 0, aconstant, ~ # 0,1, allows u = a1z + ag,
U= asy + a4.

—nt
9?74: v —ae™ =0, a constant, allows v = a1z + az, v = azr + a1y + a4.

Fight-parameter group

Sg ¢ Projective group of the plane.
Proof. A general point transformation v = o(z,y) and v = p(z,y) changes

the first and the second derivative according to

d - !
o= M’ (2)
du o, + o,y

13

1
T du T (0 + Uyyl)S{(Urpy — 0yp2)yY" + (Oypyy — Tyypy)y
+[pryy — OyypPe + Q(prxy - nyPy)]yIQ (3)

+[prxx - Urrpy + Q(Uz‘pm‘y - Urypx)]yl + Urpxx - Uazasz}
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For 87, in order to avoid any dependence on y to be generated via r(u,v’),
Oy = Poy = pyy = 0 is required. This yields the above structure with

1 1
U=7ﬂ4+qﬁ,ﬂ9=f3

The expression for v” shows that no further constraints are necessary. For the two

(Cf'y"—Cf"y'—I-f’g"—f”g).

parameter groups, any dependence on x and y in the transformed function r is
avoided if

T =a1u + av + az, Yy = asu+ asv + ag

where ay,...,ag are constant. Then the second derivative is transformed according

to
" 105 — U0y "

N (a1 + ay')’

For 83,1 this assures the desired structure. For 83’2 the second derivative must be
proportional to the independent variable, this requires in addition a; = a3 = 0.

For Sil the transformed first derivative must be proportional to y’, this
requires 0, = p, = 0. The condition for the invariance of the second order
invariant leads to a fairly complicated system of pde’s for ¢ and p. A Janet base
for the complete system is

202 20,

Gyzoagxx+ = :0,px:0,py0'x—(p_o-)2:0_

p—0  T—yY r—y

Its general solution containing three constants are the transformation functions
given above.

For 53?72 the transformed second derivative must be proportional to y” and
must be independent of z and y’. This is assured if

Oy = 0, Pyy = 0, Qprxy = OzzfPy — 0, 02pzz — Ogepe =0

are valid. Then there holds v” = p,/c2 - y”. In the transformed equation the

coefficient of the second derivative must be independent of x and proportional to
y>. This requires in addition

pyp’ _ pyp’ | o . E _
(ox%_o’(%>%w3 y_a

The combined constraints may be transformed into the Janet base
oy, =0, ypy —p =0, Opzp —2p:0: =0, przp — 2,0925 =0
with the general solution

01$+Cg Y
o= ———— p= ——,
C3(Csz 4+ Cy) P Csz + Cy

By a suitable change of the integration constants C} the above expression for
group is obtained.

For the group 3;3 the transformed first derivative must be proportional to
y', this requires oy, = p, = 0. The transformed second derivative cannot contain
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a term proportional to a power of y’, this requires o,, = p,, = 0. The general
solution of these equations are the transformation functions given in the Theorem.

For the group S3, the transformed first derivative must have the form
—y' + constant, this requires

Oy = 07 Py — Ox = 07 OxPry — OzyPzr = 07 OePre — OzxPr = 0

or the equivalent Janet base o, = 0, 04 = 0, py — 0z = 0, pze = 0 with the
solution given above.

Finally the structure invariance group of v” = 0 is obviously identical to its
symmetry group Sz, i. e. the eight parameter projective group of the plane. ]

The structure invariance groups of the preceding Theorem have been iden-
tified by Lie [8], part 111, in a different context.

3. Transformation to Canonical Form

This section is organized by the size of the symmetry groups, i. e. one-, two-, and
three-parameter groups and the eight-parameter projective group are considered
successively. The construction of the system of pde’s for the transformation
functions is based on the following general principle. On the one hand, the
coeflicients of the Janet base in actual variables may be expressed in terms of
the transformation functions o(z,y) and p(z,y). This representation is explicitly
given in [9], page 183-184. On the other hand they are rationally known in terms
of the coefficients of the given ode. Equating the two expressions yields a system of
nonliner pde’s for o and p. If it is transformed into a Janet base in a proper term
order, the equations are obtained in the desired form. Lie [8], part 111, page 377-
388 (see also Engels’ comments on page 715-722 of the Gesammelte Abhandlungen,
vol. 5) gives a thorough discussion of the structure of these equations base d on
its group properties following from its invariance under the respective structure
invariance group. For algorithmic purposes, i. e. if the goal is a set of equations
for which solution algorithms for predetermined function fields are available, the
method that is applied below seems to be more appropriate. In any case, Lie’s and
Engels’ discussions of the subject are of fundamental importance for understanding
the structure of these equations. In a second step they have to be solved. In
order to obtain a well defined problem, the function field where the solutions are
searched for has to be specified, and a solution algorithm for obtaining them must
be available. In many instances there occur systems of first order partial differential
equations that are quadratic in the unknown functions. For obvious reasons they
have been baptized partial Riccatli like systems in a recent publication by 7. Li
and the author [6] where they are discussed in detail and solution algorithms are
given. Th is proceeding will be described now for the various symmetry types one
after another. As usual the notation A =o,p, — o,p, is applied.

One-Parameter Symmetry Group. This is the simplest type of invariance
that may occur for any ode. The freedom involved in the canonical form transfor-
mation, i. e. two unspecified functions of the independent variable and a constant,
correspond to the respective quantities generating the structure invariance group.
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Theorem 3.1.  If a second order ode has the symmetry group Si, two types of
Janel bases may occur.

a.) If the Janet base is of type .,’71(:‘)1’2) the transformation functions o and p are
given by

o= f(x). p= [y g(a). )

F is determined by the path integral

xr

F(l'ay)=/

Zo

Yy
a(i‘,yo)di'—l—/ b(z,y)dy

Yo

and f(z), g(x) are undetermined functions of x.

b.) If the Janel base is of lype jl(é’Q) two alternatives may occur. If a #0, o
and p are determined by

Z—y +a =0, solution ¢(z,y) =C, 0 =o(¢), p=— / V) dy 4 Y(y) (5)
T

where Y(y) is an unspecified function of y and G is given by the path integral

xr

Gla,y) = [ 6@, y0)dz + [ ez, 5)dg.

To Yo

If a =0, the transformalion functions o and p are given by

o= fly), p= [ SNdr+gfy) (6)

G is defined as above, f(y) and g(y) are undetermined functions of y.

Proof. In case a.) the relations (logpy,), = a and (logp,), = b follow from
the Janet base for this group, they have the solution (4) given above. The first
alternative (5) for case b.) is obtained as solution of

O A A

— = log—), =b (log—), =

5, — @ (g -)e = b (log 22), = c
which follow again from the Janet base of the determining system. If ¢ = 0 a few
obvious simplifications lead to the second alternative (6). [ ]

Two-Parameter Symmetry Groups. The structure invariance groups corre-
sponding to the symmetry types 822’1 and 822’2 have six or four parameters respec-
tively. These numbers correspond to the degrees of freedom in the canonical form
transformations as it is shown in the following theorem.
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Theorem 3.2.  If a second order ode has a Janet base of type jZ(é’Q), its sym-
melry group has two parameters. There are two cases to be distinguished.

i.) If a =d and p = s, the symmelry group is 82271. The transformation
function o is determined by

Ops — qOy —bo, =0, 0,y — poy —ao, =0, 0yy —roy —co, =0

and an identical set of equations for p. The general solution depends on siz
constanls.
ii.) If a # d or p # s, the symmelry group is 82272. The transformation
functions o and p are determined by the system
0,4+ (s—plo=0,0,—(d—a)o =0,
prz — qpy + (s —=b—p)ps =0, puy — ppy — dp. =0,
pyy + (@ —d —1)py — cps = 0.

The general solution depends on four constants.

Proof.  For the group 52271 the coefficients a,b,...,s in the Janet base may be
expressed in terms of the transformation functions o and p as
OyPry — OuypPy = AN, Oypry — Opzpy = DA,
OyPyy — Oyypy = €A, Oypuy — Ouypy = dA,
OxPry — OxyPx = —PA, OrPrr — OpxPr = —QA,

OuPyy — OyyPr = —TA, Oppry — Opype = —8A.

(7)

As usual A = o,p, —0oyp,. This system may be transformed into a Janet base with
total degree, then lexicographic term ordering with p >0 >s>r > ... >b > a,
y > = with the result

d—a=0, s—p=0,
by —a, +qc—pa=0, c, —a,+ra—pc+chb—a* =0,
Gy =Pz +1q—qa—p° +pb=0, 1, —p, + gc—pa =0,
Ops — qoy —boy, =0, 04y — poy —aoc, =0,
Oyy — 10y — €0z =0, pae — qpy — bpz = 0,
Py — PPy — apz =0, pyy —1py — cpr = 0.
The lower equations not involving ¢ and p represent the integrability conditions
for the Janet base coefficients. The upper half of this Janet base represents the
two identical linear systems for o and p respectively.
For the group 83, the system relating o and p to the Janet base coefficients
is
(0ypay = Ozypy)o + 0y A = —ac A,
(Oypre — Ouupy)0 + 0, = —bo Ab,
OyPyy — OyyPy = —CA, Oypoy — Ouypy = —dA,
OxPry — OxyPxr = PA, OrPrr — OpxPr = qA;
(0epyy — Oyypz)o — oyA = 1o,

(Cupoy — Ouypz)o — 02 = soA.
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In the same term ordering as system (8) above the Janet base

by —ay +qc—pd =0, c;c —a,+ra—pc—da+cb=0,
dy —ay+sa—pd=0,d,—a,+sc—rd+ra—pc=0,
qy—px—sp—l—rq—qa—l—pbzﬂ, ry —py — sa+qec=0,
Sy — pr —sb+qgd —qga+pb=0, sy —p, —sa+pd =0,
or+(s—plo=0,0,+(a—d)o=0
paz + (s —p—b)pa =0,
pay = Ppy — dpz =0,
pyy +(a—r —d)py — cps = 0.
is obtained. The three highest equations determine p, the two subsequent equa-

tions ¢ and the rest are the integrability conditions for the coefficients a,b, ..., s.
This completes the proof.

Three-Parameter Symmetry Groups. The three parameters of the structure
invariance group for the symmetry type Sil are obtained by combining the inte-
gration constant of a first order Riccati like system and a second order Janet base
for o or p respectively.

Theorem 3.3.  [If a second order ode has the symmetry group Sg’l two types of
Janel bases may occur.

a.) If the Janet base is of type ‘73(’26’2) three cases have to be distinguished. If
d # 0, the transformation functions o and p are determined by the system

R, + R~ PR+Q =0,

Ry+Z+1R2_[Z-(|1—1P+(Z-51)E]R+Z—1Q207

(10)
0z + (2R — P)o, =0, Jy—zjj_lax:(),
p—%ax—az().

If d=0 and 0, #0, p, =0, the system for o and p is
R,+ R*—rR=0, Ry—%R2+(ar—c)R+P=0,
0rr + (2R —1)o, =0, Uy—l—%axz(),p—%ax—azo. (an
Finally if d=0, 0, =0 and p, # 0, o and p are determined by
R,+ P =0, Ry+RQ—QR—%P=0,
(12)

oy + (2R = Q)o, =0, 0, =0, p— f0,— 0 =0.
The functions P(x,y) and Q(z,y) are defined by
P(e.y) = gymyal(z + Dlad + Df = z(cd + 7 — e)d],

Qz,y) = ﬁg[zj(cx —aw —v) + c(ed 4 2r — 3e) — a(r — €)* — acde]
(13)
and 22 =ad + 1.
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b.) If the Janet base is of lype ,_73(’27’2) the transformation funclion o and p are
determined by

R, + R?> —(ac+b)R+ B =0,

1 ¢, — (ac+b)e 1p
R, g - ez logtbep _1p_y, "
Sy —S?+ (ac—b)S — B =0,

5, + gz eedloebeg  1p_y

Here ¢ +d =0 and )
c; + be
B_ erbda:+2f—2—C dy. (15)

The system for o and p is

oy — lax =0, 04 + (2R — ac —b)o, =0,

c

py + ]Eaf =0, prw — (25 —ac+ b)p, = 0.

Proof. At first case a.) will be considered. If d # 0, the Janet base for o and
p in total degree ordering with p > o, y > x is

Ty — Z—(Ii'lag::(), Ore(p— )+ 202 — Poy(p—0) =0,

z— 1 2 (16>
py+ =P =0, pr0s — Q(p — 0)* = 0.

The new function R = 0, /(p — o) is introduced with the result

o, — R(p—0) =0, ay—%——lR(p—U):(),

pe=Blp—0)=0, p,— 27 % (- 0)=0.

P, @ and z are defined as above. The integrability conditions of this system are
the two first equations of 10. If a lexicographic term order with p > ¢ > R is
applied, the complete system (10) is obtained.

If d=0, 0, #0 and p, = 0, the Janet base for ¢ and p is

Uy—l—%amzo, pr =10,
02— Plp— 0 = 0,00alp — 0) + 202~ ru(p— o) = 0.
Introducing again R = 0,/(p — o) as a new function, the system
o, — R(p—0) =0, 0y+%aR(p—0)=0,
pr =0, pyR—Plp—0)=0

for o and p is obtained. Its integrability conditions are the first two equations
of (11), the remaining equations are obtained by applying the lexicographic term
order p >0 > R and y > z.
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Finally if d =0, 0, = 0, p, # 0, the Janet base for o and p in total-degree,
p > o, x>y term ordering is

0, =0, ay(p—0)+20; —Qoy(p—0)=0,
paoy — P(p—0)? =0, Pyay+%P(P_U>2 = 0.

Now the new function R = o0,/(p — o) is introduced. It yields the system

oy +(2R—Q)o, =0, 0, =0,
pyR+5P(p—0)=0, p,R—P(p—0)=0
for o and p. Its integrability conditions are the first two equations of (12),
the remaining equations are obtained by applying the lexicographic term order
p>0c>Rand z >y.
In case b.) the type ‘73(727’2) Janet base for o and p is
O'y—%O'x:O, py+%px=0,
Taalp — ) + 207 — (ac+ B)au(p — o) = 0, (1)
pra(p — o) = 2p; + (ac — b)ps(p — 0) = 0.
Defining R=o0,/(p — o) and S = p,/(p — o) leads to the equations

R:+ R*+ RS — (ac+b)R =0,
Ry_%RQ_%RS_uZzC—HER:O’

S, — 5% — RS + (ac — b)S = 0,

1eag o 1 ¢, + (ac—b)e
S, + 157+ L — et (ae —ble

S =0.
Combining the two equations determining the z-derivatives and the y-derivatives
respectively leads to

2(e, + be)

C2

(RS), — 2bRS = 0, (RS), — RS =0

from which (15) follows. ]

The four parameters of the structure invariance group for the symmetry
type 83, are obtained by combining the integration constant of a second order
Riccati like system and a second order Janet base for o or p respectively.

Theorem 3.4.  If a second order ode has the symmetry group S;Q, three lypes
of Janel bases may occur.

a.) If the Janet base is of lype Jg(i’Q) the transformation functions o and p are
determined by
Rew + B2 — bR, — Y(ro 412 —br —0) =0, R, — $a =0,
Oze — (sz - b>0$ =0, Oy = 0, pP— e~ = 0.

(18)
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b.) If the Janet base is of lype ‘73(’27’2) with d = p = 0 the transformation functions
o and p are delermined by
Ryy—FRz—qRy—zl[(ay—}-aQ—aq—w):0, Rx—%r:O,

(19)
O'yy + (2Ry - Q>Uy - 07 Op — 0, p — G_R = O

c.) If the Janet base is of type \73(’26’2) with p =1 and ad +1 = 0 the transfor-
mation functions o and p are determined by

Roo+ R2+afR, — % =0, R, +aR, - §P =0,

(20)
0w+ 2R 4+ af)or, =0, oy + ao, =0, p—e“RZO

where P(z,y) = ar —ae —c¢ = —2A[(ozp) £ 0 and

Q(z,y) = gl(de+r—e)(cs —v) +alr —¢)?
—wP(z,y)+2fP(x,y)* + c(er — ede — 1?)].

Proof.  The proof will be given in detail for case a.) for Janet base type &73(21’2).
If its coefficients are compared to the corresponding expressions in terms of the
transformation functions (see also Theorem (2.2)), the following system of pde’s
is obtained.

)

<]0g pZ)y = a, <]0g _g)x = b, (log _pl>y =P, qg=V,
2
(log %y)x =7, (log g—Z) = u,
O-.Z'

(log pr)y(l0g 02)s — (10g par)y + 3(log p)s(log 5%)z = v,
Pz Pas Oz Oy —
7 [(log o )z + 3(log o )z (log ; )e] = w.

s
Yy

AS]

JFrom this system a Janet base in total degree, then lexicographic term order
p>0>w>v>...>b>ais generated.
u—2r—b=0,a,—ra=0,a,—qa=0,b,—ra=0,

ry — ¢z =0, wy — v, + wq — 2wa — vr + 2vb = 0,

v
Qez — Uy — 2rza + 2q,1 — q:b — 3r*a + 2rba = 0,
Poy — Vg + 2ryr — 3rub — byr — 2wa + 2vb — 2r?b + 2rb* = 0,
oy =0, Oppp — 205p5 — 0xpb =0,
Py + 500 =0, paap — 20% — papb+ p*(rs — v+ 1% = br) = 0.
Introducing the new function R = —log p into the last four equations yields system
(18). For case b.) a similar calculation leads to the following system for o and p.

0z =0, oyyp = 20ypy — oypq =0, ps + %PT =0,
1
Pyyp — 205 — pypq + 7p°(ay — w — qa + a*) = 0.
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Introducting again R = —log p yields system (19). Finally in case ¢.) the four
highest equations of the Janet base for the full system expressing ¢ and p in terms
of the coefficients a,b,...,v,w are

oy +ao, =0, =0, py—l—apx—l—%on,
Ovap = 20005 + Topfa = 0, poap — 202 + afpup + p2% = 0.

where P and () are defined above. Substituting R = —logp yields (20). This
completes the proof. [ ]

For both the S:;i:a and the S§’4 symmetry type the four parameter struc-
ture invariance correspondes originates from the second order Janet bases for the
transformation functions o and p as it is shown next.

Theorem 3.5.  If a second order ode has the symmelry type 83’3, two types of
Janel bases may occur.

a.) If ozp, —youps # 0 the Janet base is of type j?)(’26’2). There are two alterna-
tives. If d = 0 the transformalion functions o and p are delermined either
by

c ya
o, =0, ayy—(ar—l—q+;)ay20, py—l—ﬁpxzﬁ, Pz + 7Pz =0

where yp+1 =10 and yp # 0, or by

a

v—1

Oy —

UxZO; Urx_UUxZOa ,033:0’ Pyy_(ar+Q+76)py:0

where vy +p=0. If d #0 and v + 1 # 0, the transformation functions o

and p are determined by
__pt7 Rz,y,)  _
i S VAL | e el

ap+l S(zy)
Py — (7_|_ l)dpx - 07 Pz + T(m7y)pl‘ =0

ag

where

R(z,y) = v*(cd?* — adf —de +dr — f)+v[(p+2)d(cd +r—e—af) — (2p+ 1)f]

+(p+ 1)(ed* — adf — de + dr — f),
S(a,y) =yd(cd + 1 —¢) +7*[(p+ 2)d(cd + 1 —¢) — (ad + 1)pf]
+9[(p+ 1)d(cd + 1 —€) — (adp + 1) f],
T(z,y) =dlp+ad+~(y+2)(ad + 1)].

The constant v is a solution of

2ad + p* + 1
2+%

1=0.
ad+p v

v
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b.) If o.py — Youpr = 0 the Janet base is of type j?)(’27’2). The transformation
functions o and p are determined by

+1 -
O-y_vfyp Ux:O7 Uxx'*'w—ar: )

1 ap+ (v+ 1)b
py— e =0, pm+%—pr=0-

The constant ~ is a solution of

2

72—(%—2)7+1=0-

Proof.  The original expressions of the Janet base coefficients in terms of o and
p are too voluminous to be given here explicitly. If they are transformed into a
Janet base in total degree, then lexicographic term order with p > o and y > x,
the above linear system for o and p is obtained. The relation for 4 is an additional
constraint for the coeflicients following from the integrability conditions and the
group structure. |

Theorem 3.6.  If a second order ode has the symmetry type 5\3’4 two types of
Janel bases may occur.

a.) If o.py — oyps # 0,0, the Janet base is of type j3(726’2). Three cases have to
be distinguished. If d # 0, p+1#0 and T(z,y) =2ad+p+1#0, the

transformation functions o and p are determined by

ot e =0, m+ Mo
_p+l _p=1_ _ R(z,y) S(z,y)
Py = g P = g 02 =0; oot Tz, )" T dT(z,y

)sz()

where

R(z,y) = (p+1)(cd +r—4) = (p = 1)af,
S(asy) = (p+ Vlled + 7 = €)d + f] = (p = 3)ady.
Ifd#0, p+1=T =0 the system for o and p is
oy =0, 04 — (r —e)o, =0,
Py + 10, =0, pre = (r = )pu+ (r — e+ L)o, = 0.
Ifd=p+1=T =0 there is always a # 0, the system for o and p is
0, =0, 0y — (ar + ¢ —q)o, =0,

Pr+%ay:0a pyy—(ar—l—c—q)py—(ar+c—g)dy:0.

b.) If oupy — oyps = 0,0y the Janel base is of lype \73(727’2) and there holds p # 0.
The system for o and p is

o =0, 0.+ (%ap —b)o, =0,

2
v~ pO=
Py — %px — %0'33 =0, pm(%ap —b)ps + %apam = 0.
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Proof. At first case a.) is considered. In terms of o and p the coefficients a,
d and p are
Y o = o? ’p:Uny—A
0,0y — A 0,0y — A 0,0y — A

where as usual A = o,p, — oyp,. It follows that

pal= 20T gy = - 270

0,0, — A 0,0, — A

The three alternatives correspond to o, # 0 and o, # 0, 0, # 0, 0, = 0 and
o, =0, o, # 0 respectively. In the latter case there follows a # 0. In case b.)
there holds p = 20, /0y, consequently p = 0 entails o, = 0 which is not possible
due to the constraint o,0, = A #0, 1. e. p# 0 is assured. |

The Projective Group as Symmetry Group. The largest group of point
symmetries that any second order ode may allows has been shown to be the
eigth-parameter projective group of the plane. Because there is obviously no
degree of freedom in the canonical form corresponding to this symmetry group, the
structure invariance group is identical to the symmetry group. Its eight parameters
correspond to the integration constants of the Riccati like system (24) and the two
third order Janet bases (23) for o and p.

Theorem 3.7.  (Lie 1883) Any second order ode
y" + Az, y)y"” + B(z,y)y"” + Cz,y)y + D(z,y) = 0 (21)
satisfying the constraints
Dy, + BD, — AD; + (B, — 2A4,)D + $Bus
~2c,,+1c(B,-20,) =0,
2AD, + A,D + £Cy, — 3By, + Au
~4BC, + 3BB, — A,C — AC, = 0,

(22)

allows the projective group as symmetry group. It is similar to an equation v"(u) =
0. For D # 0 the transformation functions v = o(z,y) and v = p(z,y) are
solutions of

Oz — Doy + (C —2C3)o, = 0,
Opy — CQO'y + BQO’x - O, s (23)
oy — (B —2By)o, + Ao, =0
and an identical system for p such thalt o.py, — oypr # 0. The coefficients By = b
and Cy = —a are determined by the Riccatt system
a+a*+Ca— Db+ D, + BD =0,
ay + ab— %Ax%—%cy%—AD =0,
by +ab— 2B, + 1Cy + AD =0,
b, +b* — Bb+ Aa — A, + AC = 0.

(24)

Substituting them into (23) generates Janel bases (23) for o and p.
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Proof. A general point transformation v = o(z,y), v = p(z,y) of v"(u) =0
generates an equation of the form (21). Writing B = B; 4+ 2B, and C' = Cy +2C5,

the explicit form of the coefficients is

OyPyy — TyyPy _ g ToPyy — OyyPr _ B,
b

OzPy — OyPx T OzPy — TyPo
ngzgl _ U:L‘ng — O-szz _ O-z:cpgz —
OuPy — OyPs By OuPy — OyPs Cy,

Ump:z:y - U:ryp:r . Uzpzx _ Uzzpz‘ _
OzPy — OyPo Ca, OzPy = OyPo D.
These equations may be considered as a system of pde’s determining o and p in
terms of the coefficients of (21). B; and C; are expressed in terms of By and
('y respectively, and the resulting system is transformed into a Janet base with
lexicographical term ordering p > o > By > Cy, > A > ... > D. The full
Janet base comprises twelve equations the upper half of which is given by (23) and
an identical system for p. The two lowest equations are the constraints (22) for
A, ..., D guaranteeing the projective symmetry. In between there is the system of
four equations
Cyr—Cy;+ DBy, +CCy— D, —BD =0,
CQ’y + BQCQ + %Bw - %Cy - AD = 0,
Bg’x —_ BQCQ —_ %Bm + %Oy + AD = 0,
B27y—|—B22—BB2—AOQ—Ax+AO:0

Combined with the two lowest equations they may be considered as integrability

(25)

conditions for the linear homogeneous system (23). Equations (25) express the
functions By and (5 in terms of the known coefficients A, B, ' and D. Sub-
stituting Cy = —a and B, = b yields the Riccati system (24) for a and b. This
completes the proof. [ ]

These results will be illustrated now by a few examples. All results related
to the decomposition of Janet bases into largest completely reducible components
may be found in a forthcoming publication [12]. Square brackets mean always
taking the least common multiple.

Example 1. The equation
yllyl.r _ y//y _ yl2 _ 2yl —1= 0
generates the type ‘72(’23’2) Janet base

Ex_%fzoa Eyzoa

1 Y _ 1 _ 1 _
Nz $+yn+x(x+y)§_0’ My — 2y :v—}—yf_o

with a = d =0 and p = s = —1/(z 4+ y), by Theorem 2.2 it follows that its

symmetry group is 822’1. By Theorem 3.2, ¢.) the type \73(’12’2) Janet base for the
transformation function o is
Y

Opg —————0y+ —0,=0,0py + —0,=0,0,,+ —0,=0
ity ' g v,y w0
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and an identical one for p. Itssocleis {o,,0,}. Dividing it out yields a type jQ(é’Q)
Janet base for the quotient in terms of o3 = 0, and oy = o,. It is completely

reducible and decomposes into type ‘,’71(722’2) Janet bases according to

Y 1 1 1 1 _
{Ul,x - m02 + 791,01y + x_-!—_yUZ’ 020 + w—_l_—y02702,y + ac_-l—_yUZ} =

C— 1)z C-1 ¢ -1z
[{o2 + %H—Lal, Ol + (% + (Cy(—l— x)(agy—}- m) Jo1, 01,y — (Cy(—l— x)(oz + ) o1}]

where the constant €' parametrizes the components. The two special choices
C'=1 and C' =0 lead to the representation

1 1 1
[{U2a01,x + _Ulagl,y}a {02 — 01,01+ ———01,01y + —Ul}] =0
T z+y T4y

from which the solutions oy = 1/z, 02 = 0 and 0y = 03 = 1/(x + y) respectively
and finally 0 = logx and o = log (z + y) are obtained. A possible choice of the

transformation functions therefore is
o=logz, p=log(z+y)—z=¢" y=¢€" —¢€"
It yields the canonical form
(V" + 0% =) (v = 1) =" = 0.

The transformations of the structure invariance group leave a lot of freedom for the
canonical form. For example, replacing v and v by u + v and u — v respectively

yields
5 3 1
n 13 !
v — —v —v — .
4 + 2 4o’

Example 2. Equation 6.133 of Kamke’s collection has the Janet base

1 1

2 2

3 3 3 _
fxx_x_|_y£x+ (m+y)277+ (m_l_y)zf—o

of type ‘73(’26’2) for its point symmetries with a = p =1, d = —1. By Theorem 2.2
its symmetry type is 53’2. Therefore case ¢.) of the Theorem 3.4 applies. The
system (20) is

1
1 1
x4y (z+y) T+y
These equation yield the solution
1 1
1 5 1 5
R, = 2 R, = 2

r—y+C1  w+y
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for the first derivatives of R with the integration constant ;. The integrability
conditions of the Janet base for o in (20) require ¢y — oo, i. e. the system for o
is {0, + 04,0, }. It is completely reducible with the decomposition

1 1 1 1

m@% + ma}] = [{ow, 0y}, {0 + H@% Ty

{ow— o}

The two components of the latter representation correspond to the values Cy — oo
and Cy = 0 respectively. A special solution is ¢ = =z — y. To the chosen
value of Cy there corresponds the system R, = R, = (1/2)/(z + y). A special

solution is R = %—log (z +y) and consequently p = \/z +y. The inverse of the
transformation

1, . 1, .
u=zx—y, v=+/T+y is x:E('Lf%—u),y:E(?ﬂ—u)

IIU3

yields the canonical form v"v® 4+ % = 0 for equation 6.133 of Kamke’s collection.

The transformations of the structure invariance group may be applied to generate
any value for the constant term. Choosing a; = 2, a3 = 1 and a3 = a4 for example

yields v"v* +1 = 0.
Example 3. By the above criterion (22) equation 6.180
ey —1)y" — 227y = 22(y — 1)y’ —2y(y —1)* = 0

of the collection by Kamke with A = 0, B = =2/(y — 1), ¢ = —2/z and
D = —2y(y — 1)/2?* has the symmetry type S7. The system (24) for a and b is

2 2y(y — 1 2
am—{—aQ—Ea—}—%b—{—P:O,
ay+ab=0, b, +ab=0, by—l—bQ—{—yz—lb:O.

Its general solution is rational and may be written as

o = Korqp 419, n 1 _ K815+ 85,
K+ Kori 41y T Ko+ Kysi + sy

b _ I(Zrl,y + T‘Z,y _ 1(1 Sl,y + 827:‘/ _ 1
T K TR+, T Kot Kisi+s5 yly—1)
where
oy B _z(y-1) iy —1)
r=————, T9=, S1 = ————, Sy =
z(y—1) y y

and K and K, are the integration constants. Choosing the special values Ky = 0

and K5 — oo in the second representation involving the functions s; and sy, a = 0
and b= —1/y(y — 1) are obtained. They correspond to Cy =0, By = 1/y(y — 1)
and yield the Janet base

2 -1
Orw + %JQ — %G‘m =0,

—71_1)093:0, (fyy—l—%(fy:()

Tey T y(y
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for o and an identical one for p. They are completely reducible. The components

of the socle in the former case are

 (Cat22)(y— 1)
Ciy+ (Crt)z(y—1)

(Cy+ )z

o= 0.
Ciy® + (Co+z)zy(y — 1)

O oc=0, oy —

The three particular components

2 1 1 1
[{Jxa O'y}a{a'r - ;Ua Oy — 2 — yd},{dx - ;Ua Oy — W2 — ya}]

are obtained by choosing Cy — o0, Cy =0, C; = Cy =0 and ¢ = 0,0y — oo

respectively. From this the fundamental system

zy-1) 2*y-1)

Y Y

1

is obtained. Therefore a possible selection for the transformation functions is

z(y—1 2y —1 u u
u = (y ),7): (y )—>x:—,y:
Y Y v uU—v

4. Summary

The results described in this article provide optimal constructive methods for all
the necessary steps in order to transform any second order quasilinear ode with
non-trivial Tie symmetries into a canonical form corresponding to its symmetry
type. The reason is that the equations describing the transformations to canonical
form are obtained algorithmically by transforming them into a Janet base and not
by ad hoc manipulations. The answer is not changed in any significant way if other
term orderings are applied. The function fields for the transformation functions
are determined by the solution algorithms that are available for the system of
equations that are given in Theorems 4 to 10, i. e. they are Liouvillian over the
base field determined by the given ode. Furthermore the freedom for this canonical
form is completely described in terms of its structure invariance group.

These results are important prerequisites for designing solution algorithms
based on Lie’s theory. The general solution scheme for an ode along these lines
decomposes into the following steps.

> Determine the type of the symmetry group.

> Transform the equation to the canonical form corresponding to its symmetry
type.

> Solve the canonical form and generate the solution of the given equation from
it.

The first step is achieved best of all by generating a Janet base for the determining
system as it has been described in Theorem 2.2, from its coefficients the symmetry
type may be read off immediately. The second and most difficult step has been
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solved in this article. For the largest possible symmetry group, i. e. the 8-
parameter projective group of the plane, the complete solution scheme has been
worked out in detail in [11].

Lie’s second approach for solving ode’s [2] requires to know the infinitesimal
generators of the symmetries explicitly. This means the determining system, a
system of linear homogeneous pde’s for two functions of the dependent and the
independent variable, has to be solved. There does not seem to exists an algorithm
for determining Liouvillian solutions of such systems. Furthermore, even if a
solution has been obtained, there remains the problem of identifying the type of
the Lie algebra and generating canonical generators for it. For symmetry groups
with more than three parameters this is a highly non-trivial problem. Knowing all
these difficulties, in his original approach Lie tried to set up a system of equations
for the finite transformation functions after the type of the symmetry group is
known, but he did not succeed. From the results described in this article the
reason is obvious. It does not seem to be possible to set up generically a system
of equat! ! ions for the desired transformat

ion functions in terms of the coefficients of the given ode. Rather starting
from the Janet base of the determining system such a set of equations may be
obtained for each symmetry type that in some cases is even considerably simpler
than the system for the infinitesimal generators. Most important however is the
fact that the Liouvillian solutions of these systems may be obtained algorithmically.

There are numerous extensions of the results described in this article. The
most obvious ones are:

> Generate a similar scheme for third order equations. This is straightforward in
principle because the same method applies, due to the large number of more
than fourty possible symmetry types however it is rather extensive.

> It would be highly desirable to extend the type of equations admitted for the
above analysis, e. g. abolishing the requirement of quasilinearity or admitting
more general base fields.

> A classification of symmetry types and canonical forms may be given for partial
differential equations in an analogous way. For the simplest partial pde’s
determining a single function z(z,y) depening on z and y all the necessary
prerequisites like e. g. a classification of the relevant groups is available in
the literature.

Many details on Janet bases, its decomposition into irreducible components and
solving Riccati like systems of partial differential equations may be found in [12].
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