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On Penney’s Cayley transform
of a homogeneous Siegel domain
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Abstract. In this paper we introduce a Cayley transform C of a homogeneous
Siegel domain D as a slight modification of Penney’s one. We give an explicit
formula to the inverse map of C, and thus clarify the biholomorphic nature of C
in a direct and visible manner. When D is quasisymmetric, our Cayley transform
C is shown to be naturally coincident with Dorfmeister’s one. A phenomenon
which does not appear in the case of quasisymmetric domains is presented by an
example in the last section.

Introduction

This paper deals with a Cayley transform C which maps a homogeneous Siegel
domain D biholomorphically onto a bounded domain. Since Siegel domains are
holomorphically equivalent to bounded domains, what actually concerns here is a
canonical bounded model of C(D), by which we mean a realization that reduces,
in an appropriate sense, to Harish-Chandra’s realization (cf. [18, Chapter II] for
example) if C(D) is symmetric. In this regard, Penney [14] has given a realization,
named the Harish-Chandra realization, which is identifiable with the image of
an explicitly defined Cayley transform of D). While his description of Cayley
transform is quite pretty, we feel a lack of satisfaction on the following two points.
First an explicit formula for the inverse Cayley transform is not given. As a result,
a direct proof is missing for the fact that the Cayley transform actually maps the
Siegel domain biholomorphically onto the Harish-Chandra realization, even though
this biholomorphy can be conceptually convinced. The second point is that when
D is quasisymmetric, the identification with Dorfmeister’s Cayley transform [3] is
not so obvious, although this is alluded in the Introduction of [14].

In this paper we modify a little the definition of Penney’s Cayley transform
to get rid of the above two dissatisfactions. Our Cayley transform still looks
like a fractional linear transform, which requires a sort of denominator. Penney’s
denominator is given by the map z ~— x* considered by Vinberg in [19, §4],
whereas ours comes from a function 7 that is related to the Bergman kernel of
D, see section 2.1 of this paper for details. Use of this function 7 is not new
and already found in Dorfmeister’s study of Siegel domains [4]. To be precise,
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let 2 be a regular open convex cone in a real vector space V. Then our inverse
Z(z) of an element z € 2 is —Vlogn(x), minus of the gradient of logn(z), and
we shall call the map Z : x — Z(z) the pseudoinverse map. One knows by [4]
that Z is a rational map and gives a diffeomorphism of 2 onto the dual cone
Q* in V*. Since 7 is relatively invariant under the simple transitive solvable Lie
group acting on €2, we can introduce its dual counterpart n* easily by dualizing
the relative invariance. The function n* induces another diffeomorphic rational
pseudoinverse map Z* : Q* — 2, and we have Z* = 7!, so that Z is birational.
Then we continue Z (resp. Z*) analytically to W := V¢ (resp. to W*) and show
that Z (resp. Z*) is holomorphic on the tube domain Q + ¢V (resp. Q* + iV*).
What is more important to our purpose is to show that the image Z(Q2 + iV)
(resp. Z*(Q2* 4+ ¢V*)) is contained in the holomorphic domain of Z* (resp. Z).
This is done in Theorem 2.11. It should be noted that in general we do not have
Z(Q2+1iV) C Q* +4V* unlike the case of symmetric tube domains. An example of
this failure is given in section 5.

Now with a fixed specific element E € ), our Cayley transform C' of the
tube domain Q + 3V is defined to be C(w) = Z(E) — 2Z(w + E). We refer the
reader to the formula (29) in this paper for the definition of our Cayley transform
C for a general Siegel domain D. Penney’s proof [14] that the Cayley image of D
is bounded still works for C(D) with a suitable minor modification. The explicit
inverse maps B and B of C and C will be given in (33) and (34) respectively, and
the biholomorphy of C : D — C(D) is visibly clarified.

In section 4, we compare our C with Dorfmeister’s Cayley transform when
D is quasisymmetric. We will describe the relevant Jordan algebra structure of V'
in terms of the normal j-algebra structure with which we begin this paper. Some
constancy of dimensions of root spaces equates Vinberg’s z* with our Z(z) up to
a constant multiple. By using a known property of z* in the case of selfdual cone,
Z(x) is naturally identified with the Jordan algebra inverse z' of z. Another
technical point is to show that the linear map ¢ : w — @(w) appearing in the
definition (34) of B = C~! is a Jordan algebra representation of W. To carry
out this, we shall express ¢(z) for x € V in our language of normal j-algebra,
and provide some details in order that the reader can trace a quotation from
Dorfmeister’s works without difficulties. Our Theorem 4.10 shows that the Cayley
transform C is coincident in a canonical way with Dorfmeister’s.

The Cayley transform C defined in this paper will play a fundamental role
in the forthcoming paper [13] for a characterization of symmetric Siegel domains.
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1. Preliminaries

1.1. Normal j-algebras. As is known by the work of Pjatetskii-Shapiro [15]
(see also [16], [17]), homogeneous Siegel domains are described by means of normal
j-algebras. Thus we begin this paper with the definition of normal j-algebra. A
normal j-algebra is a triple (g, J,w) of a split solvable Lie algebra g, a linear

operatorJ on g such that J?2 = —I and a linear form w on g satisfying
[Jz, Jy] = [z,y] + T[Tz, y] + [z, Jy]  (for all z,y € g), (1)
(2 ]y)y == ([Jz,y],w) defines a J-invariant inner product on g. (2)

We summarize here some of the fundamental facts about normal j-algebras follow-
ing [15] and [17] (see also [16]). Let (g, J,w) be a normal j-algebra. Let n:= [g, g
be the derived algebra of g, and a the orthogonal complement of n in g. We have
g = a+n. Moreover, a is a commutative subalgebra of g such that ad(a) consists
of semisimple operators on g. For every « € a* we set

ng:={zx€n; [hz|=(h,a)x forall h €a}.

Take all & € a* such that n, # {0} and Jn, C a, and number them as a4, ..., q,.
We have dima =7 and dimn,, =1 for every k. The number r is called the rank
of the normal j-algebra g. We can reorder o4, ..., «,, if necessary, so that all the
a such that n, # {0} (such an « is called a root of the normal j-algebra) are of
the following form (not all possibilities need occur):

Yam+a) (1Sk<m<r),  Hoam—oa) (Sk<mZr),

T, (1<k<r), Qy, (1<k<r).

(3)

We note that if «, 8 are distinct roots, then n, is orthogonal to ng. Put

g(0) :==a® Z Mam—ag)/2s 9(1/2) == Z Na, /2,
=1

m>k

9(1) =D Na ® Y Nayray)/2-
i=1

m>k

Understanding g(z) = 0 for 7 > 1, we have [g(i),g(j)] C g(i + 7). Moreover

IV am—ar)/2 = Mam+ar)/2 (m > k), INg, /2 = Mg, 2 (1<i<r), (4)
so that Jg(0) = g(1) and Jg(1/2) = g(1/2). Taking E; € n,, (i =1,...,7) such
that ayx(JE;) = 0, we put H; := JE; € a. Then Hy,..., H, form a basis of a.
Set

H:=H+--+H, E=E++E. (5)

'We prefer to write J rather than the common usage j to emphasize that it is an operator.
However, we do not call the triple (g,.J,w) a normal J-algebra, because this might cause a
serious confusion with a Jordan algebra.
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We remark here that the action of J on the elements of g(0) is described as
JI'=—[T,E] (T €g(0)). (6)
We write down here the constants used frequently in this paper:
N = dimg Nam—ay)/2 = dimp Nam +az)/2 (1 S<k<m£< 7“),

1
b; == —dimRnai/g (1<i<r),

di=14 3 (Sng+n)  (ish), ™

k>j 1<j
= (Bow) = |B2 >0 (1SK<7).

IN

1.2. Homogeneous Siegel domains. Let (g,J,w) be a normal j-algebra,
and GG = exp g the connected and simply connected Lie group corresponding to g.
Since g(0) is a Lie subalgebra of g, we denote by G(0) the corresponding subgroup
exp g(0) of G. By 1.1, we know that G(0) acts on V := g(1) by adjoint action.
Recall E € V in (5) and let 2 be the G(0)-orbit through E. By [17, Theorem 4.15]
) is a regular open convex cone in V', and G(0) acts on 2 simply transitively. By
(4) the subspace g(1/2) is invariant under J, so that it is considered as a complex
vector space by means of —J. We shall write this complex vector space by U. We
put W := V¢, the complexification of V. The conjugation of W relative to the
real form V is written as w +— w*. The real bilinear map () defined by

Qu,u') := %([Ju, u'] — ifu, u']) (u,u' € g(1/2)) (8)

turns out to be a complex sesqui-linear (complex linear in the first variable and
antilinear in the second) Hermitian map U x U — W which is Q-positive. This
means that

Q' u) = Qu,u')* (u,u' €U), Q(u,u) € 2\ {0} forall ue U\ {0}.

With these data we define the Siegel domain corresponding to the normal j-algebra
(g, J,w) to be

D :={(u,w) e U xW; w+w" —Qu,u) € Q}. (9)

Note that we take a generalized right half plane rather than a more familiar upper
half plane.

Consider the Lie subalgebra np := g(1) + g(1/2). It is at most 2-step
nilpotent by 1.1. Let Np = expnp be the corresponding connected and simply
connected nilpotent Lie group contained in GG. Writing the elements of Np by
n(a,b) (a € g(1), b € g(1/2)), we see by the Campbell-Hausdorff formula that the
group operation is described as (with @ as in (8))

n(a,b)n(d’,b") =n(a+d — Qr(b, V), b+ 1), (10)

where @)r denotes the real alternating bilinear form on g(1/2) x g(1/2) defined by
Qr(b, b)) :=ImQ(b,b"). The group Np acts on D by

n(a,b) - (u,w) = (u+b, w+ia+ 1Q(b,b) + Q(u,b)) ((u,w) € D). (11)



NoMURA 189

Concerning the action of G(0) on D, we first note that by a simple observation
using (1) the adjoint action of G(0) on g(1/2) commutes with .J. This implies that
G(0) acts on U complex-linearly. On the other hand the adjoint action of G(0) on
V = g(1) extends complex-linearly to W. Thus G(0) acts on D complex-linearly,
so that G = Np xG(0) acts on D simply transitively. Put e := (0, ) € D. Given
z = (u,w) € D, we can find a unique h € G(0) satisfying hE = Rew — Q(u, u)/2.
Then taking n = n(Imw,u) € Np, we see by (11) that z = nh - e. This makes
explicit the simple transitive action of G on D.
For every s = (s1,...,s,) € C" we put

Xs (epotka> = exp(z sktk> (t1,...,t, € R). (12)
k k
Then x, is a one-dimensional representation of A := expa. On the other hand, it

is clear that
Ny 1= Z N, —ay)/2
m>k

is a nilpotent Lie subalgebra of g(0), and we have n =ny +np. Let Ny := expng
and N :=expn. It is also clear that G = N x A and G(0) = Ny x A. We extend
Xs to a one-dimensional representation of G by defining x,(n) = 1 for n € N.
Let us define functions Ag (s € C") on Q by

As(hE) = x.(h)  (h € G(0)). (13)
Evidently it holds that
As(hr) = xs(h)As(z)  (h e G(0), z € Q). (14)

In particular, putting h = exptH € A with ¢t = logA (A > 0), we see that
As(Mz) = NIA (), where |s| := s, + --- + s, for s = (s1,...,5,) € C.
Furthermore, we know that Ag extends to a holomorphic function on the tube
domain Q4+ ¢V (cf. for example [10, Corollary 2.5]).

For h € G(0), let Adgu(h) := (Adh)|gk) for & = 1/2,1. Similarly we
define adg)(T") = (ad T)[gqk) for T € g(0).

Lemma 1.1.  Let d:= (dy,...,d;) with d; as in (7). One has

det Adgey(h) = xa(h)  (h € G(0)).

Proof.  Since N, acts on V unipotently and since G(0) = Ny X A, it is enough
to show the lemma for h = exp H; for j =1,...,r by the definition of x,. Now

det Adg(1)(exp H;) = det(exp adg1)(H;)) = exp(tradgu)(H;)).
Since tradg;)(H;) = d; by virtue of (3) and (7), the proof is complete. n

Let Ady(h) (h € G(0)) stand for the complex linear operator on U defined
by the adjoint action of G(0) on g(1/2), and det Ady(h) its determinant as a
complex linear operator. Then, putting b := (by,...,b,) with b; as in (7), we
have
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Lemma 1.2.  |det Ady(h)|?> = x3,(h) for h € G(0).

Proof.  The lemma is clear from the fact that |det Ady(h) [* = det Adgg 2 (h)
and tradgi/9)(H;) = 2b; x (1/2) = b;. The details are similar to the proof of
Lemma 1.1. n

2. Pseudoinverse map

2.1. Introduction of the pseudoinverse map. Let (g,J,w) be a normal j-
algebra and D the corresponding Siegel domain (see (9)). By [9, §5] or [18, §IL.6],
it is known that D has a Bergman kernel k. The function s has the following
property: if Hol (D) denotes the Lie group of the holomorphic automorphisms of
D, then

K(21,22) = K(g- 21, g 20) det ¢'(21) det g'(22) (g9 € Hol(D), 21,2, € D), (15)

where ¢'(z) is the complex Jacobian map of g at z € D. The discussion in 1.2
of the simple transitive action of G on D together with the property (15) and
Lemmas 1.1, 1.2 shows that

K(21,20) =C - A_9q_p (w1 + wi — Q(uy, ug)) (z; = (uj,w;) € D) (16)

with C' = k(e,e)Agq1p(2E) > 0.
We put 7 := A_sq_p in what follows for simplicity. Let D, be the direc-

tional derivative in the direction v € V:
d

Dyf(z) = < |
f@)=Liwrw)|
For every z € Q we define Z(x) € V* to be —Vlogn(z), that is,
(v,Z(z)) = —Dylogn(z)  (veV). (17)

7 is called the pseudoinverse map. By [4, §2], Z gives a diffeomorphism of Q2 onto
the dual cone Q* in V*, where
Q' ={eV*; (z,§) >0 forall z€Q)\{0}}.
Now the group G(0) acts on V* by the coadjoint action: h-& = o h™!, where
h € G(0) and £ € V*. Tt is easy to show by using (14) that Z is G(0)-equivariant:
Z(hz) = h-Z(x) (h € G(0), z € Q). (18)

In particular, Z(Az) = A"'Z(z) for all A > 0, and G(0) acts on Q* simply
transitively.
In order to write down the image Z(FE) of E, we define E}, ..., EX € V* by

<Z$]‘Ej + Z ka, EZ*> =, (.73]' € R, ka - n(am+ak)/2)'
j=1

m>k
Elements of V* are canonically considered as elements of W*, the space of complex
linear forms on W. On the other hand, we extend every a; to a linear form on
g(0) = a + ng by setting (T, ;) = 0 for T € ng, and then to a complex linear
form on g(0)¢ naturally. Now for every s = (s1,...,5,) € C" we set
Qs == s10y + - + spa, € g(0), Ef:=s1E]+---+sE €W

Clearly x,(expT) = expas(T) (T € g(0)) and (Jv,as) = (v, EX) (v € V).
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Lemma 2.1. (1) Let s € C". Then, D,As(FE) = (v, Ef) for every v € V.
(2) One has I(E) = E34.,, .

Proof. (1) Let v € V = g(1) and consider T'= Juv € g(0). Then, by (6) we
have

(Ad exptT)E=E+t[T,E|+O0(*) = E+tv+0(*) (t€R). (19)

Hence we get by (13)

d d
D,A,(E) = L A ((Ad (exp tT E‘ =2 4T
(B) == ((Ad (exptT)) )t:O 7 Xs(exptT)|

= (T, 05) = (v, E5).

(2) By (1) we have for v € V

0, 7(E)) = ~ 55 Do san(E) = (0. Bjasn).
which completes the proof. [ |
We note here that
(v1|v2 )y := Dy, Dy, logn(E) (v1,v9 € V) (20)

defines an inner product on V' (see [4, §2]). Let us write this inner product in a
more concrete way.

Lemma 2.2. (v |vs )y = ([Jv1,v2], E5q.y,) for all vi,v, € V.

Proof. It is enough to show the equality for v; = vy = v by polarization. By
definition we have

(0] v}y = D2logn(E) = % (v, T(E + tv))

dt t=0
By (18) and (19) it holds that
iI(E + tv)‘ = i1'((Ad exp tJv)E)‘ = (ad*Jv)(Z(E))
dt t=0 dt t=0
= _<[‘]Ua ']: I(E»
Since Z(E) = Ej4q,, by Lemma 2.1, the proof is complete. m

For every f € V*, we denote by f the element in V' determined by
(,fy=(v|f)y,  (forallveV). (21)

For a = (a1,...,a,) € C" and ¢ = (cy,...,¢) € C such that none of ¢; is zero,
we put a/c = (ai/c1,-..,a./c). Then

Lemma 2.3.  One has (E)” = Egj@a+p) for any s e R
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Proof. Note that by (3), (4) and Lemma 2.2, the root spaces N, +a,)/2 for
m 2 k are still orthogonal relative to the inner product (-|-),. Thus (E})” is a

linear combination of Ei,..., F,, and it suffices to prove the proposition for the
linear forms EY (j =1,2,...,7). But this is clear from ( E; | Ej ), = 6;(2d; +b;),
which is seen by Lemma 2.2. [ ]

2.2. Birationality of Z. The fact that Z is a birational map is stated in the
paper Dorfmeister [4, Lemma 2.5]. However, for our later use, we would like to
make the matters more explicit here by using the normal j-algebra structure. To
see first that Z is a rational map, we introduce a (non-associative) product x in

V by
V1 *x Vg := [Jup, U] = (ad (J’Ul))’UQ (v1,v9 € V). (22)

Note that by (6), the map v — Juv is just an inverse map to the linear isomorphism
g(0) > T — [T, E] € g(1), which is the differential of the orbit map G(0) > h —
hE € Q. We shall write R;(vy)vy = v1 *xva. Then, R;(E)v = [Jv, E] = v and
R;(E) = I. Therefore v +— det R;(v) is a non-zero polynomial function on V.
Hence the subset O := {v € V ; det R;(v) # 0} is a non-empty Zariski-open set.
Although the following lemma is a simple translation of [5, Satz 1.3.3] into the
present context, we write down a proof for reader’s convenience.

Lemma 2.4. Ifv e O, then Z(v) = E}q,, 0 R;(v)™", so that T is a rational
map.

Proof. By the definition (22) of %, we have for v;,v; € V and t € R
(Ad exp tJvl)vg = vy + tv] * Vg + O(tQ).
This together with (14) and (19) gives

d
Dyysa (logn) (v) = — (logm) ((Ad exptJur)vs)|

= % (log ) ((Ad expt.Jv,)E) L_O = Dy, (logn)(E).

This implies (vy x vo, Z(vo)) = (v1,Z(E)) by the definition (17) of Z. Now we get
the lemma immediately from (2) of Lemma 2.1. m

In order to find an inverse map of Z, we need to dualize the matters
concerning Z. First for s = (s1,...,s,) € C", we put s* := (s,,...,s;) and set

Xs =X g Alh-Eiqup) = x:(h) (heG(0)).
AZ is a function on Q* such that AX(h-&) = x%(h)A%(E) for h € G(0) and £ € V*.
We define n* := A* ,4._,« and
(I°(€), f) == —Drlogn™(§) (€, feV).

Thus Z*(§) € V and I* gives a diffeomorphism of Q2* onto Q. Moreover, Z* is
G(0)-equivariant, that is, Z*(h - £) = h(Z*(§)) for any h € G(0). Considering the
inverse map of the linear isomorphism g(0) > 7 +— (ad* T) f € V*, we see that Z*
is a rational map on V*. The following is the counterpart of Lemma 2.1.



NoMURA 193

Lemma 2.5. (1) Let s € C". Then for every f € V* one has
DfA:(E;d-i—b) = <Es*/(2d+b)a f)-
(2) T*(Elq) = E.
Proof. Given f € V*, we consider the element T := er g(0). We have
(v, Ad"(exp —tT) E3q,p) = (v, Ejqip) +1 (], ], Ejqpp) +O() (veV).

Since the definition (21) of f and Lemma 2.2 give ([J/, v), Bsq.p) = (v, f), we
get

d

DyAL(Bias) = & A1 (Ad"(exp —T) Bia )| = (Thase) = (FL B2,
Since (f, E%.) = (Es+ j(2a+b), f) by (21) and Lemma 2.3, the assertion (1) follows.
The proof of (2) is left to the reader. [

Proposition 2.6. I*(Z(z)) = = for any x € Q, and Z(Z*(§)) = & for any
£ e Q.

Proof.  This is a direct consequence of the formulas Z(E) = Es4,, in (2) of
Lemma 2.1 and Z*(Es4,,) = E in (2) of Lemma 2.5 together with the fact that
both 7 and Z* are G(0)-equivariant. u

By analytic continuation we have thus shown that 7 is a birational map
W — W* with T =T*.
2.3. Holomorphy of 7 on )+ iV. We now consider the complexification G¢
of G as in Penney [14]. Since G is split solvable and of trivial center, we can
think of G as a triangular linear group sitting inside GL(g) by passing to Ad (G).
Thus the complexification G¢ of G is inside GL(gc). Furthermore we consider the
complexification G(0)¢, (Np)c, so that G¢ = (Np)c X G(0)¢. Here N(D)¢ is the
complex nilpotent Lie group with group law described like (10), where a,a’ € g(1)¢
and b, 0" € g(1/2)¢, and @y is extended by complex bilinearity. The complex group
G(0)c acts on W = V¢ by adjoint action. On the other hand, the product x in
V introduced by (22) extends to W by complex bilinearity, where J is continued
to a complex linear operator on gc. Let Rj(w) be the right multiplication by
we W. Weput O¢ := {w € W ; det Rj(w) # 0}. By Lemma 2.4 we have
I(w) = E3gq,p 0 Ry(w)™" for w € O¢. so that Z is holomorphic on Oc.

Lemma 2.7. If h € G(0)c, then hE € Oc¢. In particular, T is holomorphic
at hE'.
Proof. Let w € W. By definition we have

R;(hEYw = wx hE = [Jw,hE] = h[h™ ' Jw, E] = —hJh™ ' Juw,

where the last equality follows from (6). Hence we get R;(hE) = —Adgq).(h) o
J o Adgo)c(h™!) o J, so that det R;(hE) # 0. m

Let Of be the open subset in W* defined similarly to O¢. Then Z* is
holomorphic on Of. Moreover, if h € G(0)c, then we have h - E34 , € Of just
in the same way as above. Hence Z* is holomorphic at h - E5q .
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Proposition 2.8.  For every y € V there exists h € G(0)¢ such that hE =
E+y.

To prove the proposition, we need some more structural description of our
normal j-algebra. Put

r—1 r—1
b:= RH’I‘ ® RET ¥ Ny, /2 @ Z Na,—ay)/2 ® Z Na,+ag)/2;
k=1 k=1
r—1 r—1 r—1
g=) RH:®Y RELOY N0y ® ) Man-an)2® D Mantan)2
k=1 k=1 k=1 k<m<r k<m<r

Then b (resp. g') itself is a rank 1 (resp. rank 7 — 1) normal j-algebra, and we
have a J-invariant decomposition g = b @ g’'. Moreover, it is easy to see that b is
an ideal of g. We also note that

o', /4, ={0}, [¢' E:] = {0}, (23)

where the latter follows from (3). Let g'(j) (j = 0,1/2,1) be the j-eigenspace of
ad (Hy +---+ H,_1) on ¢, and put

—_

r—

M=) Martay)/2:
1

x>
Il

Clearly we have g(0) = ¢’'(0) ®RH, & Jm and g(1) = ¢'(1) @ RE, @ m. Moreover,
it is evident that both m and Jm are invariant under G’(0) := exp ¢'(0).
Now we are ready to begin the proof of Proposition 2.8.

Proof.  The proof is done by induction on 7. When r = 1, then g(0) = RH
and g(1) = RE with [H, F] = E. Thus, given (1+iy)E (y € R), we have only to
take h = exp(log(1 + iy))H € G(0)c.

Now suppose that the lemma is true for r — 1. Given y € V', we write y =
v +y.E,+ 2 with 3 € ¢g'(1), ¥ € R and 2z € m. Setting h = h'(exp T)(exp aH,)
with b’ € G'(0)¢, T € Jm¢ and « € C, we shall look for A', T and « such that
hE =FE +1y.

Let ' = E; +---+ E,_;. We have hE = h'(expT)(E' 4+ e*E,). Since
(expT)E, = E, and

1 1
(expT)E' = E'+ [T, E') + 5 [T, [T, E']| = E' = JT — [T, JT],

we get
1
hE = WE - K(JT) + (e‘“ + 5 (T, 17, E;*>)Em

where note [JT,T] € CE, and (23). Therefore, solving hE = E + iy is equivalent
to finding A/, T, « such that

WE' = FE + iy, (24)
—h'(JT) = iz, (25)

1
e” + 5 <[JT7 T]7 E:) =1+ ’in. (26)



NoMURA 195

Now by induction hypothesis, we find A’ € G'(0)¢ that satisfies (24). Then,
(25) gives T =14J(h')"'z € Jmc. We note here that with w, as in (7)

([J21, 22, EF) = w21 | 29 ) (21,29 € m).

This means that (21 | z2 )m := ([J21, 22|, E}) defines an inner product on m, which
we extend to a complex bilinear form on m¢, denoted by the same symbol (- |- ).
Let us put A(h') = (Ad R )|mc' Then solving « in (26) with the already fixed ', T
is equivalent to determining o € C by

1
e* =141y, + 2 <tA(hl)_1A(hl)_lz | < >ma (27)

where !S stands for the adjoint of an operator S on m¢ relative to the non-
degenerate bilinear form (- |-),. Since z € m, it is enough to show that the real
part of the complex symmetric operator A(h')*A(Rh') is positive definite, because
then so is its inverse ‘A(h') " 'A(R')~! and the real part of the right hand side of
(27) is non-zero.

Before proceeding further, we put u:=m -+ Jm and b := u+ RE,.. Then
b is a Heisenberg algebra. In fact

[m, m] = [Jm, Jm] = {0}, [m, Jm] = RE,.

Moreover the alternating bilinear form o on uxu defined by [uy, us| = o(us, us) E;
is non-degenerate and we have

o(Joy+y, Jro +y2) = (21| Y2 )m — (T2 | y1)m  (2,y; € m). (28)

We extend o to uc X uc by complex bilinearity, so that (28) remains valid for
xj,y; € mg. For every Z € g'(1)c, we set

¥(2) =ad (J2)|, +"(ad (JZ)|, )

Thus 9(7) is a complex symmetric operator on m¢ such that (E’) is the identity
operator.

Lemma 2.9. (1) ¥(Z2)x = —(ad Z)(Jz) for all x € m¢.
(2) If ho € G'(0)c, then (hoZ) = A(ho) 1(Z) ‘A(ho) .

Proof. Let 1,29 € mc.
(1) By definition we have

("(@d JZ)a1 | @9 ) = (@1 | [JZ, 23] ) = ([J21, [T Z, 25]], ET)
= <[[Jxla JZ]?‘T2]’E:> + <[JZ, [J$1,$2]],E:>,

where we have used the Jacobi identity in the last equality. Since [Jz1,zo] € CE,,
we get [JZ, [Jx1,z2]] = 0 by (23). On the other hand, (1) together with [z, Z] =0
gives [Jxy,JZ| = J[Jz1, Z] + J[x1, JZ]. Hence it holds that

("ad J2)x1 | 29 )m = ([J[J 1, Z], 33), EF) + ([J[x1, T Z), 73], E)
= <[J$11Z] |$2 >m+ < [Ila JZ] | ) >m-
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This implies *(ad JZ) +ad JZ = —(ad Z) o J on mc.
(2) Since ad (hoZ) = ho(ad Z)hy", it is sufficient to show that J‘A(hg) = Ad hg'o
J on m¢ by (1). We have

([T "A(ho)z1, 22], By) = (*A(ho)1 |22 )m = ([J21, Ad (ho)zo], EY)
= ([Ad (ho) ™" Jx1, 22, EY),
where we have used Ad (hy)E, = F, by (23). Therefore, by the definition of o
o(J'A(ho)x1,29) = o(Ad (hg) ' Jx1, 72).
Since ¢ is non-degenerate on Jmg X me, the proof is complete. [ ]

Now we return to the proof Proposition 2.8. Since h'E' = E' + iy’ by (24),
we have by Lemma 2.9
AWYAW) =y(WE") =T —i(ady’) o J‘mc_

Since y' € ¢'(1), it follows that Re A(h')*A(h') = I, which is positive definite.
This is what we had to show. |

Theorem 2.10. 7 is holomorphic on Q + iV, and I* is holomorphic on
QF +4V*.

Proof.  Since Q = G(0)E, Proposition 2.8 says that Q+:V C G(0)(E+1iV) C
G(0)cE. Now Theorem 2.10 follows from Lemma 2.7. The proof for Z* is similar
and omitted. |

Theorem 2.11.  One has Z(Q2 +1iV) C Of and T*(Q* + iV*) C Oc.

Proof. Owing to (18) and Lemma 2.1 we have Z(hE) = h - Ej4., for any
h € G(0). By analytic continuation this equality holds for all h € G(0)c.
Therefore we obtain Z(Q2 +1iV) C G(0)¢ - E3q,y, C O. u

Remark 2.12. In general we cannot have Z(Q2 +iV) C Q* +iV* if Q is no
longer selfdual. We present an example in section 5.

3. Cayley transform
Let D be our Siegel domain (9). We put

Clw):=FEsq,p, —2Z(w+ E)e W (weW).

It is evident that C is a rational mapping W — W™ which is holomorphic on
Q + iV by Theorem 2.10. Let U denote the space of all antilinear forms on U.
We set

C(2) == (2Z(w+ E) 0 Q(u,"), C(w)) e UT x W* (2= (u,w) €U x W). (29)

Clearly C is a rational map U x W — U x W*. It should be noted that if
z = (u,w) € D, then we have w € Q + 14V, so that C(z) is holomorphic on D.
We shall call C a Cayley transform. This is a slight modification of the Cayley
transform defined by Penney [14]. First we state the following.
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Lemma 3.1.  The image C(D) of D under C is bounded.

Proof.  As the proof proceeds with a verbal translation of [14], we only give
here its sketch. Let us denote by g* the +i-eigenspaces of the operator J on gc.
By the integrability condition (1) of J, it is clear that g* are subalgebras of gc.
Let G* := expg® be the analytic subgroups of G¢ corresponding to g*. Since
(g%, g%], E54.p) = 0 as is easily seen, the formula

X*(expz2) == expi(z, Eyqyp) (2 € g%)

defines one-dimensional representations x* of G*. We have G C G~ G™ as Penney
proved in [14, Theorem 3], and we set g = g_g, with g+ € G* for every g € G.
We now define a function ® on G' by

D(g):=x"(9-)x"(9+) (9€q).

We remark that Penney’s ® in [14, (18)] is defined out of E} in our notation,
where one should note |d| = dimV by (7). Let n(a,b) € Np, h € G(0), and put,
with 7y the projection U x W — W,

wo == hE +ia+ 1 Q(b,b) = mw (n(a,b)h - e) (cf. (11)).
Then the key formulas are

®(n(a,b)h)Xaq4p(h) = 47(2|d|+|b|)77(E + wg) %,
X log ®((n(a,b)h) = —2i (X, Z(E + wo)) (X € g(1)),
Y log ®(n(a,b)h) = 2(Q(b,Y), Z(E +wy)) (Y € g(1/2)),

where Zf(g) = (d/dt)f((exp —tZ)g)‘tZO for Z € g. In this way the lemma is a
consequence of the fact that Zlog® is a bounded function on G for every fixed
7 € g, which is shown in [14, p. 310]. [

In order to give a formula for C™!, we first recall the inner product (-|-),
on V defined by (20). Extending (-|-), to W x W by complex bilinearity, we
define

(ur [ ug)y = (Qur,uz) | E)y  (u1,us € U).

Lemma 3.2.  The sesquilinear form (-|-), defines a Hermitian inner product
on U.

Proof. Let us write every u € U as u = ), u;y with u, € Moy - Then we
have [Ju,u] = Y [Jug,up] + X with X € >, . Na,tap)/2- Therefore (8) and
Lemma 2.3 imply

2(ulu)y =2(Q(u,u) | E)y = ([Ju, u], E3q,p)
=) (2dk + be) ([ Tur, wel, By =Y w,*(2dk + b [[usl 2,

where wy’s are as in (7). The lemma is now clear. n
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We define linear maps F' — F from Ut to U and u +— @ from U to Ut by
(Flu)y =, F), (W, 8)=@ulv), (@el), (30)

It is obvious that they are inverse to one another. Similarly we define fe W and
we W+ for f e W* and w € W respectively by (cf. (21))

(W' fhg="f), (W &) =(wlw), (W' €W). (31)

Moreover, for every w € W, let ¢(w) be the complex linear operator on U defined
through

(o(w)uy |ug)y = (Qu1,u2) [w)y (u1,ug € U). (32)

*

Clearly o(F) is the identity operator, and it is easy to see that ¢(w*) = @(w)*.
Let us set

B(f):=2T"(Eq, — f)—E€W  (feWr), (33)
BF, f):=(p(E—)7'F,B(f)) eUxW ((F,f)eUtxW"). (34)

It is evident that both B and B are rational mappings.

Proposition 3.3.  One has BC(z) = z for all z € U x W, and CB(¢) = ¢ for
all p € Ut x W*.

Proof. First of all we have for w € W and f € W*

BC(w) =2I*(E3q,p — C(w)) — E=T"(Z(w + E)) — E = w,
CB(f) = E3q.p —2Z(B(f) + E) = E3q,y _I(I*(E§d+b - f)) = f.

Before proceeding further we note that if u € U, then

foQu,) = (QMu, ), ) = (Qu, ) [ [y = (o(Pu] )n.
Hence (foQ(u,-))™ = ¢(f)u, so that C is rewritten as
Clu,w) = (2 [p(Z(w + E) )u]™, C(w)). (35)

From this we see immediately that BC(u,w) = (u,w). The proof for CB is similar
and omitted here. n

For each linear operator 7' on V', we denote by T its transpose relative to
the inner product (-|-),.

Lemma 3.4.  ¢((Adgmh)z) = (Adyh)*e(z)(Adyh) for all h € G(0) and
zeV.
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Proof. By definition we have
(p((Adgyh)o)u ), = {(AdW)Q(w, ) [2),  (u,u’ € V).
Since (Adh)Q(u,u') = Q((Ad h)u, (Ad h)u'), the lemma follows easily. n

We need to extend Lemma 3.4 to x € W and h € G(0)c. First we still
denote by !T" the transpose of a complex linear operator 7" on W relative to
the nondegenerate symmetric bilinear form (-|-),. Next we put (u;|ug) =
Re (u1 |ug)y (u1,u2 € g(1/2)). This is a real inner product on g(1/2), which
we extend to a complex bilinear form on g(1/2)c X g(1/2)¢ written by the same
symbol. Let L be a complex linear operator on g(1/2)c. Its transpose with respect
to (-|-) is expressed as ‘L. Note that every complex linear operator S on U can
be naturally extended to a complex linear operator S¢ on g(1/2)¢ commuting with
J. It is clear that ‘Scu = S*u for u € g(1/2). We set pc(w) = p(w)c (w € W).
Consider Lemma 3.4 first as an identity of operators on the real vector space g(1/2)
and thus on its complexification g(1/2)¢ canonically. Then analytic continuation
gives the following corollary with the obvious notation Adgy).h for h € G(0)c
and k=1/2,1.

Corollary 3.5. If h € G(0)c and w € W, then
e ((Adgych)w) = "(Adgyzch)po(w)(Adgayzch)-

We are now able to prove the main theorem.

Theorem 3.6. The Cayley transform C 1is a birational map which sends D
biholomorphically onto C(D).

Proof.  First of all we show that if (F, f) € C(D), then the operator ¢(E — f)
is invertible. Since f = C'(w) for some w € Q + iV, it is enough to prove the
invertibility of the operator (p(I(w + FE) N). By the proof of Theorem 2.11, we
know Z(w + E) € G(0)c - 34, - Hence the invertibility of ¢((h - Ejq,,,)") for
h € G(0)¢ suffices. Now if w € W, we have

(w(h-E5q0) )n = (w, h- E3q,p) = (hw, Elaiv
=(h'w|E), = (w]|"(Adgu)ch ")E )y

Therefore we get ¢ ((h- E3q.p)" ) = ©((Adga)h™")E), and the right hand side is
an invertible operator in view of Corollary 3.5.

The rest is a direct consequence of Theorems 2.10, 2.11 and Proposition 3.3
together with Lemma 2.7 and the remark thereafter. [ ]

Remark 3.7. Unless D is quasisymmetric, it is not true that go(I(w) ~) =
o(w)™" in general. This can be verified for the unique 4-dimensional non-
quasisymmetric Siegel domain due to Pjatetskii-Shapiro [15, p. 26] (see also [7]).
Details are left to the reader.
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4. Comparison with Dorfmeister’s Cayley transform

Let D be a quasisymmetric Siegel domain. This means that the cone €2 in the
defining data of D in (9) is selfdual with respect to the inner product (20) (see
[3, Theorem 2.1]). Let us suppose further that D is irreducible, so that the cone
(2 is also irreducible (see [11, Theorem 6.3]). Then Proposition 3 in [1] says that
the constants 7, (resp. b;) in (7) are independent of m, k (resp. 7). Thus d; is
also independent of j. We set d := d; and b := b; for simplicity. Moreover, by the
proof of that proposition in [1], the product o defined by

1
(vi0vg|vg ), = ) D, D,,D,, logn(FE) (v1,v9,v3 € V)

is a Jordan algebra product. It is clear by definition that the inner product (-|-),
is associative, that is, every Jordan multiplication L(z) : v — xzowv for x € V
is a symmetric operator on V with respect to this inner product. Thus V is a
Euclidean Jordan algebra in the sense of [6].

In order to describe the Jordan algebra structure in terms of the normal

j-algebra structure that we started with, we introduce positive definite symmetric
operators H(z) (z € Q) by (cf. [4, §2])

(H(z)v1 |v2 )y = Dy, Dy, logn(z) (v1,v2 € V).
It is clear that H(E) = I. Moreover it is easy to see that
H((Adg)2) = (Adgy () H@Adgy (67)  (9€ G(0).  (36)

In particular we have H(Ax) = A™2H(z) for all A > 0.
Lemma 4.1. 2zoy=[Jz,y]+ (adgn)Jz)y for all z,y € V.

Proof. By definition we have —2(zoy|z), = (d/dt)D,D,logn(E + tx)|t:0
for any z € V. By (19) we know (Ad exptJz)E = E + tz + O(t?). Hence

d
—2(zoyl|z), = pr DyD,logn((Ad exp tJz)FE)

= & (H((Ad expta)B)y| 2 ),

t=0

=0

Using (36), we obtain 2 (zoy|z), = ([Jz,y]|2),+(y|[Jz, 2] )y, from which the
lemma follows immediately. [ ]

Corollary 4.2. (1) One has L(E;) = adgq)H; for j =1,...,r, so that E is
the unit element.

(2) {Ej}j=, is a complete system of orthogonal primitive idempotents in V', and
the corresponding Peirce spaces are Wa,, +a,)2 (1 Sk <m <),

In particular, the Jordan algebra rank of V is r. Let (-|-)o denote the
trace inner product of V': (v; |vg)o = tr (v10vy), where trv stands for the Jordan
algebra trace of the element v € V. Since V is simple owing to the irreducibility
of Q, (-]+)y is a constant multiple of the trace inner product [6, I11.4.1].
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Lemma 4.3.  (2d+b)(v;1 |vg ) = (v1|v2)y for all vi,v, € V.

Proof. It suffices to show [Ej|l2 = 2d +b. But this is immediate from
Lemma 2.2. |

Before proceeding, we note that every element w € €2 + ¢V is invertible in
the complexified Jordan algebra W.

Proposition 4.4.  For each w € Q + iV, one has Z(w)~ = w™"', where the
right hand side is the Jordan algebra inverse of w.

Proof. By analytic continuation it is enough to prove the proposition for w =
x € Q). Let ¢g be the characteristic function of {2:

do(z) == / exp —(z|y)ody (z € Q). (37)
Q
Let g € G(0). A change of variable yields ¢y(gF) = 7 - xq(9) ' by Lemma 1.1,

where v > 0 is a constant. Since d = (d,--- ,d) and b = (b,--- ,b), it holds that
A_q(z) = n(x)¥ @) for all x € Q, so that ¢g(z) = v-n(x)¥ ) Hence we get

Dylog do(z) = —— D, logn(x) = (0.I()) (veV).

T 2d+b 24+
On the other hand, Proposition I11.4.3 in [6] together with Lemma 4.3 shows
dimV d
—D. 1 - " -1 - _ —1
, log o (a) (a7 o) = 57 (2 o)y

where note that dim'V = |d| = rd in the present case. Thus (v,Z(z)) = (27" |v),
for each z € Q, which implies Z(z)™ = z™". ]

Thus it follows that for any w € Q + 1V
Cw) " =E-2w+E)"'=(w-E)o(w+E)™". (38)

Let us recall the complex linear operators ¢(w) (w € W) on U defined
by (32).

Proposition 4.5. The linear map w — (w) is a x-representation of the
Jordan algebra W . In other words, one has o(w*) = p(w)* and
1
o(wy owy) = B (<P(w1)<ﬂ(w2) + 90(?1)2)90(1111)) (w1, wy € W).

This proposition is due to Dorfmeister. However, instead of making a mere
reference to [3, Theorem 2.1 (6)] which forces the reader into pursuing part of
Dorfmeister’s work, we would like to indicate here the way to get to Proposition 4.5
in our language of normal j-algebra for the readability of this paper.

Lemma 4.6.  One has p(z) = adyJz + (adyJx)* for all x € V', where adyJz
denotes the complez linear operator on U defined by the adjoint action of Jx € g(0)

on g(1/2).
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Proof.  The definition (8) of () together with the fact that ady(/2)J commutes
with J implies

(ad J2)Q(u,v') = Q((ad Jz)u,u') + Q(u, (ad Jx)u') (u,u' € U),
so that we have
(Q(u,u) |YadgyJz)E )y = ((ady Jz)u | '), + ((adyJz) u | u'),. (39)
Here Lemma 4.1 and (6) give
YadgyJz)E =220 F — [Jz,E] = 22 — x = .
Hence the left hand side of (39) is equal to (p(z)u |u'),. n

Lemma 4.7. It holds that tro(x) = btrz for all x € V. In particular,
tro(x oy) defines an associative inner product on the Jordan algebra V .

Proof. @ We note that by Lemma 4.6
tr p(r) = 2Retr (adyJz) = tradg o) Jx.

Thus tro(E;) = 2b x (1/2) = b = btr E; for all j, because E,’s are primitive
idempotents. If z € ny,, +a,)/2 (M > k), then Jx € n(,, 4,)2 and the operator
adg(1/9)Jx is nilpotent. Hence we get tro(z) =0= (x| E )y =trz. n

Lemma 4.8.  One has det o(z) = (detx)® for any x € V, where detx on the
right hand side is the Jordan algebra determinant of x € V.

Proof. Lemmas 1.2 and 3.4 give det ¢('(Adgu)h)E) = xp,(h) for any h €
G(0). On the other hand, [6, I11.4.3] and Lemma 1.1 imply det(*(Adgm)h)E) =
xq(R)/ 4™V = v (h), where 1 = (1,...,1). Since Q is selfdual with respect to
the inner product (-|-),, there exists, for a given z € €, an element A € G(0)
such that (Adg)h)E = z. Hence det p(z) = (det z)° for any z € Q, and thus for
any x € V, because both sides are polynomial functions on V. [ ]

Let G(Q2) denote the linear automorphism group of the cone Q. It is a
reductive Lie group, as 2 is selfdual. Let G(€Q)° be the connected component
of the identity of G(2). Since det(gz) = (det g)”/ 4™V detz for ¢ € G()° and
z € V by [6, 111.4.3], we get the following corollary, though we do not yet have
the formula of the form ¢(gz) = T(x)T* with an operator 7" on U at this stage
when g is a general element of G(£2)°.

Corollary 4.9.  det ¢(gz) = (det g)*%det ¢(x) for all g € G(Q)° and z €V .

With Corollary 4.9 and Lemma 4.7 in hand, one can trace the proofs of
Lemma 5.2 and Theorem 5.4 in [2] easily to give a proof to the displayed identity
of Proposition 4.5. The other identity ¢(w*) = ¢(w)* has been already mentioned
just after (32).

Now we return to the Cayley transform in the quasisymmetric case. The
formula turns out to be the same as the one given by Dorfmeister [3, (2.8)] except
for a minor modification. For symmetric domains, the formula appeared in [12,
10.3] and [18, Exercise II1.7.3].
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Theorem 4.10.  For any (u,w) € U x W one has
Clu,w)” = (2p(w+ E) 'u, (w—E)o(w+ E)™),
B(@, @) = (¢(E —w) 'u, (E+w)o (E—w)™").
Proof. By (35), (38) and Proposition 4.4 we have
Clu,w)” = (20((w + E) Nu, (w—E)o (w+ E)™ ).

Since ¢ is a Jordan algebra representation, we have o((w+ E)™') = p(w+ E)~'.
On the other hand Proposition 2.6 implies Z* (@) = w™'. Thus we get B(@) =
(E+w)o (E—w)™', and the expression for B(, ) is obtained from (34). =

5. Pseudoinverses related to the Vinberg cone

In this section we exhibit an example in which Z(2 4+ ¢V') is not contained in
Q*+4V*. Let V be the 5-dimensional real vector space presented by the following
form of symmetric matrices:

V1 Vg Vg
V=<v=1vy v 0] ;v,...,;,05€R
V4 0 Vs

The vector space V' is equipped with the inner product (v |v") = tr (vv'). When-
ever we identify the dual vector space V* with V', we use this inner product
throughout this section. Now the Vinberg cone €2 is defined to be

Q:={veV;v >0 A =uvwvs—v: >0 A;):=uvwvs—v: >0}
Its dual cone ©2* is described as
O ={v eV ; v is positive definite}.

One knows that there is no linear isomorphism of V' that maps 2 onto 2*. In
particular, 2 is not selfdual (see [19, §8] or [6, Exercise 1.10]). Set for every v € V'

R A T ) (V1 V4
1)(1) = vy Vs y U(g) = v Vs .

If h; := <[§§ g) € GL(2,R) (j = 1,2), we define h = (hy, he) € GL(V) by the

formula (hv)j) := hjvg)'h;, where 'h; denotes the transposed matrix of h;. Let
H = {h = (hl,hg) S GL(V) ;a> 0, cj > 0 (j = 1,2)}

Then H acts on () simply transitively.

Now we consider the tube domain D = ) 4 V. Let us describe the
corresponding normal j-algebra g. Let § := Lie (H), the Lie algebra of H, and
we form the semidirect product g =V x§. Define a linear map J on g by the rule

20 B B
J:bB((g 0); (g 0))'—>— B 2’)’1 02 eV,
L 2 72 Ba 0 27

J:VBUH((UZ? v;)/Q), (“;f v50/2)>€h'
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It is clear that J? = —I. With w = 0 tr € b* ® V* = g*, it is easy to see
that the triple (g,J,w) is a normal j-algebra. In order to present the root space
decomposition of g, let efj (k = 2,3) be the k x k matrix unit with the only
non-zero (i, j)-entry equal to 1. Set

Hy = 5(ety, ery), Hai=35(e3,0), Hs:=3(0, e3,),
Ty = (€3, 0), Ty = (0, €3,),
E] = e?j (]:172,3)’ X21 = 6?2+€gl, X3]. 26?3—’_631'

These 10 elements form a linear basis of g such that E; = —JH,; (j =1,2,3) and
Xk = —JTy (k=1,2). Put a:= RH, & RHy, & RH; and let oy, s, a3 be the
basis of a* dual to Hy, Hy, H3: (H;, ;) = 6;;. An elementary calculation shows

Nay—ar)/2 = R}, Ny tar)/2 = RXp1 (k=1,2).
Since n,, = RE) (k=1,2,3), we have

3 2 2
g=ad Z Moy, Z Nay—a1)/2 D Z Mag+ai)/2:
k=1 k=1 k=1

Note that the roots (a3 + ay)/2 are absent. The constants in (7) are
Tlo1 = N31 = 1, N3p = 0, dl = 2, dg = d3 = 3/2, bz = 0.

We have Fjyq = 4E} + 3E; + 3E; and observe that Ef = e, (j =1,2,3).

Put £ = Ey + E; + E5 € Q. For any y € Q, let h(y) € H be the
unique element such that A(y)E = y. Then we have Z(y) = h(y) - E54. A direct
computation yields

VUL 0 VUL 0

hiy) = Y2 Ap(y) | Ya A13(y) ’
A Y1 N (1

so that we have

( 1 ( A4 3y3 n 3yi ) 3y 3y \
v JANP (y) JANT: (y) Aqg (y) A13(9)
32 31
I(y) = — 0
(y) JANDS (Z/) JANP) (y)
34 0 31

\ Ay Az (y) )

Allowing every y; being a complex number in the above formula gives an analytic
continuation of Z to W = V. In particular, if a real vector y € V satisfies
Y1 =1ys =ys =0, then

(4 3v: _ 3 _ iy iy
1+y; 14y; 1+ y3 1+y3
I(E +1y) = _1+y§ Ty 0
3y, . 3

\ T T+g 1+42)
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Hence if |yo| and |y,| are sufficiently large, the diagonal matrix Re Z(F +14Y") is no
longer positive definite, that is, no longer belongs to Q2*. This verifies Remark 2.12.

We conclude this paper by writing down the formula for Z*:

( 4ysys _ Ayays _ Aysys
dety dety dety
4 4y? 3

T (y) = | - Y2Ys Y2Ys L2 0

dety ysdety  y3
4 4y? 3

\_ Y3Ya 0 Y1Ys3 + 2
dety ysdety  ys

Details are left to the reader.
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