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Ideals of finite codimension in contact Lie algebra
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Abstract. Ideals of germs of vector fields leaving 0 fixed in R?"t!, of
finite codimension in contact Lie algebra contain the ideal of germs infinitely
flat at 0. We give an application.

1991 Mathematics Subject Classification: 17B66

Keywords and phrases: Contact Lie algebra, Jacobi bracket, pseudogroup action.

1. Introduction

In this paper, we characterize ideals of germs of vector fields X with X(0) =0
in R?*1  of finite codimension in a contact Lie algebra. Let a = drg,y1 +
% * o (zidr,+; — xp44dx;) denote the canonical contact form on R?"+1 and let
Xo denote the contact Lie algebra of germs of vector fields leaving 0 fixed. Also,
denote by x2° the ideal of x,, of infinitely flat germs at 0. Finally, let F' denote
the space of germs of smooth functions. The main theorem is:

Theorem 1.1.  Let I be a finite codimension ideal of xo. Then I contains x2° .

As a consequence of this result we obtain a reduction of the action of the
group of germs of origin preserving contact diffeomorphisms to the action of the
group of infinite jets ( at the origin ) on a Lie group; we pass to the linear version.
We encounter such an action when we deal with the theory of natural fiber bundles
( see [1],[2][3]). In [2] and [3], the authors used Borel lemma and Whitney
extension theorem to prove the reduction of the above action. In the category of
manifolds endowed with geometric structures, Borel lemma and Whitney extension
theorem fail. The interest of finding appropriate methods for this cases was raised
in [2]. Our result applies in the category of contact manifolds.

2. Fundamental lemma

The proof of Theoreml is based on the following lemma.
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Lemma 2.1. Let V be a space of finite codimension in a real linear space E
and ¢ an endomorphism of E such that:

1) 9(V)cV
2) forany b€ R, ¢ + bl is onto in E.

3) for any b,c € R with b* —4c < 0, ¥? +bp+cl is onto in E. Then V = E.

Proof.  Since the subspace V' of E is invariant by the endomorphism ¢: £ — F,
there exists a unique endomorphism : E/V — E/V such that moy =¢ onm,
where m: E — E/V denotes the canonical projection. If V' is of non zero finite
codimension in F, the quotient space E/V is of non zero finite dimension and

{b admits an eigenvalue. If this eigenvalue is real, there exists b € R such that
Y +blg)v is not onto in E/V. So v + bl cannot be onto in E, since if it is this

contradicts the property 7oy =1 or. And if this eigenvalue is complex, there are

_92 _
b and ¢ € R such that b —4c < 0 and ¢ +b ¢ +clg/v is not onto in E/V .
The same argument as above shows that 12 + b + cIp cannot be onto in E. This
proves Lemma 2. [ ]

3. Preparatory lemmas

We know that ¢: x, — F defined by ¢ (X) = ixa ( where ixa denotes the
interior product by X) is an isomorphism. ¢ induces a Lie algebra structure on
F', of which the bracket operation is called a Jacobi bracket and will be denoted
by { }, it has the following representation

{f, 9} = Z(5f/5$i-59/5$n+i —6f/02nyi-09/075) — gOf [0Toni1 + fO9/0%on 11
i=1

where (5/(51‘1 = 8/8:51 + %xn+i8/8x2n+1, 5/5.’Bn+z = 8/8xn+z — %l‘ia/a$2n+1 .
Let k(t) be a bounded continuous function for all 0 < ¢ < 1 and =z =
(T1, -+ Tonga)

Lemma 3.1. For any b € R and h € F with Jh = 0, the germ of the
function g defined by the integral

1
g(z) :/0 PR 2y, .y 120, 1201 )dt (1)
1s smooth and infinitely flat at 0.

Proof. Since A is infinitely flat at 0, for any positive integer m, there exist
constants 6 > 0 and M > 0 such that for all x with |z| < 4, we have

Bt 221, ooy 1125, 0 1)) | < MO 2™,

By hypothesis there exists a constant ¢ such |k(t)| < ¢ for any 0 < ¢ < 1; then
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()R 221, .oy 1 23, 0 11) | <
cMttts = f,.(t).

Since m is arbitrary, we choose m, such that b+ %¢ — 1 > 0; consequently the
integral defining the function ¢g converges uniformly in a neighborhood of 0. Now,
we shall show that the function g is C'° and infinitely flat at 0. For any multi-
indice @ € N?"*! we have

Dg(h(t1/2$17 ey tl/zxZna tm?n—l—l)) = t|a|/2(Dgh) (tl/leﬁ Tty t1/2x2n7 t$2n+1)

where || means the length of «. Since DZh is infinitely flat at 0, there exist
constants 6 > 0 and M > 0 such that:

‘(Dgh) (t221, e 11200, t$2n+1)‘ < M!/imtledgm

provided that |z| < §. Since m is arbitrary, we choose m, such that |a|+ m, +
b— 1> 0. Consequently, for any multi-indice o € N?"*+1,

1
/ k() DER(t 2 xy, ... 1P 20y, top 1 )dt
0

converges uniformly in a neighborhood of 0, so the function g defined by (1)
is smooth. Now since D2h(0) = 0 and D2h(t'/%z,, ...,t"/?29y,,t29,41) converges
uniformly to D2h(0) with respect to =, we pass to the limit and obtain DZg(0) =
0 . This proves Lemma 3. [

Let z be the (2n 4+ 1)™ coordinate xo, 1.

Lemma 3.2. For any b € R and h € F with J;°h = 0, there exists g € F
with J§°g = 0 such that

{z,9} +bg="h (2)

Proof. Equation (2) is equivalent to

> (2:09/0%; + 2409/ 0% 4i) + Tn4109/0%onsr + (b —1)g = h
i—1

N | —

Consider the function ¢ defined by

1
g(x) :/0 2Rt 2y, o 1P 20y, tgn ) dE.

By Lemma 3, g(x) is smooth and infinitely flat at 0. Since

1 n
t%( Y201, e 200 190 41) = 3 > t'2(2;0h/0%; + T01i0h) 0Ty 4i) + 12254100/ Oon 11
=
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it follows that

% i1 (2:09/0%; + Tn1i09/0nyi) + Ton1109/0Ton 1 = (3)
Jo tb_l%(tl/%h ooy 12 D0t 1)

1 1
= [ (P, oy 1ot 1) | — (B — 1)/ 2R gy, o 1P Do, o s )dE.
0

The infinitely flatness of h at 0 leads us to write for any b € R

lim P Py 1 P 20, tan ) = 0.

Hence

N~

Z(wzag/axz + xnﬂag/axnﬂ) + $2n+139/3x2n+1 =h- (b - 1)g($)
=1

This checks Lemma 4. ]

Lemma 3.3. For any b, ¢ € R with b> —4c < 0 and any h € F with
Jg°h =0, there exists g € F' with J5°g = 0 such that

{z,{2,9}} +b{z,9} +cg=h. (4)

Proof. Similarly as in Lemma 4, we must find g € F' with J§°g = 0 satisfying
equation(4). Let

—otb2
k(t) = \/ﬁ S1 (\/ 4c — b2/2) log |t| .

Note that k(t) is the solution of the Cauchy problem

{ K" (t) + (14 b)tk'(t) + ck(t) = 0 (5)
K(1)=-1 k(1)=0.

Consider the function g defined by the integral
1
g(z) = / B2k () h(E 2z, ooy 820, bigm s ) d. (6)
For simplicity we write (.) for (¢/2a1, ..., t"/2x9y, tx9n41). By Lemma 3 g(x) given

by (6) is smooth and infinitely flat at 0. On the other hand from formula (3) we
obtain

{z,9} +9=13 X" (2:09/0%; + Tn1i09/0Tn i) + Tont109/0Ton 11
= [, "7 k(t) % ()dt,

and
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{2, {z.0}} =g+ /o1 tb_lk(t)%(t% —2h) () dt.

An integration by parts gives us
1
{z,{z,9}} = [t"k(1) (¢4 — 2h) ()] +

Jo t72((2b — 1)k(t) + 2tk'(t)) h(.)dt—
Jo 72 (b= k(1) + tk' (1)) t% ()t

and

Jo 71 ((b — Dk(t) + th' ()L ()dt =
[t (b — V)k(t) + tk’(t))h(.)](l) — SO (k" (1) + (2b — 1)tk () + (b — 1)2k(2)) h(.)dt.

Then
{2,{2,9}} = h(z) + f; "2 (k" (t) + (2b + 1)K () + b2k (t)) h(.)dt
= h(z) —b{z, g} —cg+ [y 72 (k" (t) + (b + 1)tk'(t) + ck(t)) h(.)dt.

Since k(t) is solution of (5), Lemma 5 is proved. n

4. Proof of the main result
We apply Lemma 2 to ' = x° and I = x2°NI. From well known facts in linear
algebra, we obtain
dim(x> /x> N1I) =dim((x2° + 1)/1I) < dim(xa/I) < 4oc.

So I* is of finite codimension in x% . The endomorphism 3 = [X,,.], where
Xo(T1, ey Tony1) = S 2,8 (X, = ¢ 1(2)), satisfies obviously the first as-

dz;
sumption of Lemma 2, and by Lemma 4 and 5, the conditions of Lemma 2 are
fulfilled. Consequently x3° = I i.e. xo° C 1. [ ]

5. Application
Let T be a pseudogroup of local diffeomorphisms of R".

Definition 5.1. A left action of a pseudogroup I' on a Lie group G, is a
functorial assignment to each f € I' with domain U a smooth map f:U XG — G
such that the following axioms are satisfied

1) For any £ € U and any a,b € G,

f (& ab) =f (€, a)b.

2) For any open set V' of U

|V :f |V><G .
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3) Forany f,g € T,

go f(&y) =9 (f(&),f (&v)).

4) Let I be an open interval of the real line R. If f:I xU — R" is a smooth map
such that Vt € I, f; € ', where fi(z) = f(¢,x), the map

IxUxG—=G
(t’ (g,y)) — ft (gay)

is smooth.

Remark. It is obvious from axiom 2) that the action is local, i.e. depends
only on germs.

Let P be the pseudogroup of contact diffeomorphisms and P, the group of
those fixing 0 and L(G) be the Lie algebra of a Lie group G. Suppose that P acts
on G;let X € x, and ¢; = exp(tX) be the flow generated by X. So ¢; € P, for
any t € I ( since X leaves 0 invariant ). Let (¢,); be the flow of diffeomorphisms
( translations ) induced by the action of the pseudogroup P on G. Consider the
vector field defined by:

- d -
X= i lt=0 (Bt)o
where (¢,)o(x) =@, (0,z), then we obtain a Lie algebra homomorphism:
H:x,— L(G), HX)=X

Proposition 5.2. The homomorphism H depends only on the infinite jet
JXX of X at 0.

Proof. The kernel I of H is a finite codimension ideal of y,, so by Theorem1
its contains xo° and then H depends only on J°X. [ ]
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