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Basic relative invariants
associated to homogeneous cones and applications

Hideyuki Ishi*

Communicated by E. B. Vinberg

Abstract. In this paper, we determine the basic relative invariants on the
ambient vector space of a homogeneous cone 2 under the action of the solvable
linear Lie group acting on 2 simply transitively. The results are applied to a
study of the Riesz distributions on 2 and to an algebraic description of the
closure Q of €.

Introduction

In analysis on homogeneous cones, relatively invariant polynomials on the ambient
vector spaces play significant roles. Among them, of particular importance are
the basic relative invariants, that is, the polynomials by which every relatively
invariant polynomial is expressed as a product of their powers. We determine in
this paper the basic relative invariants under the action of the solvable Lie group
acting simply transitively on a homogeneous cone. These are generalizations of
principal minors of real symmetric matrices. As an application, we establish the
condition that the Riesz distributions on the homogeneous cone are supported by
the origin. We also give an algebraic description of the closure of the cone by
introducing analogues of submatrices and minors.

Let © be a homogeneous cone in a real vector space V. Vinberg [14] shows
that there exists a split solvable linear Lie group H C GL(V') which acts on
simply transitively. In order to describe Q algebraically, he introduces in [14,
Chapter 3] polynomials which we denote by Dy, Ds, ..., D, here, where r is the
rank of the cone Q (see also [10, p. 73]). These Dy are also treated in Gindikin
[4] and called integral compound power functions there. As Gindikin observes, Dy,
may have extra factors. In the present work, we give a simple method to factorize
Dy’s into irreducibles in a general setting. As a result, exactly r polynomials
A1, Ag, ..., A, appear as irreducible factors, and we show that they are the basic
relative invariants.

Our first application of the basic relative invariants is to a study of Riesz
distributions. The Riesz distribution on €2 is characterized as the distribution
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whose Laplace transform is a relatively invariant function on the dual cone Q*
(see (3.23)), where Q* is regarded as a homogeneous cone by the adjoint action
of H. Let A7,..., A be the basic relative invariants associated to {2*. We show
that the Riesz distribution is supported by the one-point set {0} if and only if
its Laplace transform equals a product of powers of Aj. This is a refinement of
Gindikin’s result [4, Proposition 3.4].

Our second application is to describe the closure Q of the cone €. The
motivation is the fact that a real symmetric matrix x = (z;;) of size r is positive
semi-definite if and only if the determinants of the submatrices (z;;);jer are non-
negative for all non-empty subsets I C {1,...,r}. Note that the non-negativity
of the principal minors alone is not sufficient (see the beginning of Section 4).
We give a criterion for the elements in V' to belong to Q. Namely, after intro-
ducing polynomials A’ on V which are analogues of the minors of matrices, we
characterize Q by 27 — 1 inequalities A! > 0.

Let us explain the organization of this paper. According to [14], we intro-
duce a certain algebra structure on V', called the clan of ), and present Vinberg’s
polynomials D, in Section 1. In Proposition 1.4, we give recurrence formulas
practical for the computation of Dj.

We consider H -relatively invariant polynomials in Section 2. The basic
relative invariants are obtained in Theorem 2.2. We show in Proposition 2.3 that
x € Q if and only if Ag(z) >0 (k =1,...,r). In Section 3, after describing the
dual cone 2* as a homogeneous cone, we prove the result on the Riesz distributions
mentioned above. Section 4 is devoted to getting the description of Q by the
polynomials A”.

In Section 5, two examples are presented to write down Dy and to get Ay
from Dj by factorization. The first example is the cone of real positive definite
symmetric matrices, which is a typical homogeneous cone. It turns out that the
polynomials Ay for this cone are equal to the principal minors. The second
is so-called the Vinberg cone [14]. The cone and its dual cone are the lowest
dimensional ones among the non-symmetric homogeneous cones. For these cones,
our polynomials Ay coincide with Gindikin’s in [6, p. 98 (e), (f)] as a matter of
fact.

The present author would like to express his sincere gratitude to Professor
Takaaki Nomura for the encouragement and the advices in writing this paper. He
is also grateful to Professor Soji Kaneyuki and Professor Simon Gindikin for the
various comments about this work.

1. Preliminaries

Let V be a real vector space and {2 an open convex cone in V' containing no
line. We assume that €0 is homogeneous, that is, the linear automorphism group
G(Q) € GL(V) of Q acts transitively on the cone Q. Then it is known [14] that
there exists a split solvable Lie subgroup H C G(f2) which acts on Q simply
transitively. Let h C End(V) be the Lie algebra of H and fix a point E in
Q. Then we have the linear isomorphism h 3 T = T - E € V obtained by
differentiating the orbit map H > t — t-FE € Q. Let j : V — b be the
inverse map of the isomorphism, and define a bilinear multiplication A on V by
Ay := (jz) -y € V (x,y € V). The algebra (V,A) is called the clan of the
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homogeneous cone €2 ([14, Chapter 2]). This algebra is left-symmetric:
A (YyAz) — (xDy) ANz = yA(xAz) — (yAx) Nz (x,y,z € V),

which is equivalent to

iz, jy] = j(zly —yAz) (z,y € V). (1.1)

By [14, Chapter 2, Proposition 8] we have a normal decomposition of the space V':
®

V=YY" Vi, (1.2)
1<k<m<r

where Vi (k=1,...,7) is the one-dimensional subspace spanned by an idempo-

tent Ej, and V,,, consists of the elements z € V such that
yAz = (1/2)(ym + ye)r  and  zAy =y (1.3)
forall y =3 wE; €V (y1,...,y € R). It is known [14, p. 376] that the

following relations hold:
Vi AV = {0} (fk #1,4),  VieAVi C Vi,

1.4
mGAWk C le or Wm ( )

Put B = Vi CHh (1 <k <m<r)and Ay :=jE; € bgx (k=1,...,7). The
space a =Y e, Bek = Y 1r<, RAy is a commutative subalgebra of h by (1.1)
and (1.4), and we get from (1.2)

h=ad® Zea Boms- (1.5)

1<k<m<r

Remark 1.1.  The semidirect product V x h has a normal j-algebra structure
and the decompositions (1.2) and (1.5) coincide with the root space decompositions
of the normal j-algebra ([1], [7], [10]).

Now we introduce global coordinate systems on H and V. For each t € H,
there exist unique txx > 0 (K =1,2,...,7) and Ty € b (1 < k <m <) for
which

t=expTi-expLy-expTyy---expL,_,-expT,, (1.6)

with Ty = (2logtir)Ar € a and Ly := Y, Tri (see [7, Proposition 2.1 (ii)]
for the proof). On the other hand, for any =z € V', we take unique zx, € R (k =
1,2,...,7) and Xk € Viur (1 <k <m <) such that

T = Z$kkEk + z Xk (1.7)

1<k<m<r

according to (1.2). We call tgg, Tk (resp. Zgg, Xk ) the coordinates of t € H
(resp. x € V). Let E* be the linear form on V' given by
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It is deduced from [14, p. 376] that the bilinear form

(zly) :== (zly, E7) /2 (z,y €V) (1.9)

defines an inner product on V', and that the normal decomposition (1.2) of V is
orthogonal with respect to this (-|-) (cf. [7, Lemma 2.3]). Let || - || be the norm
on V defined by ||z||? := (z|z) (z € V). Transferring this norm by means of j,
we also define a norm on b, that is, ||jz|| := ||z|]| (z € V). Then the coordinates
of each element of {2 are expressed as follows:

Proposition 1.2. [7, Proposition 2.5 For t € H let x be the element t - E of
Q. Then one has

o = (te)” + > 1 Twall> (k=1,...,7),

i<k
Xk = tikTonk - Ex + Y TiToi - Ei (1< k<m<r).
i<k

Taking Tri € Vk:i for which T]m’ = kai; we have T]m’ . Ez = TkZAEZ = Tki by
(1.3). Thus the equalities in Proposition 1.2 are rewritten as

ore = (te)” + Y _ 7wl (k=1,...,7),

i<k
Xk = tkkTmk + ZTmiATki 1<k<m<r).
i<k

(1.10)

Vinberg [14] solved t; and 7; (I > @) in the equations (1.10) as functions of xyy
and X, (see also [4, p. 16]) by utilizing certain polynomials onV determined as
follows: For z € V and i = 1,...,r, define 20 ="}z )Ek + D sk X, k eV
by

zM) = z,
2 = aaf) — IXQI <k <), (1.11)
X0 = fCE?anL ~XOAXD (i<k<m<r),

and put
Di(z) =2z eR (k=1,...,r), V(@) =X® eV 1<k<m<r).

In particular, Di(z) = z1; and Y1(x) = X1 (m > 1). We call these Dy, Yo
the determinant type polynomials associated to the cone 2. We remark that Dy
appears also in [4, Lemma 3.1] as an integral compound power function. It is easily
seen from (1.11) that the degrees of Dy and Y,,; are 28='. We write simply D for
the polynomial D, and call it the composite determinant. Then Vinberg’s results
are stated as follows:
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Proposition 1.3. [14, Chapter 3, Section 3] (i) If x = t-E € Q fort € H,

then
> Dylx) _ r
(tkk) - Hi<k DZ(.’L') (k 15 SR ): (112)
. Ymk(x)

(ii) One has
Q={2€V;Dp(x) >0 (k=1,...,r)}.
Although the recurrence formula (1.11) is quite simple, actual calculation
of the composite determinant D is hard to carry out because we must compute

all the quantities x,(;,z and X,% before getting to D(z) = 27 for z € V. The
following proposition is useful for the computation of Dy and Y.

Proposition 1.4. The determinant type polynomials Dy and Y, satisfy the
following recurrence relations:

Dy = DDy Dy_1zpr — »_ D1 -+~ D | Vil * = Vi ot |1®

i<k—1
(k=2,...,7),
Yok = DiDs - D1 X — Y D1 -+ Dy 1 Ve Ay — Yo 1 AV g
i<k—1

2<k<m<r).

Proof. It is sufficient to show the relations in the case of x =t-E € Q (t € H).
Substituting (1.12) and (1.13) to (1.10), we have

Dy, [ Vil
Tpp = + ,
ke Dl - Dkfl ; (tu)Q(Dl - szl)2
Ymk YmiAY;cz
Xk = +
, Dl . ch 1 sz (tzz)Q(Dl : Dz—1)2

Multiplying the both sides by D --- Dy_1, we obtain the desired formulas. [ |
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2. Basic relative invariants

In this section, we determine all the polynomials on V' relatively invariant under
the action of H. Actually, we factorize the polynomials D, D,,..., D, into
irreducibles to obtain the basic relative invariants, that is, the generators of the
set of H-relatively invariant polynomials. Then the cone (2 is distinguished as the
set on which all the basic relative invariants are positive.

For s = (s1,...,5,) € C", we define the one-dimensional representation X
of H by

Xs(exp(3h_, cpAy)) = e+ (¢ ¢, €R). (2.14)

Let F' be an H -relatively invariant rational function on V' with X the multiplier.
Namely, F(t-x) = Xs(t)F(z) for all t € H and x € V. Since H acts transitively
on the open cone 2 in V', the rational function F' is determined uniquely (up to
constant) by Xx,. Throughout this section, we assume that rational functions f
are normalized as f(F) =1 unless otherwise stated.

Proposition 2.1. (i) Putting

wiy = {1200 (k= 1),
(26-2 26=3 . 1,1,0,...,0) (k=2,...,7),

one has
Dy(t-x) = Xuw)(t)Dr(z) (t€ H, z€V).

(ii) There exists an H -relatively invariant rational function corresponding
to the multiplier X, if and only if s € Z".

Proof. (i) Although the statement can be found in [4, Lemma 3.1], we give a
proof here for completeness. The equality (1.12) implies that for t € H

Di(t-E) = (t11)?,

o (2.15)
Dy(t-E) = (t11)" (t22)

ok—2

(i) () (B =2,...,7).

In other words, we have Dy(t- E) = X ) (%), whence the assertion (i) follows.
(ii) Take an arbitrary s € Z". Since u(k), =1 and u(k)m =0 (m > k) for
k=1,...,r, there exist integers as, ..., a, for which s = aypu(1) + aou(2) + - - - +
aru(r). Then the assertion (i) tells us that the product (D;)* (D9)* ...(D,)% is
an H-relatively invariant rational function corresponding to X, which proves the
“if” part of the statement. Next, we show the “only if” part. Let F' be an H-
relatively invariant rational function and X, its multiplier. For z{{,...,2,. > 0,
let ¢ be the element of H given by ty, := /Tee (k=1,...,7) and Tppp :=0 (1 <
k <m <r). Then we have t- E = x1 E1 + - - - + 2.+ F, by Proposition 1.2, so that

F(.’EnEl + .TQQEQ 44 .’I?TTET) = (t11)281 (t22)282 e (trr)QsTF(E)

= (211)* (T22)" - - - (T1s)*" (2.16)

Therefore, since F' is rational, we conclude that si,ss,...,s, are integers. [ ]
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The relation (2.16) also implies that, if F' is a polynomial, then sq,...,s,
are non-negative integers. Now we give an algorithm to find the generators of
H -relatively invariant polynomials. The algorithm is valid for any homogeneous
cone.

Put Ay = Dy, and for £ > 2 let A, be the polynomials on V' determined
by requiring that Dy are written as

Di = Ag - (A7) (Ag)2 o (A )1 (2.17)

with the following two conditions:
(i) ak1,ake,--.,akk—1 are non-negative integers,
(ii) A is not divisible by any of Ay, ..., Ax_y.

Theorem 2.2. (i) The polynomial Ay is irreducible and relatively invariant
under the action of H. Let o(k) be the element of Z" such that X,y is the
multiplier of Ax. Then o(k)y =1 and 0(k)yy, =0 (m=k+1,...,7).

(ii) Let o be the r x r matriz whose (k,m)-component is o(k)p. For
s €Z, let (a1,...,a,) be the row vector (sy,...,s,)o~ . Then, there exists an
H -relatively invariant polynomaial corresponding to the multiplier X, if and only

if all ay,...,a, are mon-negative integers. In this case, the polynomial equals
(A (Ag)* ... (A)* up to constant.

In the proof of Theorem 2.2, we quote a well-known fact about prehomo-
geneous vector spaces, noting the fact that the action of H on V is algebraic ([14]).

Proof. (i) We shall show the assertion by induction on k. The case k =1 is
obvious. For k > 2, assume that the assertion holds for Ay,... Ay ;. Let

Dy = ¢1p3--- N (2.18)

be the factorization of Dy into irreducible polynomials. Then each ¢, (n =
1,...,N) is H-relatively invariant by [12, Proposition 2 (2)]. Let s™ = (s7,...,s")
be the r-tuple of non-negative integers such that X, is the multiplier of ¢, . By
(2.18) and Proposition 2.1 (i) we have pu(k) = s'+---+s". In particular, we have

form=k+1,...,r

0= pu(k)m = st + 8%+ + 5N,

which implies s}, = s2, =--- = sN = 0. Similarly, we have

1=p(k)y = s, +sp+-+sp,

whence it follows that the only one of s},...,s) equals 1 and the others are 0.
Assume that s, = 1. Put & := s>+ --- + s". Then we have 6, =0 for m > k,
so that we can take integers a1, axg, - .., ag g1 for which & = ag0(1) + a0 (2) +

---+ ag,_10(k — 1) thanks to the induction hypothesis on o (i) (i < k). Then
Qo... 0N = (Al)akl (AZ)G‘“ v (Ak_l)ak,kfl

because the both sides are H -relatively invariant polynomials corresponding to
the same multiplier X5 = (X»1))® (Xo@2)™? ... (Xopk-1))™* . We see from
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the irreducibility of Aq,..., Ax_; that integers ayi,..., a1 are non-negative.
Therefore we have Ay = ¢, and o(k) = s', whence the assertion follows.

(ii) Tt is immediate from the definitions that s = ajo(1) + -+ + a,0(r), so that
(Ay)® ... (A;)* is an H -relatively invariant function corresponding to Xs. This
function is polynomial if and only if a;’s are non-negative integers since Ay’s are
irreducible by (i). Hence the theorem follows from the one-to-one correspondence
between relative invariants and multipliers. [ ]

We write A for A, and call it the reduced determinant polynomial associ-
ated to the cone 2. When () is an irreducible symmetric cone, the polynomials
Ay, ..., A, coincide with the principal minors for the Euclidean Jordan algebra |3,
p. 114]. ;From (2.17) and Proposition 1.3 (ii), we obtain the following result.

Proposition 2.3. The cone <) is described as

Q={zeV;A(z)>0(k=1,...,7)}.

3. Application to Riesz distributions

For A € End(V), we denote by A* the adjoint operator of A: A*-{:=€0A (£ €
V*). Let H* be the subgroup {t*;¢t € H} of GL(V*). Then H* acts simply
transitively on the dual cone Q* of Q ([14, Chapter 1, Proposition 9]). We shall
consider the determinant type polynomials on V* associated to 2*.

Taking E* as the base point (see (1.8)), we define the clan (V*, A') of
the homogeneous cone Q*. Let &, (k = 1,...,7) be the element of V* given
by (x,€x) = Zry1-kr+1-k (x € V). Then V* allows a normal decomposition
with respect to the idempotents €, where the (m,k)-th component equals the
dual space of Vi1 grt1-m (see [6, p. 86], [14, Chapter 3, Section 6] and also
[8, Section 2]). Using this algebra structure, we define the determinant type

polynomials Dy, Y*,, and Ay on V*. Let us observe the relative invariance of

Aj. Since (1.3) leads us to

<37, A;; . E*> = <Ak -, E*> = <xkkEk + Zm>k ka/Q, E*>

= Tk = <£C, (’57«+1—k>,

we have GA'E = A, - & (£ € V*). Thus, defining the one-dimensional
representation x* (s = (s1,...,s,) € C") of H* by

Xo(exp(Xofy crAyyy ) = €T (e, ¢ €R), (3.19)
we see from Theorem 2.2 (i) that there exists p(k) € Z" for which
AT &) = Xpm(T)ALE) (€ VT, Te HY). (3.20)

We see also from Theorem 2.2 (i) that p(k)y = 1 and p(k), = 0 (m > k).
Comparing (2.14) and (3.19), we have

Xi(t") = Xs (t) (t € H), (3.21)

where s* := (s,,...,s1) € C".
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Now we recall the definition of the Riesz distributions on the homogeneous
cone Q ([4], [7]). Let u be an H-invariant measure on 2, and Y (s € C") the
function on €2 given by Y,(t- E) := Xx,(t) (t € H). Set py := ), ,dimb; (1 <
k <r). When Rs; > pp/2 for all £ =1,...,r, we define a tempered distribution
Rs on V by

Roo ) = [ e, STl ),

where f is a rapidly decreasing Schwartz function on V' and c is the normalizing
constant determined in such a way that (R,,e""¥7) = 1. For general s € C",
we define (R, f) by analytic continuation. The distribution R’s are called the
Riesz distributions on €. The support of R, is contained in the closure Q of Q,
and the distribution R, is H -relatively invariant in the following sense:

<R57 f o t> = X—s(t)<R57 f> (t S H) (3'22)

Using this relative invariance, we can easily compute the Laplace transforms of
Rs. In fact, if E=1t*- E* € Q* (t € H), we see from (3.22) that

(R e”09) = X () (R, e F) = x(2).

This together with (3.21) gives us the H*-relative invariance of the Laplace trans-
form of R:

(Ry, e Cm8Yy = x* (1) (R, e %) (£€Q, 7€ HY). (3.23)

For each polynomial ¢ on V* let ¢(9,) be the differential operator deter-
mined by

$(0,)e™) = ¢(£)et™H (£ e V™). (3.24)

Then we obtain the following theorem, which is a refinement of Gindikin’s result
[4, Proposition 3.4]. Recall the element p(k) of Z" in (3.20).

Theorem 3.1.  Let p be the v X r matriz whose (k, m)-component is p(k),.
For s € C, put (ay,as,...,a,) == (=87, —S;_1,...,—81)p '. Then the Riesz
distribution R is supported by the origin if and only if all aq,...,a, are non-
negative integers, and in this case, one has

Ry = A1(05)" A3(05)* -+ - AL (02)™ 6,
where § is the Dirac distribution at {0}.

Proof. It is known that a distribution supported by {0} is of the form ¢(0;)d
with some polynomial ¢ € P(V*), and by (3.24), its Laplace transform (¢(0,)d,
e~ 8y equals #(€). On the other hand, (3.23) says that the Laplace trans-
form of R, is H*-relatively invariant with multiplier x*,.. Therefore, apply-
ing Theorem 2.2 (ii) to this situation, we conclude that a;’s are non-negative
integers and the Laplace transform (R,,e ¢) equals the polynomial function
AT (E)MAL(E)® -+ - AX(&)™ of £ € Q*. Hence the injectivity of the Laplace trans-
form completes the proof. [ ]
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4. Description of Q

Proposition 2.3 implies that, if € Q, then Ag(z) >0 (k=1,...,7). However the
converse is false. For instance, although the principal minors of ( 0 f ) are all non-
negative, the matrix is not positive semi-definite. Thus we need more polynomials
to describe the closure Q of Q. In this section, we define a polynomial A’ for each
non-empty subset I C {1,...,r}, so that Q is characterized by the inequalities
AT > 0.

For integers a < b, we denote by |a,b| the set {a,a + 1,...,b}. Let
I ={i1,i9,...,9} (i1 <iy < ---<1i,) be asubset of |1,7|. We put

S Vi (4.25)

1<a<f<l

Then we see from (1.3) and (1.4) that (VI,A) is a subalgebra of (V,A) with
=Y | Ei, €V the unit element (cf. [14, p. 377]). Put

=V = Z RA;, & Z Biyia- (4.26)

1<a<p<l

Clearly V' is stable under the action of h’, and (1.1) implies that b’ is a Lie
subalgebra of h. Let H' be the Lie subgroup exph’ of H. In view of [14,
Chapter 2, Section 2|, the orbit Q' := H' - El C V' is the homogeneous cone
whose clan is (V!,A). Let Py : V — V! be the orthogonal projection and denote
by z; the image Pr(z) of z € V.

Lemma 4.1. (i) The projection Py is H' -equivariant:

P(t-z)=t-P(x) (xeV, teH).

(ii) The image of Q under P; is equal to QI .

Proof. (i) Let A’ be the element jE' = S\ _ A, of h'. For A € R, let
V(X; AT) be the eigenspace {z € V; AT-z =Xz} of the operator A’. Then
V = V(1;A) @ V(1/2; AT) @ V(0; AT). 1In fact, by (1.3) and (4.26) we have
V(AN =V V(0; A7) = VIV and

V(1/2; A7) = i@( S Ve Y Vk)

a=1  “m>ig,m¢l k<ia, k@I

The decomposition V = VI @ V(1/2; AT) @ VM g orthogonal, and since
[hf, AT] = {0} by (1.1), (1.3) and (4.26), the action of H! = exph! preserves
each of the subspaces. Hence the assertion (i) holds. o

(ii) Clearly we have Qf = HT - BT C Q, so that Qf = P;(Qf) C P;(€). Let us
show the converse inclusion Qf O P;(Q). Let Ej be the linear form on VI given
by

(@ Ep) =) iw (V). (4.27)
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Then Ej belongs to the dual cone (Q7)* ([11, Theorem 4.15]). Thus [7, Lemma 1.2]
implies that an element 7 of V! belongs to Q! if and only if (£-Z, EF) > 0 for all
t€ H'. Take x € Q and ¢ € H'. Then we have (t- P;(z), E}) = (P((t - x), E})
by (i). Since t-x € Q, we can take t € H for which ¢-z =t- E. We then obtain
by Proposition 1.2 and (4.27)

(Pi(E-2), Ef) = 3 () + 30 ITial?) > 0.

kel 1<k

Thus we get Pr(z) € Qf, so that P;(Q) C Qf. Hence the continuity of P;
completes the proof. [ ]

Making use of the algebra structures of (V! A), we define the determinant
type polynomials DI (o = 1,...,1) on VI associated to Q. Let u(l;a) =
(u(L; )1, ..., w(I;@),) be the element of Z" given by

ga—p-1 (if k =is, 0 < ),
p(lia)e =41 (if k = ia),
0 (otherwise).
In view of (2.15), we have for t € H!
D{(t : EI) = (ti1i1)2:
DLt E") = (tui)™ " (tii)”™  (tiarins)® * (tiia)? (4.28)
(a=2,...,1),
so that we obtain
DL(t- ) = Xumra)(t) DL(z) (t€ H', z € V). (4.29)
We denote by D! the composite determinant D] associated to Qf, and extend
this D! to V by D'(z) :== D'(z;) (z € V).

Applying Proposition 1.3 (ii) to the cone Q! we see that the composite
determinant D'(Z) is non-negative for z € Q. This together with Lemma 4.1
implies that, if z € Q, then D'(z) = D'(z;) > 0 for all non-empty I C [1,7].
Proposition 4.3 below states that the converse also holds. The proposition is proved

by induction on the rank r, and the following lemma plays a substantial role in
the induction.

Lemma 4.2. Assume that r > 2. Let x be an element of V such that x1; # 0
and L the element =% _,jXpi/x11 of h. Then &' := (expL) - = belongs to
z1 By + VI For a non-empty subset I of |2,7], one has

DUV () = (z11)? D'(z') (1 :=14I).

Proof. Since L-Vy; C Y2 Vi, L- (2, Vi) C V2 and L- V1271 =0
by (1.4), we have
(exp L) . $11E1 = 3311E1 + L . .1'11E1 + (1/2)[/2 - .THEl,
(exp L)+ > st Xt =D sy Xt + L 32,001 X, (4.30)
(exp L) @5, = T g
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By (1.3) we have

L-xnE =— Zm>1 X AE = — Zm>1 X1,

so that
L2 . xllEl = —L . Zm>1 Xml € VLQ’TJ .

Using them, we sum up the both sides of the equalities in (4.30) to obtain

(expL) -z =znuEr+ x5, +(1/2)L-3 o Xm
=zukE + Tior) — (2x11)_1(2m>1 Xml)A(Zm>1 Xm1) (4.31)
€ .T11E1 + VLz’TJ.

For the proof of the second assertion, we show the following claim:
Clawm: For an element T of Vi1 & V2] , one has

D(z) = (&11)* D*" (i a,)).

We first prove the claim for the case T € 2. Take ¢ € H for which z =t - F
and express this ¢ as in (1.6). Since 0 = X,,; = t117:»1 by (1.10), we have
Ly = Zm>1 jTmi = 0. Put ¢ := expThoexpLy---expT,, € H27) Since
A, -Vl =10} and hl27). Vi, = {0} by (1.4), the elements exp Ty, and ¢ € H!?"
act trivially on the spaces VI27) and Vi; = RE; respectively. Thus we have

i=t-E=(expTy)t-(Ey+EP) = (expTy)) - (B + - E2")
= (eXp Tll) . El + E E|_2,TJ = (t11)2E1 + E ELQ’TJ,

which implies that Z;; = (¢;)? and Tlgp = t- E2rl e Q27 In particular, we
have

F=FnE +3p, €Q < In>0, Iy, € (4.32)
By (4.28), we get

D2(F5,)) = (tan)” (t33)

so that by (2.15) we obtain

D(@) = (t)? " - (t)” - (trerym) ()2 = (@12)* D2 (d12,)).-

Namely, the claim is verified in the case that Z;; >0 and Z|5,| € Ql27] | Because
(0,4+00) and Q7] are open in the spaces R and V!>" respectively, the claim
holds for all # € Vi, @ V1271,

Now we come back to the proof of the lemma. Put J := {1} UI. Applying
the claim with # and V27 replaced by ', = z11F) + 2, and V! respectively, we
obtain D’(z';) = (z11)* " D(z}), that is,

or—3

o (tr—l,r—l)Q(trr)Qa

D' (z') = (z11)? " D' (). (4.33)

On the other hand, replacing z and L by z; and L; := — > jiXmi/71
respectively in (4.31), we get

(eXP LJ) "Xy =T+ Ty — (2x11)_1(2m61 Xml)A(ZmEI Xml)-
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Comparing this with (4.31), we have 2/, = Py((exp L) -z) = (exp Ly) - =, so that
DY(/) = D' ((exp Ly) - z,).

Since exp Ly € H’ and X u(s;141)(exp Ly) = 1, the right-hand side of the above is
equal to D’(z;) = D’(z) by (4.29). This fact together with (4.33) completes the
proof. [

We now give an algebraic description of (2.

Proposition 4.3.  One has
Q={z€eV;D'(z)>0 (IcC|Lr], I#0)}. (4.34)

Proof. Thanks to the observation preceding Lemma 4.2, it is sufficient to prove
that the right-hand side of (4.34) is contained in 2. We shall show this by induction
on the rank r. The case r = 1 is clear. For r > 2, assume that the claim holds
for the rank 7 — 1 cone Q>") c V27 and let z be an element of V such that
D'(x) > 0 for all non-empty I C |1,7]. Since DI} (z) = z2;; > 0, we have the
following two cases (1) and (2).

(1) The case z1; = 0.

In this case, we have for £k =2,... r

0 < DY (z) = sz — || X |1 = (1 Xu %,

so that X3, = 0 and x € VI27). Therefore, since D’(z) > 0 for all non-empty
I C |2,7], the induction hypothesis tells us that z € Qlzrl c Q.
(2) The case z11 > 0.

We set L := =% ., jXmi/z11 and 2’ := (expL) - z. Then Lemma 4.2
tells us that 2’ = z11E1 + 2},,,, and that for all non-empty I C 12,7],

D!(afy,) = D'a') = DU (@) f(@n)* ' >0 (1=t

Therefore :E'LQ’T | € Ql27] by the induction hypothesis. On the other hand, since

(432) tells us that z1 £ + Ql-zﬂ C Q for zy1 > 0, we have_:vnEl + Ql2r] C Q.
Therefore ' = 211 E; + :E'LQ,TJ € (2, so that we conclude z € (). [

For non-empty I = {iy,is,...,4} C |1,7], we denote by AL AL ... Af
the basic relative invariants on V! associated to the cone Q!, and extend these
polynomials to V' by Al(z) := Al(z;) (x € V). We write A’ for the reduced

determinant A/. Then A! = Ale with I, := {i1,...,%4_1,%a}, and we see from
(2.17) that

D = DI = AT (AR (A)e .. (Al (4.35)
for some non-negative integers ci, ¢, ..., c1_1.

Now that the polynomials AT are introduced, we arrive at our goal, another
description of 2 with lower degree than (4.34).
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Theorem 4.4. The closure Q of Q is described as
Q={zeV;Ax)>0 (IcC|Lr], I#0)}. (4.36)

Proof. Similarly to the argument preceding Lemma 4.2, we see from Proposi-
tion 2.3 and Lemma 4.1 that Q is contained in the right-hand side of (4.36). For
the proof of the converse inclusion, let z be an element of V' such that Af(z) >0
for all non-empty I C |1,7|. Then (4.35) implies that D’(z) > 0. Therefore
Proposition 4.3 tells us that € ©, which completes the proof. [ |

5. Examples

In this section, we write o’ for the transpose of a matrix @, and denote by E;; the
matrix unit. For a symmetric matrix & = (i)}, j—1, 16t T = (k) be the lower
triangular matrix defined by

Tme  (m > k),
Tk = § Tre/2 (M =k),
0 (m < k),

and Z the upper triangular matrix (z)’ (cf. [14, p. 381]).

5.1. The cone of real positive definite symmetric matrices

Let V be the space of real symmetric matrices of size r, {2 the subset of V
consisting of the positive definite elements, and H C GL(r,R) the group of lower
triangular matrices with positive diagonals. Define the action of H on V by
t-x:=tat' (t € H x € V). Then Q is a homogeneous cone on which H acts
simply transitively. As the base point E of €2, we choose the unit matrix. Then
the multiplication of the clan (V, A) is given by Ay := zy+yz. The determinant
type polynomials D; are calculated as

det x (k=1,2),
Dy(z) = 4] ok—3 ok—4
where ) (k = 1,...,r) are the submatrices (z;)i1<ij<r of 2 = (zi5) € V.

Hence the basic relative invariants Ag(z) are nothing but the principal minors
det zy) by (2.17). More generally, A’(z) (I C |1,7], I # ©) is equal to the minor

det ()i ger) -

5.2. The Vinberg cone
Let V' be the vector space
T11 X
{1? = (m(l)’x@)) ; x(k*l) = (wllci x:;)a T11, Tk1, Tk € Ra k= 2a 3};

and  the set of elements (2(1),%(2)) € V such that the both of the components
are positive definite. Then 2 is an open convex cone, called the the Vinberg cone
([14]). Define the group H to be the set

t
{t = (t(l)?t@)) ; t(kfl) = (tllci tkk)a tlhtkk > 0: lp1 € Ra k= 27 3}
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with the multiplication of each component. The group H acts on V' as

t-x:= (t(l)x(l)tl(l), t(g)x(g)t'@)) eV (t €H, x€ V),

so that H acts simply transitively on (2. Setting F := ((ég), (é?)) € Q, we

obtain the clan (V,A) of the homogeneous cone :

Ay = (2o + Y02y, TEYe +Yeie) (T,yeV),
and have the normal decomposition of V' with respect to the idempotents F; =
(E11,Er1), Es = (Fx»,0) and E3 = (0, Es). Using Proposition 1.4, we calculate
the composite determinants D! (I C {1,2,3},1 # @) as follows:
D (z) = 213, D% (z) = x4, DB (z) = 23,
D2 (2) = 211299 — 22, D3N (2) = 211255 — 22, D3 (2) = 290733,

DU (z) = (2112099 — 25) (2112353 — 231,

so that the reduced determinants are obtained as
A (z) = 2y, AP (z) = 2,
A (3) = zyya9y — 22, ABN2) = A3 (2) = 243, (5.37)

A3 () = AT23Y(2) = gy 293 — 22,
Here A} A{12 and A1123} are the basic relative invariants. These are the same
as Gindikin’s observed in [6, p. 98 (e)]. We note that the degree of A’ is sometimes

less than #7. For example, the degree of A = A{123} ig equal to 2.
Now let us consider the dual cone of 2. We realize the dual vector space

of V as
SRR SRS
Vi=q&= 181 &2 0 | ;&1,81,83,62,83€R
&1 0 &s3

with the dual coupling (-, -) defined by

3 3
((z); (), &) = Zﬂﬂkkfkk +2 Z L1 -
k=1 k=2

For t = (t(1),%2)) € H and £ € V*, we have t*-{ = t&(t) with

. tin tor a3
t:= 0 t22 0
0 0 ts3

Then the clan (V*, A’) of Q* (see Section 3) is given by
N =En+né (EneVT),
and the idempotents &, (k = 1,2,3) are equal to Ey p4_r. We obtain the
composite and the reduced determinants on V* as
Dfl}(f) = 33, sz} (&) = oo, ng} (&) = &u,
D?l,Q} (f) = £22833, D?Lg} (5) =&uéss — €§17 D>{k2,3} (f) = &1 — 631,
DE1,2,3} (6) = 51152253?3 - 5225335:31 - 632,35315
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and

?1}(5) = 33, ?3}(5) = &1, Ah,g}(f) = &11833 — §§1a
?2} () = ?1,2} (§) = &2, ?2,3} (&) = &b — 531; (5.38)
11,23} (§) = 1122833 — Eopfa) — E3365, = det €,

respectively. The basic relative invariants are A?l}, A’flﬂ} and A?L?,i’)} (see also
[6, p. 98 (f)]). By Proposition 2.3 and (5.38), the dual cone Q* is described as

Q' ={EeV &3>0, & >0, E11€nbss — b5y — E3&5 >0}
={& € V*; £ is positive definite }.

The expressions in (5.38) are quite different from the ones in (5.37), which reflects
the non-symmetry of the Vinberg cone ().
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