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Abstract. In this paper we apply star products to the invariant theory for
multiplicity free actions. The space of invariants for a compact linear multiplic-
ity free action has two canonical bases which are orthogonal with respect to two
different inner products. One of these arises in connection with the star product.
We use this fact to determine the elements in the canonical bases for the invari-
ants under the action of SO(n,R) x T on C*. The formulae obtained improve
prior results due to the last two authors and Jenkins.

1. Introduction

Let K be a compact Lie group acting unitarily on a finite dimensional
Hermitian vector space V. One says that the action of K on V is multiplicity
free when the space of polynomials C[V'] decomposes into pair-wise inequivalent
irreducible K -modules. Although this condition is a very restrictive, there is a rich
family of examples which have, moreover, been completely classified [13, 5, 14].
The concept of multiplicity free action plays an organizational role in Classical
Invariant Theory. We refer the reader to [11] for motivation and further references.

Suppose now that the action of K on V is multiplicity free and let

avl=>_h

AEA

denote the decomposition of C[V] into K-irreducible subspaces. Here A is a
countably infinite set of indices. Since the trivial representation can occur only
once in C[V], there are no non-constant K -invariant polynomials in C[V]. It
is, however, of interest to consider K -invariants in C[Vk]|, the ring of polynomial
functions on the underlying real space. In this context, there are two canonical
vector space bases for the algebra C[Vg]¥X of K-invariants, each indexed by A:

e a basis {p) : X € A} consisting of homogeneous polynomials p,, and
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e a basis {g\» : A € A} consisting of polynomials orthogonal with respect to
the Fock inner product (-,-)r on C[Vg].

The polynomials {g,} are obtained from the p,’s via Gram-Schmidt orthogonal-
ization using the Fock inner product. Precise definitions will be given below in
Section 3.

We will show that the p,’s are themselves orthogonal with respect to the
“star” inner product on C[Vg], denoted (-,-),, which is obtained from the Fock
inner product on C[V] using C[Vg] =~ C[V] ® C[V]. This is a classical process
which “doubles the variables”. On the other hand, there is a more abstract point
of view on the star inner product, which we adopt in Section 2 as the definition. In
fact, (f,g). = tr(AB*) where A, B are the operators on Fock space with Berezin
(or Wick) symbols A(z) = f(2)e *°/2 and B(z) = g(z)e #*/2. This shows that
the star inner product arises naturally in the context of the (Berezin) star product.

The current work extends results that are contained in the second author’s
Ph.D. dissertation [2]. Our goal is to show how the theory of star products can
be used as a tool to study invariant theory for multiplicity free actions. The
orthogonality of the polynomials {p,} with respect to the star inner product
follows from the observation that the projection operator onto P, has symbol
dim(Py)pa(z)e #"/2. As a consequence, we obtain an orthogonalization procedure,
Proposition 3.5, that determines the py’s from the fundamental invariants, a finite
subset of {py : A € A} which generates C[V]¥X as an algebra.

The explicit determination of the p,’s and ¢,’s presents significant com-
binatorial difficulties. In Section 4 we consider a specific multiplicity free action,
that of K = SO(n,R) x T on V = C" (n > 3). This example is the subject of
[4], which contains recurrence relations for the p,’s. In Proposition 4.1, we derive
these relations using star product techniques. Using this result and orthogonality
of the p,’s with respect to the star inner product, we are able to obtain explicit
formulae for the p,’s in this example. (See Theorem 4.5.) The generalized binomial
coefficients, which express the polynomials {¢,} in term of the p,’s, are also given
in [6] via recurrence relations. Here, in Theorem 4.8, we give an ezplicit formula
for these numbers. Our proof again uses properties of the star inner product. The
same techniques are used to prove Proposition 4.9, which gives product formulas
for the py’s.

We see that the use of star products leads to new and more explicit formulae
for the canonical invariants for the action of SO(n,R) x T. We are optimistic that
these methods can be put to good use in connection with further examples of
multiplicity free actions.

We conclude this section by outlining a connection between the problems
addressed here and analysis on the Heisenberg group. This provides motivation
for the current work and was our original source of interest. If one extends V' to
form the Heisenberg group Hy = V X R with suitable product, then K acts via
automorphisms on Hy which fix the center R. One says that the action of K
on Hy yields a Gelfand pair when the K -invariant integrable functions L} (Hy)
form a commutative algebra under convolution. This is the case if and only if
the action of K on V is multiplicity free. There is, moreover, a well developed
theory of spherical functions associated to such Gelfand pairs. The polynomials
{¢x : A € A} determine a dense set of full measure in the space of bounded
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spherical functions. We refer the reader to [3] for details on this connection.

2. Preliminaries on the star product

This section contains background material concerning Berezin symbols and
star products. Our viewpoint here is concrete and combinatorial. We will dis-
cuss only the most classical version of these ideas, involving Fock space and its
reproducing kernel. (See Section 2.7 in [10] and the original source [8] for further
details). For generalizations to the setting of a Hilbert space with reproducing
kernel, we refer the reader to [9] and [15]. For connections to the orbit method in
representation theory, see [1], [2] and [17].

Throughout this paper, V' denotes a complex vector space with finite di-
mension n, (positive definite) Hermitian inner product (-,-), and norm |-|. Often
it will be convenient to identify (V,(:,-)) with C" equipped with the standard
Hermitian structure (z,w) = z-w. This can always be done by choosing any
orthonormal basis for V.

Fock space: The space C[V| of holomorphic polynomials on V' can be equipped
with the Fock (or Fischer) inner product

(f.9) <2W> / F(2)g(2)e” 124z (2.1)

Here “dz” denotes Lebesgue measure on the underlying real vector space Vg ~
R?" | normalized by the inner product on V. Fock space F = F, is the Hilbert
space completion of C[V'] with respect to (-,-)-. This is the set of holomorphic
functions on V' which are square integrable with respect to the Gaussian measure
e~ 1?24z . Equation (2.1) extends from C[V] to F. See [10] for the completeness
property of this space. We remark that the Bargmann transform yields an isometry
from L?(R") to F. This fact, however, will play no role in the current work.

Identifying V' with C" yields an isomorphism C[V] ~ C[z,...,2,|. The
monomials z% = z{* -+ - 22 form a complete system in F with

2lelg! for B =«
a By _
<Z’Z>f_{0 for B4 (2.2)
Here we have used the standard multi-index notation: |o| = a; + -+ o, =
deg(z?), al = aq!---a,!l.
The function

E,(u) = ez(®? (2.3)
is the reproducing kernel for Fock space. That is,

(f, Ex)r = f(2) (2.4)

for all f € F. To establish this, one can identify V' with C* and form the Taylor
series
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Using Equation (2.2) we now see that (2%, E,), = 2*. This proves (2.4), as the
monomials form a complete orthogonal system in F.

Formula (2.1) also yields a Hermitian inner product on C[Vx], the complex
valued polynomial functions on Vk. To avoid confusion between the spaces F and
C[Vr], we will refer to this as the Fock inner product on C[Vk]. For f,g € C[V&],
observe that (2m)"(f, g)s coincides with the L?-inner product of f(z)e1**/* with
g(z)e #’/4 Such functions arise naturally as spherical functions on the Heisenberg
group modulo its center. This fact motivates our interest in the Fock inner product

on C[Vg].

Berezin symbols and the star product: The Berezin symbol for an operator
A on F is the real analytic function A on Vi defined by

~ . (AE, E,); (AE.)(2)

z) = = = 2)e 2%,
Ae) = g = ) = (am))

Here A may be unbounded on F but we require that the “coherent states”
{E, : z € V} belong to the domains of both A and A*. When each of the
operators A, B and AB satisfy these conditions we define the star product AxB
of the two symbols A and B via

AxB = (AB)".

The operators that play a role in this paper are polynomial coefficient differential
operators and finite rank projections. We will need to use the following facts
concerning Berezin symbols and star products:

(2.6) For f € C[V], define the multiplication operator my on F by my(g) = fyg.
This operator has symbol m; = f.

(2.7) Given f € C[V| ~ Clz1,...,2,], we let f(0,) be the operator obtained by
replacing each variable z; with 0/0z;. This is an unbounded operator on F
with

f(0.)" = MF(2/2) my = f(20,).

Here f € C[V] is the holomorphic polynomial obtained by conjugating the
coefficients of f. We have (f(0,)) = f(Z/2).

(2.8) Combining (2.6) and (2.7) we see that f € C[Vg| ~ Clz1,..., 2,21, ., 2n]
is the symbol of the Wick ordered operator f(z,20,).

(2.9) The symbol 7 for the orthogonal projection operator 7 onto a finite dimen-
sional subspace of C[V'] with orthonormal basis {v;}7, is

7(2) = (Z vj<z>m> e VPP

(2.10) If A is a trace class operator, then [, A(2)dz = (2m)"tr(A).

(2.11) If A is holomorphic or B is antiholomorphic, then (AB)"= A B = AB



ARNAL, BOUKARY BAOUA, BENSON, RATCLIFF 445

Note that, if we extend {v;}72; in (2.9) to an orthonormal basis {v;}32,
in C[V'], then we can write the decomposition (2.5) of E, in the basis {v;} as
E,(u) =372, v;(2)v;(u). Following [10], this series converges uniformly on any
compact subset of V. Thus we obtain 7(E,) = "
yields (2.9).

For completeness, we recall one further result which will not be used in the
sequel. One has

i1 vj(2)vj, which immediately

(Af)(z ( ) /f A(w, 2)els 0w 2y (2.12)

where A(w,z) = (AE,, E, )7/ (Ew, E;)r. The multiplier A(w, z) is the unique
function on V' x V' which is holomorphic in w and anti-holomorphic in z, with
A(z,2) = A(z). Thus (2.12) shows that an operator A is completely determlned
by its symbol A,

The integral formula for the star product is then given by

(A% B)(2) = (i> /V A(w, 2)Blz, w)e "2y,

27
The star inner product: For f,g € C[Vx| we define

(f,9)« = (217r>n/v (f(z)e_lz‘Q/Q) * (ﬁe"sz) dz. (2.13)

This gives another Hermitian inner product on C[Vg], although it is not a priori
clear that it is positive definite or even well-defined. To show this, we first make
the identifications V ~ C*, C[Vg| ~ C|z1,...,2n,%1,.-.,2,] and apply formula
(2.13) to a pair of monomials 2277, 2¢7F . We will write m; for the operator m,,
and m, for m,..

The projection operator 7r0( H=f (0) from F onto the constant polyno-
mials in C[V] has symbol 7y = E,(0)e 1?’/2 = ¢~ 12°/2. Hence also (mqm) ™=
22 *"/2 by (2.6) and (2.11). Now (2.7) gives (2‘5|825) = 7z#, and by (2.11) we
obtain

2270 1P = 2Bl (m o)~ (85) "= 2P (mamd?) 7

Thus we can write

! J 1 " ! ’ .
<Zazﬁ’ ZOf Eﬂ )* = <—) / 2|ﬂ‘2‘a | (maﬂ-oazﬂmﬁ’ﬂoag ) dz
\4

2T
= 9lBlgle’lyy (mawoafmmoag’)

using (2.10). The operator mawoafmﬂzwoag' is zero unless 8 = ', in which case it
sends 2% to f(la/!12® and annihilates all other monomials in z. This gives, finally,

(2977, 24 %), = Sawdsp (2%al) (21P8Y). (2.14)

One can use (2.14) to compute the star inner product (f, g), for any pair
of polynomials f,g € C[Vg]. It is now clear that the star inner product is a well
defined Hermitian inner product on C[Vk]. Moreover, (2.14) provides a concrete
combinatorial viewpoint on the star inner product. In view of Equation (2.2), we
can recast this as follows. The star inner product on C[Vz] arises from (-,-)- on
C[V] by doubling the variables. More precisely, we have:
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Lemma 2.1.  The star inner product (-,-), on C[Vg] coincides with (-,-)r ®
(-, ")« under the identification C[Vg] = C[V @ V]~ C[V]® C[V] C F® F*.

One may choose to regard FQF™* as the space of Hilbert-Schmidt operators
on F. The subspace C[Vg] consists of finite rank operators with image contained
in C[V]. Lemma 2.1 shows that the star norm on C[Vk| agrees with the restriction
of the Hilbert-Schmidt norm |||T'|||* = tr(T*T) on F®F*. The star inner product
on C[Vg] is thus a classical object of study.

3. Polynomial invariants of a multiplicity free action

Now let K be a closed Lie subgroup of the unitary group U(V') and consider
the natural representations of K on C[V'] and C[Vk] defined by the rule

(k- £)(z) = f(k"2).

We remark that the Bargmann transform L?(R") — F intertwines the repre-
sentation of K on C[V] with the restriction of the metaplectic representation to
K Cc U(n) C Sp(2n,R). The space C[V] decomposes as a countably infinite direct
sum of finite dimensional K -irreducible subspaces:

=> P (3.1)

AEA

One says that the action of K on V' is multiplicity free when the irreducible K-
modules {Py : A € A} are pair-wise inequivalent. In this case the decomposition
given in (3.1) is canonical.

Proposition 3.1 below relates multiplicity free actions to the star product.
First note that for k& € U(V) one has Ej-1,(u) = ek '2/2 = ebw2)/2 = F (ku).
So for operators A on F we have

(k- A)(2) = A(k™'2) = (ABg-,) (k7 2)e” 2772
= (AUk_lEz) (k—lz)e—\z|2/2 _ (UkAUk_lEz) ( ) —|z]2/2 _ (UkAUk )A(Z),

where U}, denotes the unitary operator on F given by (Uf)(z) = f(k'12).

An operator A on F is said to be K -invariant when U,A = AU, for
all £ € K. The above calculation shows that A is K-invariant if and only if
k-A=Aforall k € K. Since composites of K-invariant operators are K-
invariant, it follows that the star product A% B of two K-invariant symbols is
K-invariant. As noted in (2.8), f € C[V&] is the symbol for the Wick ordered
operator f(z,20,). So the symbol map gives an isomorphism between the vector
space PD(V)E of K-invariant polynomial coefficient differential operators on V'
and the the space C[Vg]¥ of K-invariant polynomials on Vk. Moreover, this
correspondence becomes an algebra isomorphism if we equip C[Vg]| with the star
product. It is shown in [12] that the algebra PD(V)¥ is commutative if and only
if the action of K on V' is multiplicity free. These remarks prove the following:

Proposition 3.1. The space C[Vk]X of K -invariant polynomials on Vg forms
an algebra under the star product. This algebra is abelian if and only if the action
of K on V 1is multiplicity free.
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We now suppose that the action of K on V is multiplicity free. Since the
spaces P, (V) of homogeneous polynomials of degree m are U(V)-invariant, each
P, is a subspace of some P,,,(V). We let |A| denote the degree of homogeneity of
the polynomials in Py, so that Py C Py (V), and write

d)\ = dlm(P)\)

Homogeneous invariants: For each A € A, let p) € C[Vk] be defined by

P = 3 5, (3:2)

where {v; }j.gl is any orthonormal basis for Py. In [3] it is shown that this definition
does not depend on the choice of orthonormal basis for Py and that {p) | A € A}
is a vector space basis for the space C[Vg]X. Note that p, is homogeneous of
degree 2|\|. In view of (2.9), we obtain:

Lemma 3.2. The symbol for the projection operator my onto the subspace Pj
s given by

#x(2) = dapa(2)e 772,

Lemma 3.3.  The polynomials {p), | A € A} are pair-wise orthogonal with
respect to the star inner product, and (px,pr)« = 1/d,.

Proof. Using Lemma 3.2, we compute:

1\" 1 SR 1\" 1 ~
(DA D)+ = (%) ind, /Vﬂ,\*wu(z)dz = (%) ind, /V(ﬂ')\ﬂ'u) (2)dz
= t?”(ﬂ')\ﬂ'“)/d)‘du = 5)\“ud)\/d)‘du = 5)\”u/d/\.

Here we have also used (2.10) and the fact that p,(z) = pu(2). u

Fundamental invariants: The index set A in (3.1) can be concretely realized
as follows: Choose a maximal torus in K and a system of positive roots. These
choices produce a simple ordering < on the weights of the representations of K.
We let A be the set of highest weights for the irreducible representations of K
which occur in C[V], so that the irreducible component Py, has highest weight
AeA.

Following [12] we call the primitive elements of A fundamental highest
weights. These are finite in number and freely generate A. Letting A, Ao, ..., A,
denote the fundamental highest weights listed in increasing order using <, we have

A:{CL1A1+"'+&T)\T|CL1,...,G,TEZ+},

where Z, denotes the non-negative integers. The fundamental invariants v, ..., 7,
are defined as

Yi = Py -
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One has C[Vg]* = Cly1,...,7%]. For A=a;A\; + -+ a,\, € A we define

Y=
In [7] it is shown that py = cy7* + sy where c) is a positive constant and
sy € Span{p, :p € A, |p| = |Al,p < A}. (See Equation (2.5) in [7].) Thus we
have:

Lemma 3.4. For A € A,
Span{y* :p € A [ul =[A, w2 A} = Span{p, :p € A, [p] = [Al, p 2 A}

Lemmas 3.3 and 3.4 yield an orthogonalization procedure which determines
the py’s.

Proposition 3.5.  For each m > 0 the polynomials {px : |\ = m} are
obtained from {y* : |\ = m} via Gram-Schmidt orthogonalization using the star
inner product, where

e the indices Ay, = {\ : |\ = m} are ordered using the weight ordering <,
and

e the py’s are normalized so that (px,pxr)s = 1/d,.

One can also replace the ordinary products 7* in Proposition 3.5 by star
products. Specifically, for A = a1\ + - - -+ a, A, we let

Y= A ek
where 'y;faj denotes the a;-fold star product ;- --x7;. Since C[Vg]* is commu-
tative under the star product, 3.1) the definition of v*} is independent of the
ordering used for the factors ;. By (2.8) we see that +** is the symbol of
71(2,28,)% - - v, (2,20,)% , whereas y* is the symbol of (y{*---~%)(z,20,). In
particular,
TA =+

where 7\ € {v* : |p| < |\ or (Ju| = |A] and p < A)}. The following result is now
a corollary of Proposition 3.5.

Proposition 3.6. The polynomials {px : X € A} are obtained from
{v* : X € A} via Gram-Schmidt orthogonalization using the star inner product,
where

e A is ordered according to the rule

A< XN = (A< N]) or (A = |N] and A < N).

e the py’s are normalized so that (px,pa)s = 1/d,.

Inhomogeneous invariants: The space C[Vg]¥ has a second canonical basis,
denoted {g) | A € A}. These are the polynomials obtained from {p) | A € A} via
Gram-Schmidt orthogonalization using the Fock inner product on C[Vg], where
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e the index set A is ordered so that A precedes X' whenever |A\| < |\|, and
e the ¢)’s are normalized so that ¢,(0) = 1.

It is shown in [3] that the polynomials g, are well defined, and independent of the
ordering used within each A, = {A € A : |A\| = m}. If we give A the ordering
from Proposition 3.6 then Lemma 3.4 implies that we can use the polynomials
{+*} in place of the py’s in the orthogonalization procedure. This is the content
of Theorem 2.1 in [7].

The polynomial ¢, is inhomogeneous of total degree 2|A|. The homogeneous
component of degree 2|A| in g, is (—=1)*py. We express gy in the basis {p, | u €

A} by
w=) (-1* Hpu-

HEA K

The values m are called generalized binomial coefficients. We have R] =1, and

m =0 for |p| > |A| or |u] = || with u # A. The generalized binomial coefficients
are non-negative rational numbers. (See [6, 7].)

There is a remarkable “Pieri formula,” due to Yan, which provides another
link between the bases {px : A€ A} and {g) : A € A}:

OEEE

[Al=[pl+m

We refer the reader to [16] and [6] for proofs of this result. Using Lemma 3.3, we
can rephrase this Pieri formula as

m - % < (%Q)mpwpkk (3.4)

4. The action of K = SO(n,R) x T

The rest of this paper concerns the standard action of K = SO(n,R) x T
on V =C" for n > 3, namely

where m = || — |pl.

(A,c) -z =cAz

for Ae SO(n,R), ceT, z€V.
The decomposition of C[V] under the action of K is determined by the
classical theory of spherical harmonics. The polynomial

e(z)=z2i+--+ 22

is invariant under the action of SO(n,R) on C[V]. We let
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and define the space of harmonic polynomials ‘H = ker(A). Thus
Hm =Pm(V)NH
is the space of harmonic polynomial which are homogeneous of degree m. For
non-negative integers k, ¢,
Py = miHy = "y,

is an irreducible K -invariant subspace of Pj2¢(V'). The space Py, has dimension
di ¢ = hi = dim(Hy), independent of ¢. Explicitly, hy = 1, h; =n and

o - - (1) (177

for k> 2.

The action of K is multiplicity free because the Pj,’s are pair-wise in-
equivalent K -modules. Indeed, P, and Py, have the same dimension only
when k = k', and the circle T acts in these spaces by the characters ¢ — ¢ (2619
and ¢ — ¢ ¥ +E) respectively. We write the decomposition (3.1) for this example

CV]= Y P

(k,0)eA
where A denotes the set of all pairs of non-negative integers.

Homogeneous invariants: Here we will derive formulae for the polynomials
{pke : (k,¢) € A}. Recall that these form a canonical homogeneous basis for
C[Vr]¥. Let 71,72 € C[Vk]¥ be the polynomials defined as

1(2) = npro(2) = [217/2,  72(2) = npoa(z) = le(2) /4.

These are (up to multiples) the fundamental invariants in this example. We will
express each py, as a polynomial in 71, 72. In fact, Theorem 5.12 in [4] solves
this problem by providing recurrence relations for the py,’s. We repeat this result
below.

Proposition 4.1. Writing py for pro one has

(a) pre= prYs/ cke where

14
cre = 4D [(k+n/2+ 0~ j) = 44(0))? ("7 +n/2+ L 1)_
j=1 14

(b) px is determined by the recurrence relation

k Lk/2] ko Lk/2] j
M P—25Pk—2;72
=3 2 = - 32 s
kU= oreajy

with initial conditions po =1, p1 =y /n.

We remark that the polynomials “pg,” in [4] are not normalized by dividing by
hy = dim(Py). This accounts for the dimension factors in Proposition 4.1 that
are absent in [4]. Here we will show how Proposition 4.1 can be derived using the
machinery of star products. First we establish the following lemma.
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Lemma 4.2. The orthogonal projection operator my, of F onto Py, satisfies
Lo, ¢
Tk = m Ty o A"
Ch,¢

Proof. Let T}, be the operator defined on F by

1
Tkg —m ﬂ'k ()Ae
Ck,e

First note that an easy calculation yields
Age®) = 4l(k +n/24+ £ —1)get?

for g € Hy. By induction we obtain Af(ge®) = ¢y 4g. (This is Equation (5.14) in
[4].) Thus we have T} ¢(ge’) = ge* for g € Hy,, and hence Im(Ty,) = Pry- In
addition, Aszwk,o = ¢y Tk,0 shows us that T,?yz = Ty e. Next we note that Ty, is
formally self-adjoint, since (2.7) shows A* =m./4 and m} = 4A. m

Proof. @ We turn now to the Proof of Proposition 4.1. Lemma 4.2 shows that

7Tkg— —me*ﬂ'ko*Az
Cr,e

where ¢ and A* denote ¢-fold star products. From (2.6) and (2.7) we see that

Me(2) = e(2), A() =2(8,)"(2) = e(2/2) = @

As 7, is holomorphic and A is antiholomorphic, (2.11) shows that the star product
above is an ordinary product:

Tho = — Mo A" = —Tpoe" | = | = —Tk07s- (4.1)
4
Ck’[ Ck,Z ckﬂe

From Lemma 3.2 we have 7 = hypyee~*"/2, and hence py, = ppr/crye.
To establish the second assertion in Proposition 4.1 we use the fact that

ghi
Z hepe,; = R (4.2)
e+2j=k '
This follows from the decomposition m, = 2,5, , 7, of the projection op-

erator 7, onto Pi(V) by passing to symbols. We use the orthonormal basis
{z*/(2ka)Y/? : |a| = k} for Px(V)to obtain

Fe(2)elP/2 = 1 Koo 1 (2:2\°  m(2)"
() kZa: st = ulm) =

la|=k la|=k
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Corollary 4.3.  For all (k,¢) we have:
Y1 7V2€ z = k!(27) ' _ -
/V o %;2 Ch—2j,j k—2j k—2j—2

Proof. By (4.1), (4.2), we see that

\Z| /2 k/k' Z Tg—2j,j = Z 7Tk—2j,07§7

c _ . .
i<k/2 i<k/2 KT

and thus

1 "), Ck—2j

— ~ j 4 ~

e 1HP 2y kol = k) E: - _.7Tk—2j,07%+ = k! § %m@ 9jjae-
]Sk/2 k—2j,j jSk/Z k—2j,5

Integrating over V', we then obtain
2|2 Ck—2j,0+j
[t = e Y Sy,
v j<kjz TETE
and the result follows. ]

We remark that, in [4], this formula is given by

2 -1 2—-1
/ V1 fyee"Z' 1?2 = = k!(2m)"4%(01)? (k + ll;l—n ) (€+ né )

We can find no independent proof of the combinatorial identity given by the right
hand sides of these equations.
Lemma 3.4 shows that for fixed £, £ one has

Span{y¥ 255t j=0,...,|k/2]} = Span{pk 2jerj : 5=0,..., [k/QJ](» |
4.3

This can also be derived using Proposition 4.1 and induction on m = k+2/¢. (See
Lemma 5.17 in [4]].) Propositions 3.5 and 3.6 specialize to the current example as:

Proposition 4.4.  For each m > 0 the polynomials {pxe : k+ 20 = m} are
obtained from {vfv5 : k+2¢ = m} via Gram-Schmidt orthogonalization using
the star inner product, where

o the indices Ay, = {(k,€) : k+ 20 =m} are ordered so that (k,{) precedes
(K", 0') when k < k', and

o the pi’s are normalized so that (pre, Pre)« = 1/hk.

Alternatively, one can obtain the polynomials {px, : (k,£) € A} from
{v* x5t o (k,£) € A} via Gram-Schmidt orthogonalization using the star inner
product, where
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e A is given the ordering
(k,0) < (K", 0) <= (k+20 <Kk +20) or (k+20=Fk"+2¢ and k < k'),
and
o the pre’s are normalized so that (py.e, Pre)x = 1/hy.

The polynomials y** x 73 in Proposition 4.4 can be computed by repeated
application of the following identities:

nx (We) = 1 + (B + 2071, (4.4)
Yox (Vi72) = WY+ Ay + 2k +
k(k — 1)y 2™ + 46(k + £+ n/2 — 1)7}7;.
To establish these formulae, first note that by (2.8)

Thus we have:

k!
Tk () = | D mOmimads AL
dlal=k
Since the commutator of 9; and m’m,, is multiplication by
0;(%2%) = 20265 12* + etz Y,

we obtain

k!
(i) = | D0 @emimE mad? A + ajimfmadf A + mlmo.e, 07 A”)
ol

Jlal=k
= 209F~S + kybys + Z Z e mmﬁ@ﬂA’Z
|B|=k+1 j: ﬁ]>1 9

= (k+207+ | Y @ (Z 5;) mimgd] A

 8/=k+1
k+1)!

= (k4 20)vk~E + Z %mﬁmgafAé

[ 18/=k+1 '

= (k + 26)')’1 ’Yz + ’YHI’YS
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This proves (4.4). The argument for (4.5) is more complicated but uses the same
techniques.

Next we will show that the orthogonalization procedure in Proposition 4.4
can be carried out to obtain ezplicit formulae for the py,’s in terms of v, and 7.
We will prove:

Theorem 4.5.

Lk/2] k=2 0+]
G e

hpre = — — .
KPRt Ch,t cr—j-1,j (kK —27)!

Jj=0

The values ¢ are defined for £,/ > 0 as in Proposition 4.1. In particular,
we have ¢ = 1 for all £ > 0. In addition, we define c_;o = 1, so that the
formula reduces to po, = 75 /cos when k = 0. This is consistent with Proposition
4.1(a). Our proof of Theorem 4.5 uses two further lemmas.

Lemma 4.6.  For non-negative integers k, £, k', ¢' one has
(a) (Vs pre)e =0 if K +20 £k +2¢,
(b) (Vivh,pwe)e =0 if k' +20' =k +2¢ and £ > ¢

() (Vs pwe)e =Klewe/cwe—e i fE +20=k+20 and £ < ('

Proof.  Since 774 € Prior(V)@Pryoe(V) and ppr o € Prrior (V) @Prrsoe (V) C
C[Vkr], (a) follows immediately from Equation (2.14).

Equation (4.3) shows that ¥+ can be written as a linear combination of
{Pk—2je+j  5=0,...,|k/2|}. When £ > ¢ we have (py_2je+j, Pre')« = 0 for all
j=0,...,|k/2] by Lemma 3.3. This proves (b).

To show (c), we first use Proposition 4.1 to write

k¢ Lk/2] j+e [k/2]
Y2 hi—2ipr—2i7a' b Gk
H = k=2 Pk—2j,j+L-
° j:O Ck:—?j,j jZO Ck'—Zj,j

By Lemma 33, <pk_2j7j+g,pk/’£/>* = 6k—2j,k’(sj+£,f’/hk—2ja and thus

) [k/2] -

Y172 _ 3 .Ck—2j,j+£< N ), = C' 0

X yPrr e ) — k—2j Prk—2j,j+0: Pk 01 )x = — -
* *

=0 Ck—2j,j Cr' o' —2

Lemma 4.7.  The polynomial Q.,(x) defined for m > 2 as

Qne) =3 ()@= 2w m)

Jj=0

18 tdentically zero.
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Proof. Write (t —j —2)---(z —j —m) = Y1y Ap(x)j* where Ag(z) is a
polynomial in = independent of j. We then have

Qn(z) = mz (_Zz(—nj <7>]> Au(w) =

since Y 7 o(=1) (]) =0 for £k =0,. — 1. The latter fact is a standard
Comblnatorlal identity which can be proved by noting that

_Zn;(—l)" (?)j’“x" - (:c%)k (1 — )™

vanishes at x =1 for £k =0,...,m — 1. [ |

Proof (of Theorem 4.5).
The discussion following the statement of Theorem 4.5 shows that we can assume

k—2j5 L+j
k> 0. Let pye = c;l > i km Ck( 1)11 71(19 ]272),J In view of Lemma 3.3, it suffices to
J »J

show that
(Dt P o) s = Ok Op, e

for all &', ¢'.

Parts (a) and (b) in Lemma 4.6 show that (ﬁk,g,pk:,y) =0 when k' +20' #
k +2¢ and when k' +2¢' = k4 2¢ but £ > ¢'. Indeed, (v/ %75 pp p). = 0 in
all such cases for j =0,...,|k/2].

Now suppose that &' +2¢' =k + 2¢ and £ < /'. Let m = ¢ — / so that
k' =k —2m and ¢ = ¢+ m. Parts (b) and (c) in Lemma 4.6 yield

| 2 (—1)

Dty D ot )y = — k=205 Dy g 4.6
<pk:,€apk N >* Chot ]z:% Ck—j—l,j(k — 2]) <’Yl Yo 7, Pk e >* ( )
1 « (=1)7 (k —2j)\cp o

Ck, ¢ g Ck—j—l,j(k - 2j)! Ck! 0 —(L+5)

_ Cg—2m+m Z

Cr Cr—j— l,gck 2m,m—j

When m > 2, we substitute cy_;_1; = 4951 (k+n/2 = 2)!/(k+n/2 -2 —j)!
and cx_omm—j = 4™ I (m— NIk +n/2—m—j—1)/(k+n/2—2m—1)! in (4.6)
and simplify to obtain
Ck—2m. 0+m (k + TL/2 —2m — 1)‘

Doty Dirr)s = 20 w(k+n/2) =0
(Pr.es pee) oo Amml(k £ 02— 21 Omk+1/2)

by Lemma 4.7.
When m =1 Equation (4.6) reads
~ Ck— 1 1
<pk,é’pk’,£’)* = k 2;["‘1 — = 0‘

Ckt Cr—1,0Ck—2,1 Cr—2,1Ck—2,0
Finally, when m = 0 Equation (4.6) reduces to

Ck.0 1 -1

(Dr,os Dkt 0 )5 = Doyt Piey) s = ——————
Ck,t Ck—1,0Ck,0

as desired. n
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Inhomogeneous invariants: Recall that the space of SO(n,R) x T-invariant
polynomials on C" has a canonical basis {gx¢ : (k,¢) € A} that is orthogonal
with respect to the Fock inner product on C[Vk]. The polynomials g ¢ are obtained
via Gram-Schmidt orthogonalization from the py ,’s using a suitable ordering and
normalization.

The polynomials g, are expressed in terms of the py,’s in the form

K,L
9K, = Z (—1)k+2z[k E]pk’e'

k-+20<K+2L

Our goal here is to obtain explicit formulae for the g ,’s. Since Theorem 4.5 gives
the py,’s explicitly in terms of 7, and 2, we need only provide a formula for the
generalized binomial coefficient Hiﬂ . Recurrence relations for these coefficients
were given in [6]. These are quite complicated and will not be repeated here, as

we will prove:

Theorem 4.8.  For (k,£),(K,L) € A one has

[K, L} ek mi“‘“%’”’ (K oL —2(0+ j)) (~1)i

k¢ Ch,t k—2j Ch—j—1,jCK,L—L—j

J=0

when k+ 20 < K+ 2L and ¢ < L. Otherwise [Ilgﬂ =0.

Proof. For (k,¢),(K,L) € A with |(k,¢)] = k+2¢ < K+ 2L = |(K,L)|,

Equation (3.4) yields
K1 _ [,
ke |~ \'ml kPk,t, PK,L

*

where m = (K + 2L) — (k + 2¢). Using Theorem 4.5, this becomes

[k/2] .
KLl 1 (1) R
[k,ﬂ} kg J;o ml(k — 2)lex 14 7 Yo ' DKL)+

Parts (b) and (c) in Lemma 4.6 show that

m+k—2j ¢
(25 ) = { (mik_2ilers ifj< [ —¢

CK,L—t—j

Thus we have [I;ﬂ =0 when ¢ > L and

|:K, L:| B 1 min(L%,L—@( 1)] (m + ]f o 2])' CK’L

k, K Ck,g m'(k —_ 2])' Ckfjfl,jCK,Lfﬁfj

=0
min(|k/2],L—£)

_ CKL Z (K+2L—2(£+j)) (—1)7

Cr k—2j Ck—j—1,jCK,L—t—j

=0

when ¢ < L. ™
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Product formulae: The method used to prove Theorem 4.8 can also be applied
to products of the form py pr . We first consider a product pgpy = DroPk0-
Since pgpr is SO(n,R) x T-invariant and homogeneous of degree 2(k + k'), we
have

K,L
PiPrr = E Ak,kIpK,L
K+2L=k+k'

K,L
for some numbers A,;/. In fact
Y

ck,Lhk k—2j+EK — 24 (_1)j+j’
Ak = 2 ( k—2j SR —. (4.7)
0<j<[k/2] J Ch—j~1,jCk' ~j'~1,j' CK,L—j—j"

0<5'<|K'/2]
J+i'<L

Indeed, using Lemma 3.3, Theorem 4.5 and Lemma 4.6 we compute

A = hac (DD, Pr,L)

lk/2] |k /2] 1)]+] <’Yk 2j+k"—25" ’Y;+J pKL)*

DI

- 2] kl - 2] )'ck §—1,5Ck' 41,5’

j=0 j'=0
. hK Z (—1)]+] (k - 2_] + k' — 2jl)!cK,L
hhi e, (B = 2K = 25 ekjo k-1 Ca iy
0<j'<[K /2]
JHi'<L

The formula for py gps ¢ follows from the above by using Proposition 4.1(a). One
obtains:

Proposition 4.9.

_ 1 CK+0+L AKL
PPk o0 = Cr G 7(: k, & PKe+0+L
kR pe ok L

where AkK,;f is given by (4.7).
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