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Maximal semigroups in the divisible hull of lattices
in nilpotent Lie groups

Osvaldo Germano do Rocio

Communicated by J. D. Lawson

Abstract. = We consider subsemigroups in the divisible hull of lattices in
nilpotent Lie groups. Our principal result shows that such a semigroup is
a group provided it is not contained in a proper semigroup with non-empty
interior.

1. Introduction

A subsemigroup S of a group G is said to maximal if it is not a group and there
is no semigroup 7 # S containing S properly. When studying subsemigroups of
groups many questions have a natural formulation and solution by means of the
knowledge of maximal semigroups. This makes the problem of determining the
maximal semigroups one of the major problems in the theory of semigroups.

Let N be a nilpotent Lie group. In this paper we look at the subsemigroups
of the subgroups of N which are obtained by divisible extension of a lattice in
the following sense. As it is well known N is a divisilbe group. If N is simply
connected and I' is a latticein /N we look at the semigroups in the smallest divisible
group of N containing I'. In this setting a simply connected N admits a lattice
I' if and only if there exists a basis, say (3, of the Lie algebra n of N, whose
constants of structure are rational (see Raghunathan [5, Thm. 2.12]). Let ng
denote the rational subspace spanned by 5. If we identify N with n through the
exponential map, the group product in n is provided by the Campbell-Hausdorff
formula, which has constant coefficients. Hence ng becomes a subgroup of N
which contains I'. We show that ng is the smallest divisible subgroup of N that
contains I'.

The purpose of this paper is to characterize the maximal semigroups of ng.
The main results show that S C ng is a maximal semigroup if and only if it is
the intersection of a maximal semigroup with non-void interior in N with ng.
Moreover, any semigroup in ng which is not a group is contained in a maximal
semigroup. These results extend those of [6], [7], where the maximal semigroups
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in the lattices of nilpotent Lie groups where given analogous characterizations.
Actually, our basic technique comes from the results for semigroups in lattices
together with the fact that a rational subgroup is a union of lattices.

2. The Divisible Hull of a Lattice in a Simply Connected Nilpotent
Lie Group

In what follows we identify the simply connected nilpotent Lie group with its Lie
algebra n through the exponential map

exp:n— N,

which is a diffeomorphism. Through this identification the group structure in N
is carried back to n. We denote by * the group product in n. It is given by the
well known Campbell-Hausdorff formula, whose first terms are

1
X*Y:X+Y+§[X,Y]+--- X,Y en.

Since X" = nX for all n € Z and X € n, it follows that N is a divisible
and torsion free group. Hence if H is a subgroup of a nilpotent simply connected
Lie group N, there exists a smallest divisible subgroup Div(H) of N containing
H.

Let T' be a lattice in a simply connected nilpotent Lie group and let ng(T")
be the Q-span of exp (). By theorem 2.12 in [5], ng(T) is a Q-Lie algebra of
n. If we identify N with (n, x) we have:

Lemma 2.1.  ng(l) is a divisible subgroup of N.

Proof. If X € ng(l') and n € Z — {0} then X =r; X; +---+ r, Xy ,where

Xi,---Xg € T and ry, ---,rp, € Q. Let us suppose that r; = a;/b;, where
a;,b; € Z for 1 <i <k and put s; = a;/nb;. Then S = 51X; + --- 5, Xy € ng(I)
and S" =nS = X. [ ]

Let n! the [-th term of the lower central series of n, that is, n® = n and
n! = [n,n!71]. Let k such that n* # {0} and n**! = {0}.

Proposition 2.2.  Let I' be a lattice in a nilpotent simply connected Lie group
N. Then ng(l') = Div(T).

Proof. Since ng(l') is a divisible subgroup we have that Div(I') C ng(T).
In order to show the other inclusion we will argue by induction on dim N. If
dim N =1 then N is abelian and the result is trivial. If 7 : N — N/[N, N] is
the natural map, then 7(I") is a lattice in N/[N, N]. The group N/[N, N] being a
real vector space, m(I") is the Z-span of a basis ey, ey, - - - , ¢; of this vector space.
Let V be the R -span of e;,ey,--- ,¢;,1 and put N' = 77'(V). Let n’ be the Lie
algebra of N'. Then n’ may be identified with a subalgebra of n of codimension 1.
Now, by induction hypothesis, Div(I'N N') = ng(I'N N'). According to the proof
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of Theorem 2.12 in [5], ng(T") is a Q-Lie subalgebra, so there exists v € exp™'(T)
such that

ng(T) = Qv +njy(T'N N')

and
[v,w] € ng(CNN'),  VYweng(l'NN).

Then we have
[Qu,ng (TN N')] C ng(T'N N') = Div(I'NN').

Let 7 € Q and y € ngp(I'N N'). Since ngp(I'N N') = Div(T' N N') C Div(T) and
Qu C Diw(T') then rv*y € Diw(I'). By the Campbell-Hausdorff formula we get:

TUxY =10+ Y+ 2,

where z; € Din(C N N')Nnl.
Since (rv *y)* 27" € Div(T') we have that

(roxy)ser' = (rot+y+z)*z =rv+y+a,

where 2z, € Div(I' N N') Nn?.
Repeating the above argument j times we obtain zi, 2, -2, 2j4+1 such
that

(rv*y)*zfl*zgl*---*z;IEDiv(F)

and

1 1 1

(roky) k27 *25 %+ %z =104+ Y+ Zit1,

where z; € Div(CNN")Nn for 1 <i < j+1. But n is nilpotent, so n*™1 = {0}
for some £ € N. Thus

(rv*y)*zfl*zgl*---*zk_l:Tv—l—ye Diwv (T).

This shows that ng(I') C Div(I'). Therefore ng(I') = Div(T) . m

Corollary 2.3.  Let 'y and T be lattices of N such that T'y C Div(T"). Then
Div(T';) = Div(T).

Proof. Since I'y C 'y C Div(T), by Proposition 2.2 we have that
ng(l'1) = Div(Iy) C Div(I') = ng(T).

By Theorem 2.12 of [5], ng(l'1) ®gp R is isomorphic to ng(I') ®p R.  Then
ng(ly) = ng(T') and Div(T;) = Din(T). u

Lemma 2.4. If T is a lattice of N then Div(T') is a union of lattices of N .
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Proof.  Suppose that § = {ai, g, -y} is a basis of ng(I'). Then it is clear
that
1 1 1
M) = |J +Zo+_—Zon+--+ - —Zo,

(k1. ki) ENP kr k2 kn

and for (ki,---,k,) € N*,

1 1 1
F(kla"'akn) = k_lzal + k_ZZa2 + D + EZ&TL

is a lattice in the vector space n. But the proof of Theorem 2.12 in [5], shows that
if I'; C ng(T) is a lattice in the vector space n then the subgroup of N generates
by Ty is a lattice of N. Then L(ky . k) generated a lattice (I'(g, ... k,)) of N which
is contained in ng(I). u

We prove below that any finitely generated subgroup of a rational group is
discrete. By a rational subspace of a vector space V' we mean the space spanned
over Q by a discrete subgroup in V.

Lemma 2.5. Let V be a finite dimensional vector space over R. Then, every
finitely generated subgroup of a Q-subspace W in V' is a discrete subgroup of V.

Proof. @ We may assume that V' = R* and W = Q". Let H be a subgroup
of R* generated by Xi, Xs,...,X; in Q", where [ is a non negative integer. In
this case there is an integer d such that dX; € Z™ for 1 < ¢ < [. Hence dH is a
subgroup of Z", showing that H is a discrete subgroup of R". |

Proposition 2.6. If ' is a lattice of N then every finitely generated subgroup
of Div(T") is a discrete subgroup.

Proof. By proposition 2.2 Div(I') = ng(T"). Let 3 be a basis of ng(I") and take
T1,...,T; € R, where [ is a non negative integer. By Lemma 2.5 the subgroup
H of the vector space n generated by zi,...,z; is discrete in n. By the proof of
Theorem 2.12 in [5] this implies that H generates a discrete subgroup of N. =

3. Semigroups in Div(T)

A standard assumption in the control theory of Lie groups is that semigroups
under consideration have non-void interior. A controllability criterion is provided
by the fact that a neighborhood of the identity in a topological group generates,
as a semigroup, its identity component.

In order to avoid repetition we make the following technical definition:

Definition 3.1. A subset X of a topological group G is said to have property
(C) if it is not contained in a proper subsemigroup of G with interior points.



DO Rocio 5

This is a kind of controllability condition because it means that the only
semigroup with non-void interior containing X is G itself.
For a subsemigroup S of a simply connected nilpotent Lie group N we let

S = {t121 * towg x - - - x tyxy = t; > 0,2; € S, arbitrary [}

be the semigroup generated by the real positive powers of the elements in S. Tt is
a ray semigroup in N and S is a set of infinitesimal generators of S.

Lemma 3.2. Let S C N a semigroup. If S has the property (C), then S =n.

Proof. Since S is arcwise connected the subgroup G(g) of N generated by
S in N is also arcwise connected. It follows that the group G(g) generated
by S is an analytic subgroup of N (see [1], Theorem V.1.1). Therefore the Lie
algebra of G(S) is the subalgebra ((S)) of n generated by S. Since S has the
property (C) and the maximal semigroups with interior points in N are in one-
to-one correspondence with the half-spaces in n whose boundary is a subalgebra,
(cf. [1], Corollary V.5.41), we have that ({(S)) = n. Therefore, G(S) = N. This
implies that S has non void dense interior in N, (see [1], Theorem V.1.16). Since

S c S we conclude that S = N. n

The next result is purely combinatorial geometry, but we are unaware of a
direct reference in the literature.

Proposition 3.3.  Let T a lattice of N and S C Div(T) a semigroup. If S has
the property (C), then there exists I C S finite with property (C).

Proof. @ The maximal semigroups with interior points in N are the closed half
spaces in n bounded by a hyperplane containing the derived algebra n’ = [n,n],
(see [1], Corollary V.5.41). Since every proper subsemigroup with interior points
in a topological group is contained in a maximal subsemigroup with interior points
it is sufficient to consider the maximal semigroups with non-empty interior.

Let @1, 09, ..., be a system of generators of the annihilator [n,n]* C n*
of [n,n]. For 1 <4< and j € {0,1} let

Vi={zen:(=1)p(x) > 0}

be the open half-spaces given by the linear functional ;. For o = {j1,jo, ..., Ji}
such that j; € {0,1} we consider also the open cones

By the above lemma we have that S = n. Hence for each subset o there are
ai,0s,...,0, €S and non-negative numbers ¢,%s,... ,t, such that

To = tia1 * toag * + - - x tpap € V.
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Since Q is dense in R we can take t1,%9,... ,ty € Q. Let d € N be such that
dt; e N, 1 =1,...,p, and consider the element

Ay = dtiaq * digag * - - - x dtya,

in S. We claim that a, € V,. In fact, using the Campbell-Hausdorft formula for
n, we get explicitly that

P P
Uy = Zdtiai +Y and z, = Ztiai + Z
i=1

=1

with Y, Z € [n,n|. Therefore, if 1 <7 <[ we have that

0 < (—=1)g;(20) = (=1)%0;, O trax),

and, then
p
0 < (=10, (> dtrar) = (1), (ar),
k=1

Therefore a, € sz NS fori=1,2,...,0 and then a, € V, N S.
Now let M be a maximal semigroup with interior points in N. We can
assume without loss of generality that

M ={z en: \(z) > 0},

where \ is a non zero linear functional which is identically zero in [n,n]. Let us
suppose that
A=bipr + bapo + - - - + by

and let o = (j1, Jo, .-, j1) be such that

0 if b<0
Ti=V 1 if b>o.

Put a, € V, N S. Then bjp;i(a,) < 0 for 1 < i <[ and A(a,) < 0 because
vi(as) # 0 and X\ # o. This shows that S is not contained in M.

Let I be the subset of elements a, where o = (j1, j2,..., ;) and j; € {0,1}.
Then I is a finite subset of S that property (C). n

Theorem 3.4. Let N be a connected and simply connected nilpotent Lie group,
I' C G alattice and S C Div(T") a semigroup with property C. Then S is a group.

Proof. Pick a € S. By the previous proposition there are aq,as,...,a; in S
that have property (C). Let © be the semigroup generated by ai,as,...,q and
a. By Proposition 2.6, {2 is a discrete semigroup of N. Therefore () satisfies the
conditions of Theorem 4.1 in [7]. Hence € is a subgroup of N. This implies that
a! € S, showing that S is a group. n

From this theorem we can get the maximal semigroups in a rational group.
The proof of the next result is similar to that of Corollary 4.3 in [6].
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Corollary 3.5.  Let T' a lattice in a connected and simply connected nilpotent
Lie group N. If S is a mazimal subsemigroup of Div(T), then S = Div(T)N T,
where T is a mazrimal subsemigroup of N with non-void interior. Moreover, any
semigroup of Div(I'), which is not a group, is contained in a mazimal one.

4. The non-simply connected case

Let N be a connected nilpotent Lie group, 7 : N — N be the universal
covering of N and put D = ker(w), a discrete central subgroup of N. If S is
a semigroup of N with property (C) such that the identity of N isin S and S is
a proper semigroup of ﬁ, with non-void interior, which contains S = 7~ 1(S) then
D C S c S and 7(S) is a proper semigroup of N with non-void interior which
contains S. Therfore 7=!(S) also has the property (C).

Now, if T is a lattice in N, then T’ = 771(T") is a lattice in N and D C T

Corollary 4.1.  Let N be a connected nilpotent Lie group, I' C N a latlice.
Let D be a divisible subgroup of N that contains I' with D C w(Div(T"). If S C D
is a semigroup which has the property (C) then S is a subgroup.

Proof.  Assume without loss of generality that S contains the identity of N.
Since D C m(Div(T), #='(D) C Div(T') and thus S = 7~'(S) C Div(T). But S
has property (C). By Theorem 3.4, S is a group. Therefore S = 7(S) is a group.

[



8 DO Rocio

References

[1] Hilgert, J., K. H. Hofmann, and J. D. Lawson, “Lie Groups, Convex Cones,
and Semigroups”, Oxford University Press, 1989.

[2] Lawson, J., Mazimal semigroups of Lie groups that are total, Proc, Edinburgh
Math. Soc. 30 (1987), 479-501.

[3] Margulis, G. A., “Discrete Subgroups of Semisimple Lie Groups,” Springer-
Verlag, 1989.

[4] Matsushima, Y.,On the discrete subgroups and homogeneous spaces of nilpotent
Lie groups, Nagoya Math. J. 2 (1951), 95-110.

[6] Raghunathan, M. S., “Discrete Subgroups of Lie Groups,” Springer-Verlag,
1972.

[6] Rocio, O. G., and L. A. B. San Martin, Discrete semigroups in nilpotent Lie
groups, Semigroup Forum 51 (1995), 125-133.

[7] Rocio, O. G., and L. A. B. San Martin, Semigroups in lattice of solvable Lie
groups, Journal of Lie Theory 5 (1996), 179-202.

Osvaldo Germano do Rocio
Departamento de Matemaética
Universidade Estadual de Maringa
Cx.Postal 331

87.020-900 Marings-Pr

Brasil

Received March 5, 1998
and in final form April 10, 2000



