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Moment sets and the unitary dual of a nilpotent Lie group
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Abstract. Let G be a connected and simply connected nilpotent Lie group
with Lie algebra g and unitary dual G. The moment map for 7 € G sends
smooth vectors in the representation space of © to g*. The closure of the image
of the moment map for 7 is called its moment set. N. Wildberger has proved
that the moment set for 7 coincides with the closure of the convex hull of the
corresponding coadjoint orbit. We say that G is moment separable when the mo-
ment sets differ for any pair of distinct irreducible unitary representations. Our
main results provide sufficient and necessary conditions for moment separability
in a restricted class of nilpotent groups.

1. Introduction

Let G be a real Lie group with Lie algebra g and 7 be a (strongly continuous)
unitary representation of G in some Hilbert space H. The moment map for 7 is

defined as L ld (X
b MO} o 7)) = 1T ()

where dm denotes the derived representation of g in the space H> of smooth
vectors. When 7 is finite dimensional, this notion, which is due to N. Wildberger,
reduces to that of the usual moment map for the Hamiltonian action of G via =«
on the projective space P(H) [11]. The moment set for 7 is defined as

Ie = {¢n(v) © ve HT\{0}},

the closure of the image of 1, in g*. We let G denote the set of irreducible unitary
representatlons of G (up to unltary equivalence) and consider the moment sets I
for 7 € G. One says that G is moment separable if I # I+ for all m, 7" € G with
T &

In the case of a compact group G, the moment set I, of an irreducible
representation m need not be convex. Wildberger has shown, however, that the
set of extremal points of the convex hull of I is a single coadjoint orbit, namely
the orbit through the highest weight of the representation 7. Thus the moment
set completely determines the representation.
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In this paper we consider the situation where GG is a connected and simply
connected nilpotent Lie group. In this setting, a fundamental result of Wildberger
relates the moment set I, for 7 € G to the coadjoint orbit O C g* associated to
7 via the Kirillov method [4]. Namely

I, = Conv(0), (2)

the closure of the convex hull of O in g* [10]. We remark that this result has
been generalized to encompass connected solvable Lie groups by D. Arnal and J.
Ludwig in [1]. In view of Equation 2, G' is moment separable if and only if

Conv(O) =Conv(0O') = O = O’

for all coadjoint orbits O, O’ C g*.

In [10], Wildberger presents an example which shows that G need not be
moment separable in the nilpotent case. It is thus natural to seek a characterization
of the class of connected and simply connected nilpotent Lie groups for which
the moment sets do separate G'. Our main results in this direction are given
below in Theorems 3.5 and 3.6. These provide sufficient and necessary conditions,
respectively, for moment separability of G. In fact, our results apply only to
a restricted class of nilpotent groups, namely those which satisfy Condition (C)
formulated below in Section 3..

The sufficient and necessary conditions in Theorems 3.5 and 3.6 involve
properties of the Pukanszky polynomials which parameterize the coadjoint orbits.
We review this orbit parameterization in Section 2. in order to introduce notation
needed to formulate our results. The orbits are grouped in layers and the polyno-
mial functions which determine the orbits within a layer have a common domain.
It is, however, possible for the convex hull of a coadjoint orbit to pass though other
orbit layers. This fact greatly complicates the use of Pukanszky polynomials in
this problem. We are led to formulate Condition (C) for use as a hypothesis in
Theorems 3.5 and 3.6. This condition implies that the moment sets for representa-
tions whose coadjoint orbits lie in different layers are necessarily distinct. We show
that all three step groups satisfy Condition (C), so these are among the groups to
which our results apply.

We present several examples in Section 4.. These show that the sufficient
condition for separability in Theorem 3.5 is not necessary and that the necessary
condition in Theorem 3.6 is not sufficient. In addition, we present an example
to show that the convex hull of a coadjoint orbit need not lie within a layer. In
Section 5. we discuss some questions that remain open in this area.

We conclude this introduction by noting that the definition given in Equa-
tion 1 extends to yield a generalized moment map,

Wr: HON{0} = U(g)",

where U (g) denotes the complexified universal enveloping algebra. One can define
the generalized moment set J, C U(g)* as

Jr = Conv(V,(H*®\ {0})).

It is shown in [2] that such generalized moment sets always separate the unitary
dual G of any connected and simply connected nilpotent Lie group.
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2. Preliminaries on Orbit Parameterization

We begin this section by reviewing Pukanszky’s parameterization of the coadjoint
orbits for a nilpotent Lie group. This material is quite standard. We refer the
reader to [9], [8] or [3] for details. Throughout, G will always denote a connected
and simply connected nilpotent Lie group with Lie algebra g. Let

{0}=9g0Cg.C---Cyg,=9
be any fixed Jordan-Hélder sequence in g and
X1, Xo9,..., X,
be an associated strong Malcev basis with X; € g, \ g,_;. We denote by
X1, X5, ..., X,

n

the dual basis for g*.
For ¢/ € g* we let O, = Ad*(G){ denote the coadjoint orbit through ¢ and

g(t) ={X eg : (X, g]={0}},

the Lie algebra of the stabilizer of £. A value j € {1,...,n} is a jump index for ¢
if

X; ¢ g(f)+ g1
We let

e(() ={j : jisajump index for £}, e(f)={1,...,n}\e(¥)

and
E={el0) : Lteg'}
The set e(f) contains exactly dim(Q,) indices, which is necessarily an even num-
ber. The sets
Qe={Leg" : el)=c¢}
for each e € & are the layersin g*. One has O, C Qg for £ € g*.
Each layer (), is a semi-algebraic set in g*. To understand this fact, one

first introduces the strict total ordering < on & defined as follows. For e, e’ € £
we have e < ¢ if either

e ={j1 < jo < -+ < ja}, € ={41 <gh<- < jhy} where j; =
Jis ey k-1 = Jr_y and jy < j;. for some k < min(d,d’), or
2. ¢ Ce.

Note that, in view of the second condition, the empty set e = ) is the maximal
element in £. The layer {2y corresponds to the one-dimensional representations in
G. The layer (), given by the minimal element e in £ contains the generic orbits
and forms a Zariski open set in g*. More generally, one has that for e € £, the
layer € is the intersection of a Zariski open set with (J,, , Qe , which is Zariski
closed. In fact, there are Ad*(G)-invariant polynomial functions

P:g"—R
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for each e € £ with the property that
Qe={leg* : P(l) #0and Ps(¢) =0 for ¢ < e}.
These are defined explicitly as Py = 1 and

P.(f) = Pf(M.(£)), where Me(£)=(z[X,-,Xj]) (3)

i,j€e
for e < @. That is, P,(¢) is the Pfaffian of the even skew-symmetric matrix M,(¢).
Given any subset S of {1,2,...,m}, we let

Vs = Span{X; : j€ S} Cg"
For e € £ and 7 € (., there is a polynomial function
ré(l,-) : Ve = Vz
for which r¢(¢,0) =0 and
O, =10+ Graph(r¢(¢,-)) =0+ {z +7r°({,x) : x €V} (4)

Writing
ré(l,x) = Zr;f’(ﬁ, x)X;-‘,
jee
the polynomial 7§(¢,-) : Vo — R depends only on €|9j71 and on the value of x on

g1
For ¢ € g* we define

e ={jcew) : 9 2)=0Vz eV}, &(0) =2 \e(©.
The orbit O, is constant in the directions X for each j € €,(£). For e = e({),

the polynomial r(€, ) = >,z 75 (4, 2) X7 = D ez, 75 (¢, ©) X takes values in

the subspace Vg, of V). We will also write this polynomial as
Ty : V;(g) — Vg2(g).

For e € £, the set
U, =0 NVs
is a cross section to the coadjoint orbits in (2.. That is, O, meets U . in exactly
one point. For £ =3, -£;X; € U, we write
E(l) = Z EJX; € Vgl(l)a 6(2) = Z EJX; € V€2(5)a

jee(e) jeex(l)

so that £ = ¢ 4+ ¢®  With this notation, Equation 4 now yields
0, = M 4 (5(2) + G?“(Lph(?‘g)) C Vgl(e) & (V; SV Vg2(g)>, (5)
Conv(Qp) = (M) + (E(Q) + Conv(Gmph(m))), and (6)

Conv(O,) = M+ (5(2) + Com;(Gmph(rg))). (7)

The indices €1(¢) can be characterized algebraically as follows.
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Lemma 2.1. ¢ ({)={jcell) : X; € a(l)} where a(f) denotes the largest
ideal of g that is contained in g(?).

Proof.  Note that the largest ideal in g that is contained in g(¢) is

a()) = () Ad(9)(g(£) ={X € g : Ad(g)(X) € g(¢) Vg € G}.

geG

Let j € €(f). Now j € €1(¢) if and only if the map G — R, g — (Ad*(9)¢)(X})
is constant. Equivalently, we must have

d

oy (Ad*(ea:p(tY)g)Z) (X;) =0

t=0

for all g € G and all Y € g. That is, j € €1(¢) if and only if (Ad*(¢)¢)[X;, Y] =0
for all g, Y. Equivalently, X; € g(Ad*(9)¢) = Ad(g)(g(¢)) for all g € G. u

Lemma 2.1 shows that we can have e(¢) = e(¢') but e1(¢) # e1(¢'). The
ideal a(¢) can be characterized in terms of the representation 7 asociated to the
coadjoint orbit O, through ¢:

a(f) ={X € g : dr(X) is a scalar operator} = {X € g : dn(X) = l(X)I}.
(8)
We refer the reader to [5] for this fact, the proof of which requires details concerning
the Kirillov correspondence. Lemma 2.3 below recasts Equation 8 in terms of the

moment map for 7. The proof uses a preliminary result.

Lemma 2.2. Let X € g, m € G and A € R be given. We have 1, (v)(X) = A
for all v e H°\ {0} if and only if dn(X) = iAl.

Proof. It is clear that if dn(X) = i\d, then ¢,(v)(X) = X for all v €
H\ {0}. Conversely, suppose that 1, (v)(X) = A for all v € H>°\ {0}. Thus

(dm(X)v,v) = iA|[v]]*. (9)
Replacing v by u + v in this equation (u,v € H° \ {0} with v # —u) gives
Im((dm(X)v, u)) = ARe({v, u)).
On the other hand, replacing v in Equation 9 by u + v yields
Re({(dn(X)v,u)) = —AIm({v,u)).

Thus
(dr(X)v,u) = iX(v,u),

and hence dn(X)v =i\v for all v € H°\ {0}. u
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Lemma 2.3. Let ¢ € g* and 7 € G be the representation corresponding to
Oy. Then the largest ideal a(¢) in g contained in g(¢) is
a(f) = {X eg : v Y (v)(X) is constant on H>}
{X g e(v)(X)=£X)VveHT}

Proof. Lemma 2.2 shows that v — 1,(v)(X) is constant on H>° if and only

if dm(X) is a scalar operator. The result now follows immediately from Equation
8. [ ]

Lemma 2.4. Let w,n" € G correspond to coadjoint orbits Oy and QOp. If
I, =1 then a(f) = a(l') and £ =1¢" on a(f) = a(¥).

Proof. Let X € a(f). We will show that X € a(¢) and that ¢'(X) = ¢(X).
Let v' € H2\{0}. Since ¢ (v') € Iv and v = I, we have that ¥, (u,) — ¥ (V')
for some sequence (u,)2; in H2\ {0}. Using Lemma 2.3 and the fact that
X € a(¢) we obtain

Y (0)(X) = lim g ) (X) = Tim £(X) = £(X).

Thus v' — 9 (v") takes the constant value ¢(X) on HZ \ {0}. Lemma 2.3 now
shows that X € a(¢') and that ¢(X) = ¢(X). u

Corollary 2.5. If £,0' € g* satisfy e(£) = e(¢') and Conv(O;) = Conv(Oyp)
then gl(f) = 51 (E’) and gZ(g) = 52(6’) .

Proof. In view of Equation 2, this result is an immediate consequence of
Lemmas 2.1 and 2.4. [ ]

3. Moment Separability

In this section we will consider connected and simply connected nilpotent Lie
groups G that satisfy the following condition:

(C) For every £ € g*, Conv(O¢) C Uy 2e-

Example 4.5 in Section 4. shows that Condition (C) need not hold in general. Since
Uerseqey $2e s closed, we also will have Conv(O¢) C Uy e when Condition
(C) holds. Note that each of the following conditions imply (C):

o Conv(Oy) C Qe forall £ € g*.

e The connected components of each layer €2, (e € £) are convex.

In many examples it is easy to verify these latter properties. For example, the
coadjoint orbits, layers and Pukanszky polynomials for all groups G of dimension
at most 6 are computed explicitly by O. Nielsen in [7]. One sees very easily from
this that the connected components of the layers are convex in all but two of these
cases. The two exceptions are the generic layers for the six dimensional groups
denoted Gg17 and Ggos in [7]. The orbits in these layers are, however, flat (of
dimension 4) and hence we have Conv(O,) = Oy C Qg for such orbits. Thus
we see that Condition (C) holds for all cases where dim(G) < 6. The following
proposition gives two further classes of examples which satisfy Condition (C).
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Proposition 3.1.  a) If G is at most step three then G satisfies Condition (C).
b) If all coadjoint orbits for G have dimension at most two then G satisfies (C).

Proof. Suppose that G is nilpotent of step at most three and let £ € g*. We
will show that Conv(Og) C Q. For £/ € Conv(O,) we have

V"= M\to Ad(exp(Y1)) + - -+ + Anl o Ad(exp(Yn))

for some Yi,..., Yy € g and values Aj,..., Ay € (0,1) with Ay +--- 4+ Ay = 1.

Since the layers are determined by the polynomials {P, : e € £}, we need only

show that P.(¢') = P.(¢) for all e € £. This is immediate for e = . For e # 0

we have P,({') = Pf(M.(¢')) where M,(¢') = (6’[Xi,Xj]) . As G is at most
i,j€e

3-step, we have

C1X, X5 = ) Mb(Ad(exp(Yr))[Xi, X;])

= ) NA([X, X5 + [V, (X5, X))

k=1
N
= E[XZ, Xj] + 12 Z )\k}/k; [Xia X]]]
k=1
N
= (o Ad (exp (Z )\kYk)> [Xi, X;].
k=1

Letting g = exp(— >_ ArYx) we have show that
M. (0') = M.(Ad*(g)¢).

Thus also P,(¢') = P,(Ad*(g)¢) = P.(¢) by Ad*(G)-invariance of P,. This proves
the first assertion in Proposition 3.1

Next suppose that all coadjoint orbits for G are at most two dimensional.
For e € £ let H. = {{ € g* : P, (f) = 0}. If e < O then #(e) = 2
since the orbits in . are two dimensional. If e = {j; < jo} then we see that
P.(¢) = ¢[X;,,X,,]. Thus H, is a codimension 1 subspace of g* for each e < @.

We have Q, = (ﬂd« He:> N <g* \ He> for e < @ and Qg =,y He. We see
that the connected components for each layer {2, are convex sets. [ ]

Remark 3.2. In [10] it is shown that any pair of two-dimensional coadjoint
orbits 01, O4 is “conver distinguishable”. That is, Conv(0O1) = Conv(O32) only
when O, = O,. It is thus probably true that G is moment separable when all
coadjoint orbits have dimension at most 2. In particular, this is the case if, in
addition, the convex hull of each coadjoint orbit is closed. On the other hand,
examples presented below in Section 4. show that G may or may not be moment
separable when G is 3-step.

Proposition 3.3.  If G satisfies Condition (C), then G is moment separable
if and only if the following condition holds: For each e € £, given f,g € U., we
have Conv(Oy) = Conv(O,) implies f = g.
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Proof. The condition is clearly necessary for moment separability. Now sup-
pose that the condition holds, and we are given f,g € g* with Conv(Oy) =
Conv(O,). In view of Condition (C) one has

g € Conv(0,) = Conv(Oy) C U Qe
e'=e(f)

and hence e(g) > e(f). Likewise e(f) = e(g) and hence e(g) = e(f).
Now we can take f' in 4. N Oy and ¢' in U, N O,. Then our condition
gives f' = ¢', and hence Oy = O,. Thus G is moment separable. |

Lemma 3.4.  Let £,¢' be points in a coadjoint orbit O C Q.. Then
re(l,z) = r°(bx +y) — (4, y)

for some y in V,.

Proof. By our description of the coadjoint orbit O = O,, we have ¢ =
£+ y+re(l,y) for some y in V.. On the other hand, an arbitrary point in
O = Oy is of the form ¢ + 2"+ r¢(¢,z') or

C+z+rlz) = O —y—rly)+z+71 1)
C+x—y+rlx)—r°,y).

Thus z' =2 —y, and r¢(¢,2') = r¢(l,x) —re(b,y) =r¢ (0 2" +y) —ré(f,y). ™

Our main results concerning groups G subject to Condition (C) are The-
orems 3.5 and 3.6 below. These provide a sufficient and a necessary condition,
respectively, for moment separability of G. We will see via examples in Section 4.
that the sufficient condition provided in the first of these theorems is not necessary
and that the necessary condition in the second theorem is not sufficient.

Theorem 3.5.  Suppose that G satisfies Condition (C) and, for all £ € g*,
e =e(l), we have 15((,V,) # R for all j € €. Then G is moment separable.

Proof.  In light of Lemma 3.4, we see that the condition on r£(¢,-) holds for all
£ in a layer 2, iff it holds for all £ in the cross-section U .. Thus we consider only
points in the cross-sections.
Given e € &, take f,g € U, with Conv(O,) = Conv(O;) . We will show
that f = g. Corollary 2.5 yields € (f) = €1(g) and €x(f) = €3(g). Equation 7
implies, moreover, that f(") = ¢() must hold. It remains to show that f® = ¢,
We write e; and e for the common sets €;(f) = €1(g) and ex(f) = €2(g)

respectively. We suppose below that e; # ) as otherwise we are done. Let

C; = Conv(Graph(ry)), C,= Conv(Graph(ry)) C Ve® Vg,.
From above we have that

fA+Cr=4¢%+0C,
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For j € e, let p; : V. ® Vz, — R be the X7-coordinate map. That is, p;({) =
£(X7). As pj is linear, we have

pi(fP+Cr) = fi+pi(Cy)
= f; + Conv(p;(Graph(ry)))
= fj+ Conv(ri(f,Ve))
fi+75(f, Ve)-

Since j € €, r§(f,-) : Ve = R is a non-constant polynomial, hence 7%(f, V;) is an

unbounded interval in R. By assumption we have r(f,V.) # R, so r§(f,Ve) is a

proper unbounded interval, (—o0,a), (—o0,a], (a,00), or [a,oc0) for some a € R.
We also have

fj —|—7“;f(f, Ve) C pj(f@) +Ef) C fj +pj(Cf) C fj +7‘;(f, V;)

where 7%(f,V.) is a proper unbounded interval in R, and a similar string of
inclusions for g. Since f® + C; = ¢g® + C, we conclude that

fj‘f‘T'?(f, ‘/;) =gj+7“;(g, V;B) (10)

for all j € e,.

Let j € €5 and assume inductively that f; = g; for all i € €; with i < j. (In
particular, this is automatic when j = min(e;).) We have that f|gj71 = g|gj71.
Indeed, for 7 < 7 we have either

e | € e, in which case f; =0 = g; since f,g € U,,
e i € ey, in which case f; = g, since f = ¢ or
® i € ey, in which case f; = g; by the inductive hypothesis.

As 7;(f,-) and 7;(g,-) depend only on f|gj71 and g|gj71 respectively, we conclude

that 75(f,Ve) = r$(g,Ve). Letting A = r5(f, V) = r$(g, V), Equation 10 becomes

(fj—gj)+A:A.

As A is of the form (—o0,a] or [a,00) we now conclude that f; = g; as desired.
]

Theorem 3.6.  Suppose that G satisfies Condition (C) and that G is moment
separable. Then for all £ € g*, either €3(¢) = @ or Conv(Graph(r;)) # Ve @
V'é'z([) .

Note that when ey(¢) = @ we have O, = £+ V,. These are flat orbits and
the associated representations are square integrable modulo their kernels [6]. In
such cases we have, in particular, that O, is convex.

When e;(€) # O then Conv(Graph(re)) # Ve @ Ve if and only if
Graph(r,) lies to one side of a hyperplane in V. @ Vz,(,). Thus the condition in
Theorem 3.6 can also be stated as:
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e Forall £ € g* either €,(f) = @ or there exist real numbers {a; : j € e(¢)},
{b; - j€el)}, ce R with

Z a;r; + Z bjr;(e)(ﬁ, z)>c
jee(t) jee(e)
for all z = Zjee(e) ;X7 € Ve
Equivalently:

e For all £ € g* either e,(¢) = @ or there exist elements A € Span{X, : j €
e(f)}, B e Span{X; : j€e ()}, ce R with

2(A) + (re(2))(B) > ¢

for all z € V.

Proof.  Asin the proof of Theorem 3.5, by Lemma 3.4 we only need to consider
points in the cross-sections U.. Suppose that G satisfies Condition (C) and
es(f) # O for some f € U, but that Conv(Graph(ry)) = Ves) ® Vay(s)- Let

g=f+eX;

where k = max(ez(f)) and € > 0 is chosen small enough so that P,(g) # 0. The
latter is possible since P,(f) # 0 and P, is continuous. We will show that g € U,
and that Conv(O,) = Conv(Oy). As g # f and U, is a cross section for €2,

this shows that that G is not moment separable.
From Equation 7 we obtain

Conv(Oy) = f(1) + (f(2) + Conv(rf)) = f(l) + (Ve o) VgQ(f))-

As g = fO + (f@ +eXp) € fO + (Ve ® Vg2(f)), we see that g € Conv(Oy).

Condition (C) now implies that g € |J,s., Q2 and hence P (g) =0 for all ¢’ € £

with € < e. Since P.(g) # 0 we now conclude that g € Q. = {£ € g* : P,(¢) #

0 and P, (¢) =0 for ¢’ < e}. Moreover, g=f+eX;€Vesoge U, =02 NV
We claim that r¢(g,-) = r¢(f, ), or equivalently,

rj(g, ) = rj(f, -) for all j €e.

For this we consider two cases:

1. If j <k then g|gj_1 = f|gj_1 and hence 75(g,-) = 75(f,-).

2. If j > k then j € ¢e(f) since k = max(ez(f)). But as noted above,
g € Cow(0;) = fO 4 (v; ® Vg2(f)) and as Conv(O;) is an Ad*(G)-

invariant set we have
Og C f(l) + (V; (&) VgZ(f)>.

Hence the polynomial g;+7%(g,-) = f; +7%(g,-) which gives the orbit O, in
the X7-direction must be constant (g; = f;). That is, 75(g,-) = 0 = r§(f,-)
in this case.



BAKLOUTI, BENSON, RATCLIFF 145

It now follows that €,(g9) = €1(f), e2(g) = e2(f) and r, = ;. Finally we
compute

Conv(0,) =

/N

9@ + Conv Graph(n,)))

= fO4 (g + Conu( Gmph(?‘f)))
_ 1) + ( +V.® Vez )
= 104 (Vee Vagy)

= Conv(0Oy).

Examples in Section 4. show that the converses for Theorems 3.5 and 3.6
do not hold in general. The necessary condition from Theorem 3.6 is, however,
sufficient in the special case where each coadjoint orbit has at most one non-
constant direction:

Proposition 3.7.  Suppose that G satisfies Condition (C) and that #(e3(f)) <
1 for all £ € g*. Then G is moment separable if and only if Conv(Graph(re)) #
Vewy @ Vay(o) for all € € g* with €() # O.

Proof. In view of Theorem 3.6, we need only prove that O; = O, follows
from Conv(Oy) = Conv(O,). By Proposition 3.3, we can assume that f,g € U,
for some e € £. As in the proof of Theorem 3.5, we obtain ¢€;(f) = €;(¢g) and
fA = g We suppose that € (f) = €(g) = {j}, and wish to show that f; = g;.
As in the proof of Theorem 3.5 we have

fiXG + C’onv(Graph(rj(f, )X]*)) = g; X + C’onv(Graph(r;?(g, )X]*))

Moreover, as f) = ¢ and f,¢g € U, we have flg;—1 = g|g;_; and hence
ri(f, )—7“( ). Thus

Conv(Graph(ri(f,-)X;)) = Conv(Graph(ri(g,-)X;)) = C

J

say. We have now o
(fi—g)X;+C=C
and, by iteration, n(f; — g;) X + C=CforallneZ.

Now suppose that f; # g;. Then, by convexity, we have RX* + C = C.

Since C is the graph of a function from V. to RX7, we conclude that C =
Ve® R X7 . This contradicts the hypothesis that C # V. R X} and hence f; = g;.
u

4. Examples

As remarked in [10], G is moment separable for all connected and simply connected
nilpotent groups G with dim(G) < 5. Examples 4.1 and 4.2 below illustrate the
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application of Theorems 3.5 and 3.6 to groups of dimension 6. When dim(G) = 6,
as is noted in [10], G may or may not be moment separable.

Examples 4.3, 4.4 and 4.5 demonstrate some limitations to the results
obtained in this paper. Example 4.3 shows that G may be moment separable in
cases where Condition (C) holds but G does not satisfy the remaining hypothesis
in Theorem 3.5. Example 4.4 shows that G may satisfy Condition (C) and the
conclusion of Theorem 3.6 but G may fail to be moment separable. Example 4.5
shows that not all nilpotent groups satisfy Condition (C).

Example 4.6 suggests that some of our results should carry over to the
setting of exponential solvable Lie groups.

Example 4.1. Let G be the 6-dimensional group with Lie algebra g having
strong Malcev basis X1, ..., Xs where

(X6, X5] = Xy, [Xo, Xu] = X1, [X5,Xo] =X,

and other brackets of basis elements vanish. This is the group denoted Gg, in [7].
G is a 3-step group with center RX;. Condition (C) holds in view of Proposition
3.1. In fact, the jump sets and layers are, from [7]:

£ = {{2,3,4,6} < {5,6} < @}, where

9{2,3,4,6} = {g . £1 7£ 0}, Q{5,6} = {g . £1 = 0,64 # 0}, Q@ = {E . 51 = £4 = 0}
Here we write elements ¢ € g* as £ = (1 X] +---+ lsX}. For e = {2,3,4,6}
and £ € U, = {1 X] + 6 XF : 1 # 0}, one has € (¢) = {1}, e3(¢) = {5} and
ré(l,-): Ve — R is
1
T§(£7 $2ax3ax4ax6) = 2_£1x421

Thus r§(¢,Ve) # R. For £ € Q563 Uy we have €;(¢) = @. (The orbit O, is flat
of dimension two or is a single point.) Thus Theorem 3.5 shows that G is moment
separable.

Example 4.2.  Next consider the 6-dimensional group G whose Lie algebra g
is given by the strong Malcev basis X, ..., X with non-zero brackets

[X(;,Xg,] == Xg, [XG,X4] == XQ, [X5,X2] - Xl, [X4, Xg] - Xl.

This is the group G4 in [7]. As in Example 4.1, g is 3-step with one dimensional
center RX;. Condition (C) holds and we have

£ = {{2,3,4,5} < {4,6) < {5,6} < @}, where

= {{ : ¢ #0},

Q{4,6} {E . 61 = O,Eg 75 0},

Oy = {£: b=10=0,0#0},
Qp = {£: 6, =1l,=103=0}

Q42,34,5)
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For e = {2,3,4,5} and £ € U, = {l,LX] + 6 X : {1 # 0} one has e;(¢) = {1},
€2(€) = {6} and 70 : V, — V3, is the map

re(zo, X3, T4, T5) = —ngng i
This gives a saddle in the the space spanned by {X;, X3, Xi}. It follows that
Conv(Graph(re)) = Ve @ Ve for £ € Qo345 Theorem 3.6 now implies that G
is not moment separable.
We remark that Examples 4.1 and 4.2 taken together show that the unitary
dual of a 3-step group may or may not be moment separable.

Example 4.3.  The n-step ladder group G, (n > 2) has Lie algebra g, of
dimension n + 1 with strong Malcev basis Xi,..., X,,.1 where

[Xnt1, X5 = Xj
for 7 = 2,...,n. In this example one has
E={e1<er<...<e,} where ¢;={j+1,n+1}
for j=1,...,n—1 and e, = @. The layers ), are
Qe, ={feg" : li=--=14;_1=0,¢; #0}
for j=1,...,n—1, and
Qe, =Qp={leg” : lh=-=lp 1 =0} ={lX;+ln1 X0y ¢ lnylnyr € R}

We see that the connected components of each layer are convex, so Condition (C)
holds. Alternatively, this follows from Proposition 3.1 since each coadjoint orbit
has dimension at most two. We’ll show that G,, is moment separable but that for
n > 4 the condition in Theorem 3.5 does not hold. The case n = 2, the three
dimensional Heisenberg group, is transparent. So we suppose below that n > 3.

First note that there is an obvious algebra isomorphism g,/RX; ¥ g,_;.
Coadjoint orbits in layers (., with j > 1 are diffeomorphic to coadjoint orbits in
g, _, via the associated linear map g;_; — g7 . Thus an inductive argument shows
that G,, is moment separable if and only if Conv(O) = Conv(0') = O = O’ for
coadjoint orbits O, O' C Q,, .

Writing e = e; and functionals £ = (X7 + - + 1 X as £ =
(l1,...,lpy1), we have

Lle= {(61,0,53,...,67“0) : 51 #0}

A brute-force computation shows that for £ € U, £ = (41,0,4s,...,£,,0), one has

1 {3 1 4y 2 1
O, = {(El,x2,€3+2£ x2,€4+£ +6£2x2,£5+£ x2+2£2 2+24£3 Ty, ...,
b, _ bpy_o {3 _ _
g n—z 2 s n—3 P, () ’ n
AR R m—3as2 Tt oF )

D T2y, Tp+1 € R}
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The Pukanszky polynomials 7$(¢,-) : V. — R are here given by

-1 -3
i o i 1 -1

—— 1T, = =T — T
=T (-

’f’;(ﬁ, p xn—|—1) =
=1

We have €1(¢) = {1} and ey(¢) = {3,...,n}.

Suppose now that ¢ = (¢1,0,43,...,£,,0) and ¢ = (£{,0,¢5,...,£.,0) are
two points in U, with Conv(Op) = Conv(Oy). It follows that ¢ = ¢;. We can
suppose here that ¢; > 0. All points ¢ in O, have ¢§ > ¢5. Hence the same is
true for all points ¢” in Conv(Oy). Thus we have ¢; > /5. Interchanging the roles
of ¢ and ¢ we obtain also ¢3 > ¢, and hence ¢5 = ¢3. We note, moreover, that
all points ¢" € Conv(O,) with ¢ # £ have ¢5 > ¢3. Since ¢' € Conv(O,) and
¢y = {3, we now conclude that ¢/ = ¢ must hold. This shows that G, is moment
separable.

On the other hand, for n > 4 we see that r{(¢,z) = (¢3/41)xs + (1/662)z5
has r§(¢,V,) = R for all £ € €2,. Thus the condition in Theorem 3.5 does not hold
here.

Example 4.4.  Consider the 7-dimensional group G' with Lie algebra g given
by the strong Malcev basis X1, ..., X; where:

(X5, Xu] = X3, [X5, X3]=Xo, [X5, Xp] =X,
(X6, X5] = X3, [Xe, Xu] = X, [Xs, X3] =X,
(X7, X5] = Xq,

and other brackets of basis elements are zero. g is 4-step with center RX;. The
jump sets for this example are

£ = {{2,3,5,6} < {3,4,5,6} < {4,5} < @}

with layers given by:

9{2,3,5,6} = {f € g* : Ay 76 0},
Vsasey = £ €9 £ =0,4, #0},
9{4,5} = {E € g* b=Vl = 0,63 7é 0},
Op = {feg : b=t =1l=0)

where ¢ = 01 X{ +---+¢;XZ. Condition (C) holds because the connected compo-
nents of each layer are convex. We will show that the condition in Theorem 3.6
holds but that G is not moment separable.

The cross sections U, are given by

U{2,375,6} = {Ele +£4XZ +€7X;< . El 7é 0},

Upase = {la X5 + 0 X3 My # 0},
Upsy = X3 +06Xg + X7+ I3 #0},
Uy = {luX;+ - 6X5}
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Writing elements ¢ € g* as “(¢1,...,07)”, the coadjoint orbit through a point ¢
in U{2,3,5,6}, U{3,4,5,6}; U{4,5}; or Ug is:

O, = {(ﬁh Ty, T3, 04 + $2$3/£1 - 373/(35%),555; Te, b7 — 532) 1 Tg,T3,Ts5,Te € R},
Or = {(0,€y, 23,24, 75,76, 07) : T3,T4,75,76 € R},

O, = {(0,0,€s5,24,25,05 — x4,47) : z4,25 € R}, or

0, = {0

respectively.

One can read off the Pukanszky polynomials from these orbit descriptions.
For e = {2,3,5,6} and ¢ € U,., we see that €(¢) = {4,7} and that the map
Ty : V:? — Vg2(g) is

Ta3 x5

Y

Te(T2, T3, Ts, Tg) = ( > Xy — 22 X7.

Thus Graph(ry) is contained in the linear subspace {¢' : ¢, + ¢, = 0} of
Ve ® Va. Hence the same is true for Conv(Graph(re)). This shows that
Conv(Graph(re)) # Ve ® V) for all £ € Up356,. For e = {4,5} and £ € U,,
we have €;(¢) = {6} and 7 : Vo = Vg is

re(T4,x5) = =14 X§.

We see that Conv(Graph(ry)) = Graph(ry) # Ve @ Ve for all £ € Q5. For
e=1{3,4,5,6} or e =0 and ¢ € U, we have ey(¢) = ). Hence the condition in
the conclusion of Theorem 3.6 holds for this example.

On the other hand, G is not moment separable. Indeed, let f = X and
g= X+ Xj. Since f,g € Up3se and f # g, we have that Oy # O,. In fact,
these orbits are:

O; = {(1,20, 73, 22m3 — 3/3, x5, 16, —x2) : T2, %3,75,%6 € R},
O, = {(1,z9,23,1+ zo23 —a3/3, x5, 26, —T2) : Ta,T3,T5,T6 € R},

Since (1,1,1,2/3,0,0,—1) € O and (1,-1,-1,4/3,0,0,1) € O, we have
g = (1,0,0,1,0,0,0)

1 1
= 5(1,1,1,2/3,0,0,~1)+ (1, ~1,~1,4/3,0,0,1) € Conv(O).

Thus Conv(O,) C Conv(Oy). But we also have (1,1,—1,—-1/3,0,0,—1) € O,
and (1,-1,1,1/3,0,0,1) € O,. So
f = (1,0,0,0,0,0,0)
1 1
= 5(1, 1,-1,-1/3,0,0,—-1) + 5(1, -1,1,1/3,0,0,1) € Conv(Oy)
and hence Conv(Oj) C Conv(O,). As Oy # O, but Conv(Oy) = Conv(0,),

G is not moment separable.
This example shows that the necessary condition for moment separability
furnished by Theorem 3.6 is not sufficient.



150 BAKLOUTI, BENSON, RATCLIFF

Example 4.5. Let G be the group of 5 x 5 unipotent upper-triangular ma-
trices. This is a 4-step group of dimension 10 with one dimensional center. We’ll
show that Condition (C) does not hold for this example. The Lie algebra g for
G is the set of 5 X 5 upper triangular matrices with 0’s on the diagonal. Let
E;; denote the matrix with a 1 in position (¢,j) and other entries zero. Then
{E;; : i <j} is a strong Malcev basis for g when ordered as:

E1,5a E1,4a E2,57 E1,37 E2,4a E3,5a El,?a E2,37 E3,47 E4,5'
The structure equations are

[Eij, Exgl = 0k Eiy.

NE

There are nine layers €2, in g*. Rather than writing “X; = Ey5,..., X =
E45” and listing jump sets e as subsets of {1,...,10}, we will specify the basis
vectors E; ; that give the jump indices in each case. One has

g:{€1<€2<"‘<69}
where:

€1 = {E1,4, E2,5, E1,3, E3,5, E1,2, E2,3, E3,4, E4,5},
eo = {Eva, Eops, Er13, Ess, Evo, Ess},

es = {Ev3, Eou, Ess, B, Eys, Esu},

€4 = {E1,3, Es4, B, E3,4};

es = {FEa4, Ess5, Eos, Eus},

es = {FEi2, F23, E34, Eus},

€r = {E2,3, E3,4},

€s = {E3,4; E4,5},

€g = @

Writing elements £ € g* as £ =) _._.¢; ;Ef

4,7

Qe, = {{eg : lis#0, lislys—Llyulis # 0},
Qe, = {£eg : l15#0, lialys — Lyl 5 =0},
Qe, = {{eg' : b15=0, l14ly5 #0},

Qe, = {{eg : li5=105=0, {14 #0},

Qey, = {Leg : lis=1014=0, o5 # 0},
Q
Q
Q

i<j the corresponding layers ()., are:

o = leg  lis=la=1l5=0, li3ls5 # 0},

er = {£ €g’ 61,5 = Z1,4 = £2,5 = 51,3 =0, 62,4 #* (]},

es = g ls=ba=Llys="03=1">4=0, l35F0},
Qe = {Leg : lig=lia=tlos="Ll13="L4=1L35=0}.

Orbits in €2, are 8-dimensional with one non-constant direction (E3,). Orbits in
Qe, are 6-dimensional with three non-constant directions (E3 4, F3 5, E5 ;). Orbits
in Q, are 6-dimensional with one non-constant direction (Ej;). Orbits in Q,
are 4-dimensional with one non-constant direction (Ej3). Orbits in €2, are 4-
dimensional with one non-constant direction (£3,). Orbits in €, are flat and
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4-dimensional. Orbits in €2, are 2-dimensional with one non-constant direction
(Ej{;)). Orbits in €2, are flat and 2-dimensional. Orbits in ., = 2y are single
points.

From above we see that the cross sections for the layers 2., and €2, are:

Uey ={aET;+bE5,  a#0,b#0}, U, ={aE];+bE5;+cE;, @ a#0}.

One computes that the coadjoint orbit through a point f = aEy;+bE;3+cE3, €
Ue, (a#0) is

0 29 T13 T14 a
O 0 b _j’_ 1‘25;”13 w14a$25 3325
Of = 0 0 0 c+ B x5 | 1 Tig, Tos, T13, Tas, T12, Tas € R
0 0 0 0 T45
0 O 0 0 0

Note that both aE{ ;+2E7,+bE; 3+ cE3 , and aE7 ;+2FE5 ;+bE; 3 +cE3 , belong
to Of. Hence

1 1
= §(CLET,5 +2E7, +bES 3+ cE3,) + §(CLET,5 +2E;5 5 + bE3 3 + cE3 )
€ Conv(Oy).

Since g € ()., we see that

9
Comv(0s) ¢ | |J 2 =J2,
e'=e(f) J=2
Thus, Condition (C) fails for this example.

We note, moreover, that G fails to be moment separable in a rather spec-
tacular fashion. The coadjoint orbit through a point g = aEj; + bE;, € U,

(a#0,b#0) is

0 zp 73 T14 a
0 0 T3 b+% Tos
O, = 0 0 0 T34 T35 | : Tia, Tos, T13, T35, T12, T23, T34, Tas € R
0 O 0 0 Ty5
0 O 0 0 0
From this we see that Conv(O,) = {¢ € g* : {15 = a} for all such g.

(The key observation here is that O, forms a saddle in the subspace spanned
by {E7} 4, B35, E5,}.) But we saw above that for f = aE} 5 +bE5 5 +cE3, € U,
Conv(Oy) meets €, . Letting g € Conv(Oy) NS, we have

{teg" : ly=a}=Conv(0O,) C Conv(O;) C{leg" : l5=a}.
This shows that for any point ¢ € €., U €Q,,,
Conv(Og) ={l'€ g : l5="{15}.

We remark that one can also find pairs of coadjoint orbits in each of the layers
Qe , 2, and ., whose convex hulls coincide.
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Example 4.6. The aim here is to examine our results from the nilpotent sit-
uation in an exponential solvable case. Another aim is the following: In Remark
3.2 we mention that in [10], it is shown that any pair of two dimensional coadjoint
orbits O, Oy is “convex distinguishable”. We are going to show that this does
not hold in the more general context of exponential groups.

Let G be the 4-dimensional group with the Lie algebra g having strong
Malcev basis {Z, X,Y, A} where

A4, X]=-X, [AY]=Y, [X,Y]=2Z,

and other brackets of basis elements vanish. This group is completely solvable
and hence exponential solvable. Let {Z*, X* Y* A*} be the basis of g* dual to
{Z,X,Y,A}. Let £y, 0n=AZ"+vX*+ aY* +nA* and

6 = exp(aA) - exp(zX) - exp(yY) - exp(zZ), a,z,y,z € R.
Then a routine calculation shows that:
Ad* (0) o = AZ* + e (v +yN) X" + e (a — 2A)Y" + (n — zv + yo — zy) A"
From this it follows that for A # 0, the orbit Oy, o) through £y, ., is given by:

uv — ov

Oipam = {/\Z* +uX*+oY* + (ﬁ —1—77) A" s uv€E R}.

We see that for ¢ = AZ* + nA* with A # 0 one has e({) = {2,3} and
€(€) = {4}. The map 7, : Voy) = Vay(p is here

re(u,v) = Ly

A

We see that Conv(Graph(re)) = Ve ® Ve - In view of Theorem 3.6, we expect

that G is not moment separable. This is indeed the case. In fact, the orbits
O 0,0,y for fixed X # 0 are not convex distinguishable.
Consider for example the following pair of coadjoint orbits:

O = 0a,000 = Laupuw) : U,vERY,
O = 00001 = Laupuwsr) : w0 ERY.
We see that O’ # O since {1001) € O. As Lai10) € O and £,_1-1,1) € O
satisfy
15(1 111) T 1"5(1 —1,-1,1) = £(1,00,1)
9 fLLLY T 5811, 00,
we have Conv(O') C Conv(O). On the other hand

1

1
—l11— —lq =/
2 (171’ 1’0) + 2 (11 111’0) (170,070)

with €11, 1,0),%1,-1,1,0) € O and thus Conv(O) C Conv(O"). This shows that
Conv(QO) = Conv(0O'), so that O, O' are a pair of (two dimensional) coadjoint
orbits which are not convex distinguishable.
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5. Concluding Remarks and Questions

For a given group G, the conditions in Theorems 3.5 and 3.6 are usually easy
to check. This is illustrated by the examples described above in Section 4.. It
would, however, be desirable to have a single condition which is both necessary
and sufficient for moment separability. One might also hope to eliminate the use
of Condition (C) as a hypothesis, although this seems difficult provided one sticks
to the framework of Pukanszky polynomials. In this regard, we ask whether G
necessarily fails to be moment separable whenever Condition (C) fails.

Finally, we remark that the closure in Equation 2 plays a mysterious role.
In fact, we know of no example where the convex hull Conv(QO) of some coadjoint
orbit is not itself closed. This is a subtle issue because the convex hull for the
graph of a polynomial function R" — R™ can fail to be closed. (The polynomial
p: R? — R? defined as p(z,y) = (22,2%y?) is one example.) In any case, we
ask whether convex distinguishability implies moment separability. That is, if
Conv(O) = Conv(0') = O = O’ for all coadjoint orbits O, O’ C g* then is G
moment separable?
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