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Abstract. We study finite-dimensional Lie algebras of polynomial vector
fields in n variables that contain the vector fields 3 (1t =1,...,n) and
Zi
0 0
T1=— + .-+ z,=——. We derive some general results on the structure of such
ox1 or,

Lie algebras, and provide the complete classification in the cases n = 2 and
n = 3. Finally we describe a certain construction in high dimensions.

1. Introduction

It was Lie [5] who started to study the classification problem for finite-dimensional
Lie algebras £ of vector fields in C* up to local diffeomorphisms. His results
concern the cases n = 1, n = 2 and n = 3 (this last case is not treated
completely). He split the study of these algebras in the case of primitive algebras
(the corresponding local transformation group has no invariant foliation) and
imprimitive ones. The lists for the imprimitive algebras in [5] are, in a sense,
without structure: it is impossible to predict what (classes of) algebras one will
encounter. The mathematical solution for this kind of problems is adding a
structure: one can study for instance simple algebras or primitive algebras. For
sure it is very difficult to obtain general results for the general classification
problem. Also here we add some structure by assuming that

(O) the coefficients of X € £ are polynomials;

(A) £ contains the translations (i=1,...,n) (“L acts transitive”);

&ci

(B) £ contains the Euler vector field £ = Y x; 9 (“L is graded”).

1 Oz,

In fact, due to the presence of F in £, we may assume that the coefficients P; of

X =X P(s)y

follows by considering the commutator [E, X].

€ £ are all homogeneous polynomials of the same degree k; this
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Note that in any finite-dimensional Lie algebra g of C'*°-vector fields in C"
we have a natural filtering by the minimal degree of the Taylor series (around 0) of
the coefficients. The associated graded Lie algebra will be of the type we consider
in case g (or rather GG) acts transitively (around 0). This explains a part of the
interest in these algebras. For further motivations, we refer to [1].

Our aim in this paper is to present some general results on the structure of
Lie algebras £ with the structure above. As background we have the classification
in a special subcase, namely when £ is multigraded. Such £ is described (almost
completely) by a diagram made from the integers a;; with

a;j = max{a|zio,; € £}

We discuss this case in section 2..

It turns out that there are many cases in which £ is not multigraded.
However assuming that £ is maximal (so that £ becomes a so called transitively
differential algebra of certain order), most examples drop out; it is a non-trivial
task to distinguish the remaining ones.

We describe the contents of the paper. In section 2. we discuss multigraded
algebras, and in section 3. we explain how the elements from £ can be seen
as multilinear mappings. In section 4. we give some general results on the Lie-
theoretical structure of £. Our main result is that the radical is contained in
a multigraded Lie algebra. Next we apply these structural results to the cases
n =2 and n = 3 (section 5.); we obtain a complete classification of transitively
differential algebras here. In section 6. we describe an elegant construction in
higher dimensions. We end with a discussion in section 7..

Acknowledgement. Useful correspondence with Issai Kantor, especially on the
matters in the sections 3. and 4., is gratefully acknowledged.

2. Multigraded algebras

In this section we discuss the definition of (essential) multigraded algebras
and describe some results obtained in [4].

Throughout this paper £ will denote a finite-dimensional Lie algebra of
polynomial vector fields on C*, satisfying the requirements (A) and (B) in section
1.. For any X € £, we see that all its homogeneous components are in £. If

“ 0
X = Pox)—
2",
where all P; are homogeneous polynomials of degree k, then
[E, X]=(k-1)-X. (1)

We call k£ the order of X. The maximal order » among X € £ is called the order
v of £, ord(£); in this case £ is said to belong to the class D¥(n) (or D” if it is
clear what n is).

It follows easily from (1) that £ is Z-graded:

Cy={Xeg|ord(X)=d+1}



Post 113

with
v—1
=P 4 and [L4,,L4,] C Liysar
d=—1
. . 0
In particular we have £ 1 = (0y,...,0,). From now on we write 9; = — for

83?,'

notational convenience.

A transitively differential algebra of order v is a maximal Lie algebra in
D¥. To be more explicit

Definition 2.1.  Suppose £ belongs to D¥ and £ is maximal in D, which
means that £ € DY and £ D £ implies £ = £, then £ is called a transitively
differential algebra of order v.

All £ in the class D¥ are Z-graded; sometimes will also encounter £ that are even
Z"-graded. Remember that C[z1,... ,z,| has a Z"-graded, mdeg, by

mdeg(z®) = «

Correspondingly, the polynomial vector fields, being realized as special elements
of End(Clzy, ... ,z,]), attain a Z"-grading by

mdeg(zaaj) = ((Xl, ey O, 0 — 1, Qjg1ye-- ,O{n). (2)

We say that £ is multigraded if it has a basis of homogeneous elements in
the Z"-grading (2). Equivalently £ has a basis of simultaneous eigenvectors for
the operators ad x10;, ad x90,,..., ad z,0,. Hence we have a decomposition

L= ; [€ar L] C Lass

a€EZ™

where for a = (ay,...,a,) we have
{La={X€l|[x0,X]=X for i=1...n}

Consequently any multigraded transitively differential algebra contains the ele-
ments 110y, ..., T,0,-

Let us discuss the structure of a multigraded Lie algebra £ in the class D.
We assume that the elements 0, ...x,0, are in £; this can be done without
restriction. According to [4] the remaining homogeneous elements X € £ fall in
two classes (up to a multiple):

X=a - -2o0; witha; =0 (3)

or ord(X) =2 and

X = Xj = Zaji:rixjai with Q5 = 1. (4)

i=1
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If the element X, is in £ then we call j a special point. There is a remarkable
relation between the coefficients a;; appearing in (4) and the maximal power «
such that z80; € £. Indeed, investigations in [4] reveal that A = (a;;) is the
matrix given by

a;; = max{a|z{0; € £} (5)
There are two characteristic conditions for A and the special points:
(I) ajja;, < ai for all 4,5,k =1..n;

(IT) j is special and a;; # 0 for an ¢ implies a;; = a;; = 1 and moreover i is
special as well.

Clearly, for any multigraded £ in the class D” we can define the matrix A by
formula (5), and mark the special points S C {1,2,...,n}. A natural question
is whether A and the special points & determine £. This is not the case, but
it turns out that there is a unique maximal algebra £(A,S) with matrix A and
special points S, see [4], section V. This provides a rather detailed description of
all multigraded algebras.

1 3 11 11
01 2 2

Example 2.2. Let ustake n =4, A= 00 1 1 and & = {1}. Then
00 1 1

£(4,8) = (81, xz@ (1 =1..4), x384, 1403, 2201 + 321290, + 1121230, + 1121340;,
0y (k < 3),2%250; (b +30<11,£<2,i=3,4)) (6)

Now £(A,S) contains multigraded subalgebras with same matrix A and the same
special point 1. An example is

£= <81, xzaz (’L = 14), .’13384, .’L’483, .’L?al + 3371.’1)282 + 11,’13133384 + 11.’131.’13'484,
%0, (k < 3),2%0; (k < 11,i=3,4),2%2,0; (k < 3,i=3,4),220; (i = 3,4))

In fact £ is the minimal multigraded Lie algebra with matrix A and special point
1.

1 3 11 11
If we define A" = 8 (1) :1)) i1)> then £(A,8) C £(A4',S). Hence
00 1 1

£(A,S8) is not a transitively differential algebra of order 11, but £(A’,S) is

One could hope that any multigraded transitively differential algebra £ is
of the form £(A,S). This is not the case, though £ is contained in £(A,S),
for certain A and S. Possibly £(A,S) is of higher order than £. The simplest
example where this happens is n = 3 and

2 2 2 2
£= (82, .’l?jaj, £E283, l’283, x282 + 21’2(1}383, 1'183, 1'183, $1$283, $1£C283>.

Any £(A,S) D £ contains the element z2x205, which is of order 4, while ord(£) =
3.
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There is a convenient way to construct multigraded Lie algebras. Suppose we give
all variables x1,xs,...,x, a degree:

deg(z1) = dy; deg(za) = dy; ...;deg(z,) = dy;
with d; > 0 for all 7. This induces a degree on the vector field terms by
deg(xffla:g? . .Z'znaj) = a1d1 + O[zdz —+ -+ andn - dj. (7)

Now suppose that £ is the Lie algebra with basis consisting of all vector field terms
of degree 0 or less. By our assumption that d; > 0 we have that £ is indeed finite-
dimensional. Moreover it is clear that 0; and the Euler vector field E are contained
in £. Hence £ belong to D¥ for v = |max{dy,...,d,}/ min{d:,...,d,}].

Let us return to Lie algebras £ in the class DY, not necessarily multigraded.
Let L : C* — C" be a linear, invertible transformation. This transformation
induces a transformation on the polynomial vector fields (as represented in some
coordinate system), preserving the order. In particular a Lie algebra in the class
D" is mapped to another one in D”; these two will be called equivalent. Note that
the multigrading of an element is not preserved.

We will call £ essentially multigraded if £ is equivalent to a multigraded
Lie algebra; this means that coordinates can be chosen such that £ is multigraded
with respect to these coordinates.

To end this section, we state a lemma that gives a way to test if £ is
possibly essential multigraded, without performing a linear transformation. For

n
X =) Po; € £, we can form the Jacobian J(X) with

=1

_ R,
B 830]-'

Jij(X)

Lemma 2.3.  Let £ be in class DY, with v > 3 and dim(£) =d.

If £ is essentially multigraded, then £ has a basis { X1, Xa, ..., X4} such that rank
J(X)=1 forall X € {X1,Xs,..., X4} with ord(X) > 3.

Proof. The rank of J(X) is independent of the (linear) coordinates chosen.
Hence, if £ is essentially multigraded, we can choose coordinates such that £
is multigraded. But for multigraded Lie algebras there is a homogeneous basis
{X1,Xs,..., X4} such that the elements of order 3 and higher have the form
X =z ...2%0;, see formula (3). Those X obviously have rank J(X)=1. m

3. £ and multilinear mappings

A very useful description of vector fields is in term of multilinear mappings,
see for example [2]. Let X € £, ord(X) = k, and denote U_; = (01,...,0,). We
associate to X the k-linearmap A:U_{ xU_{x---xU_1 —U_; by

1
A(Ul,’l)z, .. .,Uk) = E[’Ul, [’1)2, ceey [’U]C,X] .. ]]
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for vy, ve,..., v € U 1. We will write A = (X). Using the Jacobi identity one
easily checks that A is symmetric. Therefore A is completely determined by its
diagonal A(z,...,z), x € U_;. f A= ¢p(X) (k>1)and B = ¢pY) (£>1),
then C' = pr—1([X,Y]) satisfies

C(z,...,x) =¢B(A(z,...,z),z,...,x) — kA(B(z,...,z),x,...,T).

If ord(X) = —1, then we put v = X € U ; and we have

Definition 3.1.  Let V be a linear subspace of U_;, and £ in D".

(a) We call V' a reducing subspace of £ if for all k¥ > 0 and all X € £ 4,
A = (X)) satisfies

forallveV and z € U_;.

(b) We call £ reducible if there exists a non-zero reducing subspace V for £,
with V # U_;. If such V does not exist, £ is called irreducible.

Lemma 3.2.  Let V' be a reducing subspace of £ and define

I 1 ={X € &_1| for A=gp(X): Alz,...,z) €V for allz € U_;} (8)

and Iy = @I\/,k—l- Then : Iy is an ideal in £.
k=0

Proof. Let us give a proof of this useful lemma'. Remember A(v,z,...,z)
is (up to a factor k) simply the commutator of A of order £ and v € U_;.
Fix coordinates {0, ...,0,} of U_; such that (9,41,...,0,) = V. Since V is a
reducing subspace, any X € £ is of the form

X = zr:Pz(xlaamT)al—i_ zn: Pz(mlaaxn)az
i=1

i=r+1

Define ¢ : £ — £ by

r

P(X) = ZPi(xl, ey Tp) 0y

i=1

One easily checks that 1 is a Lie algebra morphism. Hence Iy, =ker(¢)) is an
ideal. |

L¢/Iy (“die verkiirzte Gruppe”) appears already in [5] as an important computational tech-
nique.
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Example 3.3.  Let us look at £(A4,S) define in (2.2). We see two reducing
subspaces, W, = (03,04) and Wy = (0, 03,04). Lemma 3.2 tells that Iy, is an
ideal. Clearly £(A,S)/Iw, = slo(C). The ideal Iy, contains (but is not equal to)
(2303 — 2404, 1403, £30,4) = sly(C).

Since V' C Iy, we conclude that any simple £ is irreducible. The converse is also
true for ord(£) # 1; this follows from proposition 4.5 below (if 9 # {0} then
one finds M = U_q, so ord(£) < 1). A counter example for ord(£) = 1 is the
transitively differential algebra £ of order 1, £ = U_; & Uy, of all polynomial
vector fields of order 0 and 1.

Let us say some words on the case that £ is simple. This can only happen if
ord(£) = 2. Take any X € £ of order 2. Then A = ¢y(X) is a bilinear map
A:U_1 xU_1 = U_1. So A defines a multiplication * on U_1: v *w = A(v,w)
for v,w € U_y. This multiplication is commutative:

vikw=wxv < [v,|w,X]]=w,vX]
for all v,w € U_;, and moreover
(v*w) *xv> = v* (w*v?).

Commutative algebras with this property are called Jordan algebras; so there is
a relation between algebras £ in D? and Jordan algebras. This relation can be
exploited to obtain a full classification of all simple Lie algebras; however it turns
out that one has to define Jordan triples, a generalization of Jordan algebras. This
way one gets a 1-1 correspondence between simple Lie algebras and simple Jordan
triples; we refer to [3]| for more information.

4. The Lie-theoretic structure of £

Let £ be a Lie algebra in D”. We first study the radical R of £ (the
maximal solvable ideal) and the nilradical 9t of £ (the maximal nilpotent ideal).
Of course, 9t C R; according to [6], § 5, N° 3, we have that

M = {X € R|ad X is nilpotent}.
Consequently if X € R and ord(X) # 1 then X € MN.

Proposition 4.1.  Let £ be in D¥ with v # 2 and N the nilradical of £.
Then M #0.

Proof. If v < 2 then U ; C M. Hence assume v > 2. Let K(X,Y) be the
Killing form of X, Y € £. We show that if ord(X) = £ > 2 then K(X,Y) =0
forall Y € £, hence X € .

If ord(Y) = ¢, then

(k—1)K(X,Y)=K([E,X],Y)=-K(X,[E,)Y])=-(({-1)K(X,Y).
Hence (k+¢—2)K(X,Y) =0. Since k£ > 3 and ¢ > 0, we have K(X,Y)=0. =

It follows that any semi-simple £ in D” is of order 2.
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Example 4.2.  Consider the Lie algebra £(A4,S) in (2.2). The elements of the
form x%0,, x%x%0s, 2%150, generate the ideal 91. In view of example 3.3 we see
that R = (’ﬁ, .Igag, $383 + $484> .

The following notion is useful for us.

Definition 4.3.  Let S C £ be a linear subspace. We call S layered if [v,s] € S
forall veU_; and s € S.

In particular £ itself is layered, as U ; = £ ;. We note that also any ideal I C £
is layered. Moreover we have

Lemma 4.4.  Let Z(I) be the center of an ideal I in £. Then Z(I) is layered.

Proof. Choose z € I,z € Z(I) and v € U_; arbitrary. We have to prove that
[z, [v,2]] = 0. This follows directly from the Jacobi identity:

[z, v, 2]] = [[z,v], 2] + [v,[2,2]] =04+ 0 = 0. u

Of special interest is the case I = .

Proposition 4.5. Let W = Z(M) N U_; be as above. Then W is a reducing
subspace.

Proof. Let X € £, 1 and A = ¢;(X). We have to prove that for w € W,
A(w,z,...,z) € W for all z € U ;. Fix an Z € U_; and define A € ¢y(£y) by

Take Y € MN £, and B = ¢,(Y). Then
[A, B](z,...,z) = pB(A(z),z,...,z) — A(B(z,...,1))
and by commutation with w we get

0 =[A, B)(w,,...,z) = pB(A(w),x,...,z)
+p(p — 1)B(A(z),w, z,...,7) — A(B(w,...,1))

Now clearly the last two terms of the right-hand side are 0. Hence also the first
term:

B(A(w),z,...,2) =0
for all z € U, and B = ¢,(Y). Hence [A(w),Y] = 0 for all Y € N, or

A(w) € W. So we obtain
Alw,Z,...,z) e W

forall z € U_;. ]
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Let us summarize our results. If R # 0, then also M # 0 and V =RNU ; =
M NU_,. This space V is a reducing subspace, as is easily checked. It is possible
that V = U_,, for example with n = 2 one can take

£ = <.T’1€82 (k S l/),81>

Moreover if 2R # 0 then also W = Z(M) N U_; # 0. This W is also a reducing
subspace. Inductively, using lemma 3.2, we have a flag of subspaces 0 = W, C
Wi cWyC---CWy,=V in V such that any X € I satisfies

Wiy, X]eW;  foralli=0,...,s—1. (9)

If W=U_ then M =U_; and hence £ C U_; & Uy, where U, denotes the space
of all vector fields of order 0.

Next we study the semi-simple part of £.

Let £ be of class D” and R its radical. Then £/9R is semi-simple; there exists a
subalgebra & C £ such that & = £/9R. Such & is called a Levi factor. & is the
direct sum of (say d) simple Lie algebras &,...,S,. Set, as before V. =RNU_,,
and Iy D R the corresponding ideal. It is possible that I, contains some of the
factors G4,...,6,. However we have

Proposition 4.6. Let &; C Iy, then &; C Uy.

Proof.  Consider the Killing form K on Iy. For X € V|, K(X,Y) =0 for all
Y € Iy, as V C M. Using the proof of proposition 4.1, it follows for X € I, and
ord(X) # 1, that K(X,Y) =0 for all Y € I;. So the semi-simple part of Iy is
contained in the part of order 1. [ ]

Using all results till now we are able to formulate a proposition on the structure
of £ in case that V =U_;.

Proposition 4.7.  Suppose £ is a Lie algebra in the class D with radical R
such that RNU_y =U_,. Then £ is a subalgebra of a multigraded £ of class D
with v > v.

Proof. By proposition 4.5 we have a flag
U=W,DOW, 1D---D>DW; DWW, ={0}

with W, /W,_; a reducing subspace for £/Iy, ,. In particular we have that all

elements of € have a common “triangular” form: if 2 = (2, 2§”, ..., 2!?) are

coordinates for W, /W,_; then X € £ takes the form
X = P,(x(’"))ax(r) + Pr,l(x(Tfl), x(’))amwn + -4 Pn(m(l), $(2), ceey .’L'(T))azu)

where we used some obvious vector notations. If X € 9t then X even takes the
strictly triangular form (ord(X) > 1):

X = P,«_l(w(r))am(r—m + -t Pn(:c(Q), ce ,x(r))axu)
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We inductively give degrees to the variables in (™, z"=Y down to 2z, cf. (7).
First we put deg(z\”) = 1. Then look at all terms in P,_;(z"1, z)) that are
independent of 2("~"). Suppose d,_; is the maximal degree (which in this case
coincides with the maximal polynomial degree), then we put deg(mgr_l)) =d,_;.
Now look at all terms in P,_, independent of z("=?. Let d,_, be the maximal
degree. Then we put deg(:vgr_Z)) = d,_o. This way we continue, and obtain that
all these terms have degree 0 or less. It remains to consider the “diagonal terms”
in P;. We know from RNU_; = U_; and proposition 4.6 that the diagonal terms
are of order 1, hence of the form 2(Y9,). Consequently these terms have degree 0.
Hence £ is a subalgebra of the multigraded Lie algebra £' consisting of all terms
of degree 0 or less in the grading constructed above. [ ]

It remains to study the situation in which V # U_;. In this case we can consider
& = £/Iy. This is a Lie algebra of vector fields on C* with n' = n — dim(V).
Note that the Euler field is E' = E mod Iy,. Moreover £' belongs to D?(n’), as
£’ is semi-simple. Let &},..., 8!, be the simple Lie algebras that constitute £'.
Thank to the presence of E’ it is immediate that also &,..., &/, are graded. In
particular if we denote U’ ; = U_;/V we have

dl
U, =penu,
=1

Clearly for any &) we have &, N U’ # {0}. Let us put n; = dim(&;NU",), so
that ny + - - - + ng + dim(V') = n. With this definition we have

Proposition 4.8. Let £ = & @ --- ® &), be as above. Then the simple
summand &} is in D*(n;).

Combining the propositions 4.6 and 4.8, we see that £ contains two types of simple
subalgebras G; either G isin Uy or G isin U_; @ Uy @ Uy ; see also example 3.3.

5. Transitive Differential algebras in low dimensions

We will discuss the structure of Lie algebras in the class D¥(n) for n = 2 and
n = 3. Apart from being interesting in its own right, we think that this is a good
demonstration of the theorems from section 4..

We first consider n = 2. In section 4. we introduced the spaces V = NNU_,
and W = Z(MM) NU_ ;. If dimV = 2, we have that £ is a subalgebra of a
multigraded one (proposition 4.7). Hence we see (cf. [4]) that £ is subalgebra of

(O, Oy, Oy, . . ., 2" 0y, £y, YO, ) (v >2)

or £ is contained in U_; & Uj.

At the other extreme, we have that V' = {0}, which means that £ is semi-simple.
This gives two (multigraded) possibilities, namely

L= <y28y, 220y, YOy, £0y, Oy, Op) = sly @ sly

or
£ = (yzay + 2y0,, 220, + xy0y, YOy, Oy, YOy, Ty, Og, Oy) = sl
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Finally we have the case that dimV =dimW =1. Now £ =sly xR and X € N
is of the form
X =19, (k<v)

while £ contains an element Y of the form
Y =220, + (ax® + Bzy + vy*)0,

Now [0y, Y] € 91 implies that v = 0. Moreover [Y,2”0,] = 0 implies § = v. For
v < 1 it follows that one can take v = 0, while for v > 2 we have 229, € £, hence
we can assume that o = 0. All together we find that £ is a subalgebra of

(2" 0y, x”’lay, ooy Oy, 220, + vxyOy, 0z, YOy, Oy )

Now we turn to the case n = 3. Now not all £ in D” are multigraded. A
simple counterexample is the smallest Lie algebra in D" containing the element
P(z1,29)0;, for a homogeneous polynomial P of order v. The construction
of a transitively differential algebra that is not (essentially) multigraded is not
easy. We discuss this problem by considering different cases for the dimensions of
W=ZM)NU_; and V=NNU_;. We will not discuss dim W = 0; in this case
£ is a direct sum of simple Lie algebras in D?, see proposition 4.8.

If dimW = 3, we have that £ C U_; & Uy, hence by maximality, £ = U_; & Uj.

If dim W = 2, we can assume that W = (9,,0,) and N contains (z*9,, z%9,) for
k <k, £ <X (and possibly 0, € 9M). We can assume that k > A and k > 1. The
only possible element of order 2 can be put in the form

X =220, + Azvyd, + (kzz + y2Yy)0,.
A straightforward calculation (omitted here) yields that £ is not maximal in case

that dim W = 2.

We end up with the most difficult case, dimW = 1. This case we split in two
subcases, namely V = W, and dimV > 2. In the first case, the nilradical has
only elements of the form X = P(z,y)0,. Let x be the maximal k£ such that
7%0, € M and A the maximal ¢ such that ‘0, € 9. We know that £ = £/Iy
is semi-simple, and according to the beginning of this section, we have only two
possibilities: £ = sl, @ sl or £ = sl;.

If £=sly® sly, then £ contains
Yl = x2a$ + Q1($7 Y, Z)az and }/2 = ?JQay + QQ(-’E, Y, Z)az

for some quadratic polynomials @}; and Q).
As [Y1,270,] = 0 and [Y,,4*8,] =0 and [Y7,Y5] = 0, we find

Qi(z,y,2) = Krz + a1 7? + apry and Q2(z,y,2) = Ayz + Bozy + Bsy?.

for some «o; and (3;. We may assume that these «; and ; are 0 in case k > 2 and
A > 2. By direct calculations one can show that this holds in the remaining cases
k<1or A<1 as well. Hence £ has order v = k + A and basis

{2*9y*0, (k < K, £ < N),20,,2°0, + K320, 20y, Op, >0y + Ay20,,y0,, 0y}
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Next we consider the case that £ = sl3. Now £ contains elements of the form
Yy = 220, + 2y0, + Q1 (., y, 2)0, and Ys = xy0; + y°0, + Qa(x, y, 2)0,.

By the same method as in the previous case, we obtain kx = A and that we can
put o; =0 and B; = 0 in all cases. Now £ has order v = k and a basis for £ is

{zFy%0, (k+ ¢ < k), 20,, 220, + Y0y + Kx20,,
20y, YOy, O, vY0y + y°0y + kY20, ©0,, Y0y, Oy}

Finally we arrive in the case that dimW =1 and dim V' > 2. By choosing good
coordinates in U_; we can assume that 91 contains elements of the form

X = P(2,)0, and Y = 10, + Q(z,y)0,

Let A be the maximal ¢ such that 9 contains an element Y = z°0, + Q(z, )0,
for some polynomial . For A = 0 or for A = 1 and « # 0, there is no transitively
differential algebra; one always can add terms such that we end up in the case
with dimV = 1 and the semi-simple part £ being sl, @ sl, or sl3, respectively
(this again needs calculations that are omitted here). The case A =1 and kK =0
is a special case in the series below. So from now on we assume A > 2 and try
to construct an £ that is not (essentially) multigraded. Let x be the maximal
k such that %9, € £. Now consider all terms that z%y%d, occurring in some
P(z,y)0, € £, and take the P for which a+ Ab is maximal for some a,b. As P is
homogeneous, b is maximal among the terms z%y® occurring in P. By applying
ad Y exactly b times see that 2729, € £. By definition of x, we have:

a0

Now we can give the variable x,y, z degrees, according the scheme in the proof of
proposition 4.7. We put

deg(z) =1, deg(y) = A and deg(z) = &.

Thanks to (10) all terms in 9t have degree 0 or less except, possibly, terms
occurring in ). We can assume that this happens in case that ¢ = A. If all
terms in () have degree 0 or less, one can prove to end up with £ being

(x°y°0, (a+ b < K),2°0, (£ < N), 220, + Azyd, + k120, 05, 05, y0,, 20,)

So assume Y = 29,4+ Q(z,y)0, and assume that z°y? occurs in @ with c+d\ > k.
We take d maximal. If d = 0 then @) does not depend on y, and we can eliminate
Q(x) = Bz* by the change of variables 4’ = y — 8z; so the case d = 0 belongs to
the multigraded case above. When () depends on ¥, we consider

Y. (05, Y] = 2 (dog, Q - AQ) G20,
Hence [Y,[0;,Y]] contains the term z*~'T¢y4~19,. Using (10) for a =X —1+¢

and b=d—1 gives that A\—1+c+ Ad—1) <k, or ¢+ Ab < K+ 1. Together
with ¢+ Ad > £ and ¢+ d = X we obtain that d = y*;7 — 1. Hence necessarily
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k = a(A—1) for an integer a. Consequently d = a—1 (so @ > 2) and ¢ = \+1—a.
Hence also o < A\ + 1. By rescaling z we can assume that the coefficient of x¢y?
in @ is 1.

We now derived more or less the structure of Ot. However, it could be that
dimV = 2, so that £ = £/Iy = sly. Direct calculations show that this is only
possible if @ = 2. Hence for o > 3 we have

£ = (x“ybﬁz (a+ Mb < k), (ad aw)’“ (x)‘ﬁy + xk—a“ya—laz) (k <)),
20y + YOy + 20,, Oy, YOy + 20,), (11)

In the case a@ > 3 we see that £ is a subalgebra of
(2°Y"0, (a + Ab < Kk +1),2°9, (£ < N), 20y, Y0y, 20,, Ox),

which is multigraded, but of order x + 1.
For o =2 we can add to £ in (11)

1
7 = 2°0, + Mzydy, + (kzz + 5:1/2)82. (12)

In this case £ is maximal in the sense that adding any vector field will generate
an infinite-dimensional Lie algebra.

To summarize this section we formulate the following proposition.

Proposition 5.1.  Let £ be a transitively differential algebra in & dimensions
that is not semi-simple. Then either £ is (essentially) multigraded or £ belongs to
the series of transitively differential algebras given in (11) and (12) with integers
A>1,2<a<)A+1 and k = a(X—1). Moreover ord £ = k for A > 2 and
ord=2if A=1.

6. A construction in high dimensions

We describe a construction for transitively differential algebras £ of order 3, which
generalizes the construction in [7]. Before giving the detailed construction, let us
the global structure of £. As v = 3, the nilradical of £ is non-zero; hence
we have an invariant subspace W = (z1,29,...,2m); W = U_1 N Z(M). Next
we consider £ = £/Iy. Now £ has also order 3, and we obtain by a similar
procedure W = (y1,9s,...,%). The remaining algebra £ = £/I is the affine
algebra U ; @ Uj in the variables W = (21, Ty, ...,2;). It will turn out that £ is
related to k by £ = (k;ﬂ). So £ only depends on the two parameters k£ and m,
and n=k+ ¢+ m.

We now give the detailed construction of £, starting at order 3. First, £ will
contain the elements

TqTpT 0, (a<b<c<k; d<m). (13)

Secondly we construct the vector

2 2 2
v = (T}, T1%0y ..., L1 Tk, Toy - . -, L)
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of all quadratic monomials in zq,...,z;. Hence v is vector with ¢/ = (kgl)

components. Let 8, = (9,,...,0,,) and v -8, = z30,, + -+ + 229,,. Then
£ will contain

zq(v - Oy) (a < k). (14)
Now we fixed v, we look for all vector w, quadratic in x4, ...,z satisfying
g;a cw =0 (for all a < k)

Note that this automatically implies that also v - w = 0, by using

ov
0z,

0
-w:O:Zxaa—::a-w:O:>2v-w:0. (15)

The space of quadratic vectors has dimension (*}') - (*'). The linear constraints

2 2
597‘; -w = 0 are independent and yield each (k;’Z) equations on the coefficients. So

the space of solutions w has dimension

1, o o (k+2) 1 (k+1
=Yt o(V10) = ()

Below we will describe a construction for the space of solutions. For now let
wi, ..., w, be a basis for this space and y = (y1,...,¥¢). Then £ contains the
elements

(Wa + Y) 0y, (a<r; b<m). (16)

Next we consider the quadratic elements. These are simply the derivatives of the
cubic ones. So the elements in (13) give

(a<b<k; c<m). (17)

The elements in (14) yield

xa% - Oy (a,b < k) (18)

By (15) this is exactly the linear span of the elements [0y,, v - 0y].
Next we have the elements

(2w . 40, (a,b < k;c<m). (19)

oxy

These elements are not linearly independent; this will be discussed at the end of
the section.

Finally we arrive at the elements of order 1. First we have

(a<k; b<{t c,d<m). (20)

Zq0y,

Zq 0y, ‘ybazc and‘zdﬁzc
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Secondly we have the element

Y10y, + Y20y, + - -+ + Ye0y, (21)

Finally we have elements of the form z,0;, +.... The vector fields z,0;, act on
v - §,. This action can be view as a linear action on the space W = (9,,,...0,,).
As such, modulo the vector field (21), it can be uniquely represented by a vector
field of the form

Za d yc Yd-

If we write v = (vy,...,v,) we have explicitly

Jfaaxb (vlﬁyl + U26y2 + -+ ’Ueay[) =

Q0] — a0 o w00

d
By this construction we automatically have that
(240, Zacd Yeyar v+ 0y = 0
To £ we add the vector fields
240g, — Zc,d agjﬁ;”)ycayd (a,b < k). (22)

This completes the description of £.

A direct calculation shows that £ is indeed a Lie algebra. We will discuss some of
the most difficult commutators. Let X be of type (14) and Y of type (16). They
commute by

(X, Y] = [2a(v - 0y), (we - y)0z] = @a(v - w)8y, = 0

Another commutator to check is type (16) and type (22). For this we consider

fEa T Z a((:adb yc yd’ : y)azbu v - ay]]

By the Jacobi identity we find that

([£a0%, Zacd Yoy, (We - ¥)0y,],v - Oy = 0

Now the inner commutator is of the form (f -y)0d,, with f quadratic in z, and
moreover f-v = 0. Similarly we find f - % = 0 for all 2. Hence we conclude that
f is a linear combination of w,...,w,.

Finally, we want to prove that £ is maximal. Therefore suppose that £’ is in D3
and contains £. Then £' has a reducing subspace W', which must be a subspace
of (z1,...,2m). As £ acts irreducibly on (z1,...,2n,), we see that this space
coincides with W. So no elements of £ contain terms of the form z,0,, or z,0,, .
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Next we see that y does not appear quadratically by commuting such elements
with type (14). After this it is not difficult to check maximality.

That £ is not essentially multigraded can be seen from the fact that the Jacobian
of z1(v - 0,) has rank greater than 1 (see lemma 2.3). Moreover by giving the
variables degrees according to

degz; = 1; degy; = 2; degz; =4
we see that £ is contained in a multigraded Lie algebra of order 4.

Let us now describe the space of w-functions. For this we consider the condition
v-w = 0. This condition splits in (kf’) constraints on the coefficient of monomials
of the form

3

4, . 2,2, 2 .
Ty, ToTh; ToTp; ToTple;  TaTpTeXd-

Correspondingly, the solutions w naturally split up. We describe the 5 cases.
Without loss of generality, we assume (a, b, c,d) = (1,2,3,4).

e (z1). Then w = (y2%,0,...,0), and v-w =0 yields a; = 0.

(z3z5). Having v = (2}, 71%9,...) we get w = (017172, 72, 0,...,0).
Again v-w =0 and ;—;’l-wzo yield w = 0.

e (z?z2). Permute the components of v, so that v = (2%, x122,73,...). Then
w = (172, aeT1To, 0322, 0, ...,0). Tt gives one solution
w = (22, —2x129,22,0,...,0). (23)

(22z9x3). If v = (22, 2122, 7123, T2T3, - - - ) then

w = (T3, —T173, — 2122, 77,0, ..., 0). (24)

e (z1122374). Finally the most involved case. If
v = (2129, T1L3, X124, ToX3, LTy, T3Ts, - - . )

then we find two linearly independent solutions:

w; = (.’133.’174, 07 —ToT3, —T1T4, 07 T1T2, 07 R 0)
and wy = (0, zoz4, —Tox3, —T1T4, £123,0,0,...,0) (25)

Now we can count the dimension of the w-space. For type (23) we have ('2“), for

type (24) we have k(kgl) and for type (25) we have ('Z) combinations, and the

last one doubled. Hence we have totally

(7)) 35

independent w-functions.
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Our w-space coincides with the space T,, in the paper [7]. However the
dimensions do not agree. This is due to the fact that, starting from n = 4, the
space T, does not agree with the space of all symmetric operators on the set of
skew-symmetric matrices.

From the explicit form of the w-functions, it is clear that the derivatives
‘Z%Z appearing in (19) are not linearly independent. These derivatives span exactly
the space of all vectors f = (fi,..., fo), with f; linear in z, such that f-v = 0.
Counting the dimension s of this space in the same way as we determined the

w-space itself, we obtain?
5 k+1
5= .
3

Now we can compute the dimension of £ depending on £ and m. We
present this in the following table. We divide the elements in certain classes,
namely vertically by order and horizontally by appearing variables.

z0, z0y | 0y | (2)y0, | yO, | 20,
(k;’LZ)m k - rm - -

order 2 (k’gl)m K2 | — sm — -

order 1 km kl | k? /m 1 | m?
order 0 m /¢ k - - -

order 3

Hence for the dimension of £ we obtain
1 1
dim £ = — (k* + 6k° + 17k” + 24k + 12m + 12) m + o (k* + 6k” + 5k + 2)

In particular we have for £k =2 and m = 1, that dim £ = 39, while for £ = 3 and
m = 6 (this is the case n = 3 in [7]), we have dim £ = 325.

7. Conclusion

We discussed Lie algebras £ in the class D¥ in Lie-theoretic sense (section
4.) and more concretely for some specific situations in the section 5. and 6.. Our
point of view is to be complementary to the cases that £ is semi-simple or £
is multigraded. Such algebras are easy to construct, but when restricting to
transitively differential algebras it is harder; for n = 3 we find only one series
of transitively differential algebras that are not multigraded.

In view of the discussions of sections 2., 4., 5. and 6. one can wonder
how useful the common definition of transitively differential algebra of order v
is. For our classification problem it seems better to consider only those algebras
that are maximal in the class of all finite-dimensional algebras. Let call such £
a “transitively differential algebra of order co”. In 2. it becomes clear that a
multigraded transitively differential algebra of order oo is of the form £(A4,S). In
section 4. we saw that the radical of any £ is contained in a multigraded transitively
differential algebra of order co. Exactly the same holds for the examples of section
5. given in (11) and also for the transitively differential algebras constructed in
section 6.: if considered in the class D! instead of D” all these examples are
contained in a multigraded transitively differential algebra £(A,S) of order oco.

2This is different in [7] as well.
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For future research it would be interesting to concentrate on transitively
differential algebras of order co: from the results of this paper it becomes clear
that we should study a semi-direct product of a (semi-)simple algebra in class D?
and the radical. The representation of the first on the second should be analyzed
in detail; the abstract representation theory should be connected to the concrete
situation of polynomial vector fields.
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