Journal of Lie Theory
Volume 11 (2001) 559-604
©2001 Heldermann Verlag

On Asymptotic Behavior and
Rectangular Band Structures in SL(2,R)

Brigitte E. Breckner* and Wolfgang A.F. Ruppert

Communicated by K. H. Hofmann

Abstract. We associate with every subsemigroup of SI(2,R), not con-
tained in a single Borel group, an ‘asymptotic object,” a rectangular band
which is defined on a closed subset of a torus surface. Using this concept
we show that the horizon set (in the sense of LAwsoN [10]) of a connected
open subsemigroup of S1(2,R) is always convex, in fact the interior of a three
dimensional Lie semialgebra. Other applications include the classification of
all exponential subsemigroups of S1(2,R) and the asymptotics of semigroups
of integer matrices in S1(2,R).
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1. Introduction

During the last two decades Lie semigroups and Lie wedges have been the central
objects of interest in the structure theory of subsemigroups of Lie groups. With
the Lie theory of groups as a model and some control theoretic ideas as additional
input, a useful technical apparatus has been developed, allowing the passage
from infinitesimal to local and global objects, and, conversely, from local or
global Lie semigroups to their infinitesimal objects, which are Lie wedges. This
machinery provided us with fairly detailed information about interesting types
of Lie semigroups and about the interplay between infinitesimal, local and global
properties of semigroups. A substantial part of the theory has been published in
books and monographs, we only mention [5], [6], [14] and [8].

For some questions, however, these well established tools have to be
complemented by definitely non-local concepts and methods. Most prominent
among such problems is the determination and structural description of maximal
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subsemigroups in a connected Lie group. Let S be a maximal subsemigroup
with nonempty interior of a connected Lie group G. It has been shown by J.D.
LAwsoN [9] that if G is solvable then S must be a half space subsemigroup
bounded by a closed subgroup of codimension one, so in this case § is a Lie
semigroup. (A similar result holds if the radical of G is cocompact, cf. [6].) But
if G is semisimple then S no longer needs to be a Lie semigroup. In fact, by
the work of L.A.B. SAN MARTIN and P.A. ToNELLI (cf., e.g., [18] and [19]),
we know how to construct, if G is noncompact semisimple and has finite center,
maximal closed subsemigroups S with nonempty interior which do not contain
the identity. These semigroups appear as compression semigroups of certain
subsets of a flag manifold G/P. In this theory an important question is whether
a subsemigroup S of G meets a certain open subset of G, the control set of
the action. This is a definitely non-local problem, which, as D. MITTENHUBER
([12],[13]) has pointed out, is closely related with the horizon concept of J.D.
LAWSON in [10].

The horizon of a subsemigroup S with nonempty interior of a Lie group G
is defined as the set of all vectors in the Lie algebra for which the corresponding
one parameter subsemigroup eventually stays in the interior of S. Obviously,
the horizon of S is closed under multiplication with positive scalars, and if two
elements in the horizon commute then their sum also lies in the horizon. So far
further information about the structure of the horizon seems to be scarce, except
in a few special cases.

If the subsemigroup S of G neither does cluster at the identity nor has
interior points (in particular, if S is discrete) then there is usually little chance
that the infinitesimal or local theory of subsemigroups of Lie groups will yield
any structural information about S. But, even for S discrete we are faced with
the natural analytic question asking for the behavior of S ‘at large.’

All these situations call for the study of asymptotic properties and asymp-
totic objects, alongside and in conjunction with infinitesimal properties and tan-
gent objects. The present paper is intended to produce evidence for the feasibility
of such a theory, offering a fairly comprehensive treatment of asymptotic prop-
erties in the special case of subsemigroups of S1(2,R). We shall show that, at
least in this special case,

e workable definitions of asymptotic objects, associated with not necessarily
connected subsemigroups, can be given,

e these asymptotic objects bear a ‘rectangular band’ multiplicative struc-
ture, which is obtained easily from the multiplication of S by a limiting
process,

e the so defined asymptotic objects can be explicitly computed from the Lie
wedge L(S) if S is a Lie semigroup (thus infinitesimal and asymptotic
structures supplement each other nicely),

e the asymptotic objects are very helpful for the determination and struc-
tural description of the horizon sets of LAWSON and similar objects (‘um-
brella sets’, defined below), they can be used also for the determination
of the conjugacy classes of exponential subsemigroups of S1(2,R).

Perhaps the most surprising among the results of this paper is the fact that for a
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connected open subsemigroup S # SI(2,R) the umbrella set (which in this case
coincides with LAWSON’s horizon set)

Umb(S) = {X €5l(2,R) | expRT X N S # B}

is an open convex cone whose closure is the Lie wedge of an exponential subsemi-
group of SI(2,R). This feature certainly does not hold in general for connected
open subsemigroups of Lie groups.

In a subsequent paper ([17]) we shall exploit the present concepts and
the ensuing theory for the explicit construction of Bohr compactifications of
subsemigroups of SI(2,R).

We temporarily postpone, however, the further extension of the theory
to higher dimensions. Many important aspects of the structure of SI(2,R) are
no longer present in a more general context, and we cannot hope to develop a
comparably satisfying theory by straightforward generalization. For instance,
as mentioned above, in S1(2,R) a central role is played by the exponential
subsemigroups with nonvoid interior, whereas for noncompact simple Lie groups
of dimension > 3 no exponential subsemigroups with interior points exist. The
group Sl(2,R) has a unique standing among simple Lie groups (similar to the
unique role of R among abelian Lie groups) and it is also the aim of this paper
to further elucidate its special structure.

Acknowledgements. We want to thank especially KARL HEINRICH HOFMANN,
who evoked the interest of both authors in questions which eventually led to
investigations some of which are presented here, and who always has taken
an active interest in these studies. Special thanks go also to the Deutsche
Forschungsgemeinschaft (DFG) for giving financial support to the first author
during her stay at Darmstadt and at Vienna while working on this project.

2. Setting the stage

2.1. Notation. Throughout these notes we use the symbol Rt for the set of
strictly positive reals and Ry for the set of nonnegative reals, we write N for the
positive integers and Ny for NU{0}. The interior of a subset A of a topological
space is denoted by Int A, the closure of A by A.

We denote the Killing form of sl(2,R) by Kill and write

Killt & {X € sl(2,R) | — det(X) = éKiII(X,X) > 0}.

For any X € Killt we let
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Similarly, Kill® [Kill~] will denote the set of all X € sl(2, R) with Kill(X, X) =0
[Kill(X, X) < 0]. The set Kill° will be also called the light cone.
Furthermore, in accordance with the notation of [5]:

a=(3 5) = (00) e=(08)

Note that the Borel algebras in s[(2,R) are exactly the conjugates of RH + RP.

2.2. The image of the exponential function.

(i) exp(Kill") = exp(Kill*) and the restriction of exp to Killt is a diffeo-
morphism.
(i) SI(2,R) = exp(sl(2,R)) U (—1) - exp(Kill") and
exp(KillT) N (=1) - exp(Killt) = @.
Proof. These assertions are long known, they can be inferred, e.g., from the
discussion in [5], p. 416ff. u

Notation. In view of 2.2(i) we can extend the usual log-function exp(B) — B,
where B is a Campbell-Hausdorff neighborhood, to a map

exp(B) Uexp(Kill") = BUKIll*,

This extension is unique, we also denote it by log.

2.3. Characterizations involving the trace. Let g = (Z db) be an element

in S1(2,R). Then the following assertions hold:

(i) g € exp(sl(2,R)) if and only if either trace(g) > —2 or g = —1.

(il) —2 < trace(g) if and only if g lies in the interior of exp(sl(2,R)).

(ili) —2 < trace(g) < 2 if and only if g is conjugate to a rotation x €
SO(2,R) with x #1,-1.

(iv) trace(g) > 2 if and only if g lies in exp(KillT).

(v) trace(g) =2 if and only if g is unipotent, i.e., g € exp(Kill®).

(vi) trace(g) = 2cos(qm) ¢ {—2,2} for some nonzero rational q if and only
if g has finite order > 2.

Proof. In view of 2.2 and by inspection these assertions follow readily if g is
either an upper triangular matrix or a rotation matrix. Since every matrix in
S1(2,R) is conjugate to either an upper triangular or a rotation matrix, and since
the trace is invariant under conjugation, this implies the assertions. ]
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2.4. The reduced logarithm. For technical convenience we introduce the
reduced logarithm as the map

rlog: exp(Kill") = A7(1), g m -log(g).

2.5. Explicit formulas for exp and rlog. Let g = (Z 3).
(i) If trace(g) > 2 then

a—d 2b
rlog(g) = ( i _&) with  uw=+/(a+d)? — 4.

Furthermore
a+d+u

5 ) tlog(g).

log(g) = log(

(ii) Conwversely, for any real numbers o, B, v with o® + By = 1 and any
nonzero t € R we have

exp t - <: —ﬁa> = <Ccl 2) € exp(Kill™),

where

1 1-
a = cosh(t) + asinh(t) = %et + Tae_t, b = sinh(t)8,

¢ = sinh(t)~, d = cosh(t) — asinh(t) =

l-«a t+1—|—a _t
e+ ——e ".
2 2

Proof. The formulas in (i),(ii) can be checked quickly by straightforward com-
putation; they are just variants of the formulas in [5], p.417. [

2.6. Remark. If X € s[(2,R) is nilpotent then X2 =0 and exptX =1+tX.
Conversely, if g € SI(2,R) is unipotent then log(g) =g — 1.

2.7. Lie wedges and Lie semigroups. (cf. [6], p.19ff) Recall that if S is a
closed subsemigroup with 1 € S of a Lie group G with Lie algebra g then the
Lie wedge L(S) of S is the set of all X € g with exp(Rf X) C S. The Lie wedge
L(S) is indeed a wedge, i.e., a closed convex set which is closed under addition.
Furthermore, for every X € L(S)N —L(S) we have e*dX L(S) = L(S).

If S is the smallest closed subsemigroup generated by exp(L(S)) then S
is called a Lie semigroup and W = L(S) is said to be a global Lie wedge with
respect to G'.
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2.8. Lie semialgebras. (cf. [5], p.86.) Let W be a wedge in a Lie algebra
g. Then W is called a Lie semialgebra if it is a local semigroup with respect to
the Campbell-Hausdorff multiplication *, i.e., there exists a Campbell-Hausdorff
neighborhood B such that (BNW)x (BNW)C W.

In the Lie algebra sl(2,R) every Lie semialgebra with nonvoid interior is
the intersection of half spaces bounded by a Borel algebra (cf. [5], I1.3.7, p.109).

3. Basic properties of subsemigroups of S1(2,R)

3.1. This section is intended to provide a handy summary of those basic prop-
erties of subsemigroups of SI(2,R) which are used (or supposed to be known) in
the sequel. Most of the results are from [5] and/or belong to the general folklore
of the subject.

3.2. The interior of a subsemigroup in a topological group. Let S be a
subsemigroup of a topological group G with nonvoid interior. Then the following
assertions hold:

(i) The set Int S of interior points of S is an ideal in S.
(i) If 1 € Int S then Int S is dense in S and Int(S) =Int S.

(iii) Suppose that G is locally connected and that S is connected. If 1 € S
then Int S is connected.

Proof. Assertions (i), (ii) form Proposition V.0.15 of [5], p.370.

(iii) Pick a,b € IntS and let U,V be connected open sets with a €
UCIntS, beV CIntS. Since 1 € S the intersections U NaS and V N Sb
are nonvoid, so U U aS and V U Sb are connected subsets of IntS. Since
aS N Sb contains the nonvoid subset aSb we therefore conclude that the union
UUaSUV USb is a connected subset of Int.S containing both a and b. This
implies (iii). n

3.3. Connected components of a topological semigroup. (cf.[16]
Proposition 3.1) Let S be a topological semigroup. For z € S we denote with
C(z) the connected component of S which contains z.

(i) For every pair z,y € S we have C(z)C(y) C C(xzy) (note that C(z)C(y)
is connected and contains zy). In other words: the relation z ~¢
y <= C(z) = C(y) is a congruence on S.

(i) x? € C(x) if and only if C(x) is a semigroup.

(iii) For every z € S the union S.(z) = ey C(z*) is a subsemigroup of S.
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3.4. Proposition. Let S be a subsemigroup of S1(2,R) with nonvoid interior
Int S in S1(2,R) and suppose that S # SI(2,R). Then the following assertions
hold:
(i) Int S C exp(Killt)U(—1)-exp(KillT) and Int SNexp(KillT) is nonempty.
(ii) The closure of S cannot contain a one dimensional torus group.
) If S is connected then S C exp(Kill™) and Int S C exp(Killt).
)

(iv) If 1 € Tnt S then S; & Int S Nexp(sl(2,R)) and its interior Int(Sy) =
Int S Nexp(Kill™) are connected semigroups.

(iii

Proof. (i) Since Int S # SI(2,R) and since every neighborhood of a compact
element contains an element of finite order we conclude that Int .S cannot contain
compact elements. Similarly there are compact elements, and hence elements of
finite order, in every vicinity of a unipotent element, so Int.S cannot contain
unipotent elements. Thus by the discussion in 2.3 above Int S Nexp(sl(2,R)) C
exp(Kill*) and the first assertion follows. If s = —g € Int S with g € exp(Kill™")
then s2 = g2 € Int S Nexp(KillT), so Int S Nexp(KillT) cannot be empty.

(ii) Suppose that, contrary to our assertion, S contains a one dimensional
torus subgroup T'. Pick an inner point z € Int S. But trace(—z) = — trace(x)
and T is connected, so we conclude that there is a ¢ € T with trace(tx) = 0.
For all s € S we have sz € Int S and for s sufficiently near to ¢ we also have
trace(sz) €] — 1,1[, which means that the interior of S contains a compact
element, (2.3(iii)), a contradiction.

(iii) Since S is connected and contains inner points, the set trace(S) is a

nondegenerate interval. If there were a point g € S\ exp(Kill") then by 2.3(iv)
trace(g) < 2. On the other hand, by (i), there is an element h € S Nexp(Kill™),
and trace(h) > 2, by 2.3(iv). But S is connected, so trace(S) would be a
neighborhood of 2 and therefore we could find a k& € S such that trace(k) =
2 cos(a), with « rationally independent of m. Since the powers k™ of such an
element are dense in a one dimensional torus group, we arrive at a contradiction
to (ii). This implies S C exp(Kill*). The remaining inclusion follows from 2.3(iv)
and (v).

(iv) Suppose that 1 € IntS. Then IntS is dense in S. We assume,
without losing generality, that S is open. It was shown in [16] that in PS1(2,R) =
SI(2,R)/{1,—1} every open subsemigroup clustering at 1 is connected. Let
¢:S1(2,R) — PSI(2,R) = SI(2,R)/{1,—1} be the natural quotient morphism.
Then ¢(S) is open and clusters at 1, hence is connected. Its inverse image
¢ 'q(S) = SU (-1)S is an open semigroup and has exactly two connected
components, namely (S U —S) Nexp(Kill") and (SU —S) N —exp(Kill*). The
connected component (S U —S) N exp(Kill*) is a semigroup (by 3.3(ii)) and
contains S N exp(Kill"). Thus the semigroup generated by S N exp(Kill™) is
contained in exp(KillT), so S Nexp(Killt) is a semigroup. The restriction of
q to S Nexp(Kill™) is an isomorphic embedding into PSI(2,R). Since the
open semigroup ¢(S N exp(KillT)) clusters at 1, it is connected and therefore
S Nexp(Kill*) is connected. The assertion follows. n
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3.5. Proposition. Let S be an open subsemigroup of S1(2,R) with S #
SI(2,R). Then for every x € S the following assertions hold:

(i
(ii

) The subsemigroup S(z) = Upen C(zF) is open.

) Suppose that = belongs to the exponential image in S1(2,R). Then S.(z)
is contained in exp(Killt) and the sequence (C(z™)) is eventually con-
stant: there ezists a natural number ny such that C(z™) = C(z™) for
n > ng. Moreover, C(z™) is an ideal in S.(z) and S.(x)/ ~c is a
finite nilpotent semigroup.

(iii) Suppose that z does not belong to the exponential image in S1(2,R). Then
the powers of C(x) in the semigroup S/ ~c form a finite subsemigroup
N(z) and the minimal ideal of N(z) is a cyclic group of order two.

Proof. Assertion (i) follows from the fact that in a locally connected space the
connected components of open subsets are open.

(ii) If z € exp(sl(2,R)) then = € exp(Kill*) (by 3.4(i)) and z* €
exp(Kill™), for any ¥ € N. Since C(z*) is connected and open we see from
3.4(i) that C(z*) C exp(Kill"), for any k € N, so S.(z) C exp(Kill™).

Let z = expX. Since C(z) is open we find a number n € N with
y < exp((1+ L)X) € C(z). Then z"*! = y™ € C(z)" C C(z™). By connect-
edness, C(z)C(z™) U C(z™)C(x) C C(z™). Also, we conclude by induction that
C(z)"C(z™) C C(x™), so the connected set C(z™)C(z™) meets the component
C(z™) and therefore is contained in C(z™). This finishes the proof of (ii).

(iii) The powers of z with odd exponents belong to — exp(Kill*), those
with even exponents to exp(KillT). Now (ii) implies the assertion. n

3.6. Exponential subsemigroups of a Lie group. Recall that a closed
subsemigroup S of a Lie group G is called exponential if it is the exponential
image exp(W) of its Lie wedge W = L(S).

A wedge in the Lie algebra g of G is called exponential with respect to G,
or G -exponential, or exponential for short, if it is the Lie wedge of an exponential
subsemigroup of G. Note that if G — G is a covering homomorphism (so that
g can be considered as the Lie algebra of G; as well) and if W is an exponential
wedge with respect to G then W is exponential also with respect to G1—
provided that W is global with respect to G .

3.7. The exponential subsemigroup SI(2,R)*. (cf.[5], p. 419ff)
Following [5] we write S1(2,R)*™ for the semigroup of matrices with
nonnegative entries in S1(2,R). The corresponding Lie wedge

L(SI(2,R)T) =RH + R P+ R Q

is denoted by sl(2,R)™. Obviously, sl(2,R)* is a Lie semialgebra and SI(2, R)™
is an exponential subsemigroup of S1(2,R). It has been shown in [5] (p.421,
V.4.30) that

(1) if a subsemigroup S of SI(2,R) contains S1(2,R)™ then its 1-component
coincides with S1(2, R)T and S C SI(2,R)* U (—1)S1(2,R)™*.
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In particular, SI(2,R)* is a maximal connected subsemigroup of SI(2,R). If W
is the Lie wedge of a closed subsemigroup with nonvoid interior S # S1(2, R) then
W cannot meet Kill~ (by 3.4(ii)), hence for each of the convex halves of Kill™
there exists a support plane separating it from W . These two support planes
dissect s[(2,R) into four open quadrants and W is contained in the closure W)
of one of the two quadrants not meeting Kill™. The edge H(Wy) = Wy N =Wy
of Wy is a Cartan subalgebra, hence conjugate to RH . It follows that Wy must
be conjugate to s[(2,R)™. Thus

(ii) the Lie wedge of a Lie subsemigroup with nonvoid interior S # S1(2,R)
is always contained in a conjugate of sl(2,R)™,

(iii) every Lie subsemigroup with nonvoid interior S # S1(2,R) is contained
in a conjugate of S1(2,R)™ .

3.8. Lie wedges of three dimensional exponential subsemigroups. Let
W be a wedge in sl(2,R), let S = exp(W) C SI(2,R) and assume that W does
not lie in a subalgebra of dimension < 3. Then the following assertions are
equivalent:

(i) S is a semigroup;
(ii) S is a closed semigroup;
(i) W is the intersection of conjugates of sl(2, R)™ .
(iv) W is a Lie semialgebra contained in Kill*.
(v) W is an exponential wedge.
Proof. The implications (ii) = (i), (ii)<=(v), and (iii) = (iv) are trivial.
(i) = (iv) We first note that S # S1(2,R), since SI(2,R) is not expo-

nential, and that Int S is nonvoid, since W is not contained in a two dimensional
subalgebra of sl(2,R) ([5], Theorem V.1.10, p.377, and p.382). Also, S is con-

nected, hence 3.4(iii) applies and shows that S is contained in exp(Kill*), so

W = log(S) C KillT. Since the restriction of exp to Kill™ is a diffeomorphic
embedding it follows that for any Campbell-Hausdorff neighborhood B

(BNW)* (BNW) =log(exp((BNW) x (BNW)))
= log(exp(BNW)exp(BNW))
C log(exp(W)) = W,

so W is a semialgebra.

(iv) = (iii) By Theorem I1.3.7 of [5] (p. 109) we know that W is the
intersection of a family F of half space semialgebras each of which is bounded
by a Borel algebra. Since W is a Lie semialgebra, and not contained in a
Borel subalgebra, it has nonvoid interior. Let K;, K5 be the two connected
components of Kill”. Then each half space semialgebra contains exactly one of
either K7 or K. By 3.7(ii) there exist at least one pair W7, Wy € F with
K, C Wy, Ko C Wy, and for every such pair the intersection W7 N Wy is
conjugate to sl(2,R)* and contains W. Clearly, W is the intersection of all
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such intersection wedges W7 N W5. Thus W is obtained as the intersection of
conjugates of sl(2,R)".

(iii) = (ii) The restriction of exp to Kill* is a diffeomorphism and
the exponential image of s[(2,R)*" is the closed subsemigroup S1(2,R)" of all
matrices in SI(2,R) with nonnegative entries. Thus we see that exp(W), being
the intersection of conjugates of SI(2,R)™, must be a closed subsemigroup of
SI(2,R). u

4. The diamond product

4.1. In the present notes we shall not discuss possible formal definitions for the
terms ‘asymptotic property’ and ‘asymptotic object.” Let us emphasize only that
a natural requirement for an ‘asymptotic property’ seems to be: if S has this
property then each of its two-sided ideals has this property. In the same vein,
an ‘asymptotic object’ ought to be a functor assigning to certain semigroups
S a structure A(S), so that A(S) = A(I) for every two-sided ideal I of S.
Also, taking as a model the case of additive subsemigroups of R”, we would
like to have the asymptotic objects carry good information about ‘asymptotic
directions,’ i.e., limits of matrices X € sl(2,R) with expRT X NS # Q.

The guiding idea of our subsequent definitions is to identify directions
with matrices in sl(2,R) of length 1 and to define a special kind of multiplication
of directions. Instead of introducing an arbitrary Euclidean distance we measure
the length in terms of the Killing form, this is technically more convenient and
better adapted to the structures we are interested in.

4.2. The fundamental hyperboloid. We henceforth call the hyperboloid of

revolution
def

Hyp = A7H(1) = {aH + P +1Q | &® + fy =1}
the fundamental hyperboloid. Note that the “light cone” Kill® = {aH + AP +~Q |
a? + By = 0} is the asymptotic cone of Hyp.

For our purposes the point of interest is that the points of the funda-
mental hyperboloid correspond to the one parameter subsemigroups leading into
exp(Kill*). (These are exactly those one parameter subsemigroups which meet
open subsemigroups S # SI(2,R).) A drawback of working with Hyp is that
it is not a compact surface, so we shall embed it later into a product of flag
manifolds. The advantage of Hyp is that it allows easy calculations and that the
multiplication introduced below has a convincing geometric interpretation.

4.3. Horizontal and vertical lines. For any X € Hyp let px, qx be the
(one-dimensional) eigenspaces of ad X with, respectively, eigenvalue 2,-2. Then
we define the horizontal line through X,

hor(X) € X + py,
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and the vertical line through X
vert(X) X +qx.

Both of these sets are contained in the fundamental hyperboloid Hyp.

4.4. Elementary Properties of horizontal and vertical lines. (i) For
every X € Hyp the convex span of hor(X) U vert(X) is the tangent plane of Hyp
at X and hor(X) Nvert(X) ={X}.

(ii) Because of px = q_x we see that hor(X) = —vert(—X) and
vert(X) = —hor(—X), so the lines hor(X) and vert(—X) are parallel to each
other.

(iii) For later use we also note that for every Y € hor(—X) U vert(—X)
the sum X + Y is nilpotent.

(iv) The linear span of hor(X) is the Borel algebra b; = RX + px =
R-hor(X)Upx, the linear span of vert(X) is the Borel algebra by = RX +qx =
R - vert(X) U qx. Note that b; N Hyp = hor(X) U vert(—X) and by N Hyp =
vert(X) U hor(—X).

(v) Distinct horizontal [vertical] lines do not intersect. (Indeed, Y €
hor(X) implies hor(Y) = hor(X), and Y € vert(X) implies vert(X) = vert(Y).)

(vi) The horizontal line hor(X) intersects the vertical line vert(Y") if and
only if Y ¢ —hor(X) (or, equivalently, if X ¢ —vert(Y)).

(vil) Under any automorphism of s[(2, R) horizontal lines go to horizontal
lines and vertical lines go to vertical lines.

4.5. Explicit formulas for hor(X) and vert(X). For X =aH+ P +~Q €
Hyp we have hor(X) = X + RA, vert(X) = X + RB with

= {ﬂ(a —DH+PP—(a-1)’Q  if (a,8) # (1,0);
-\ —yH+2P-2Q if (a, B) = (1,0);
B {ﬁ(a+1)H + /P —(a+1)?Q  if (o, B) # (—1,0);

- \vH+2P-%Q if (a, B) = (—1,0).

We leave the straightforward proof to the reader.

4.6. Remarks about the orbit structure of Hyp.

(i) The set Hyp is the orbit of any of its points X under the adjoint
action of SI(2,R) on s[(2,R). Thus, fixing X = H, we identify Hyp with the
homogeneous space Sl(2,R)/Z exp(RH), where Z = {I,—I} is the center of
SI(2,R). (For X = P + @) the isotropy group is just SO(1,1).)

(ii) The space Hor of all horizontal lines in Hyp (endowed with the Vi-
etoris topology) can be identified with the flag manifold (the simplest possi-
ble) SI(2,R)/Z exp(RH + RP). This homogeneous space is homeomorphic with
SO(2)/Z, which is also homeomorphic with the one dimensional torus T. The
injection RH — RH + RP induces the natural map

S1(2,R)/Z exp(RH) — S1(2,R)/Z exp(RH + RP),
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which to every Zexp(RH)-coset assigns the Zexp(RH + RP)-coset containing
it; this mapping corresponds to the map hor: Hyp — Hor, X — hor(X). Thus
we see that hor is a continuous and open mapping.

(iii) Similarly, the space Vert of all vertical lines is identified with the
homogeneous space S1(2,R)/Z exp(RH + RQ), which is homeomorphic with the
one dimensional torus T, and we note that the map vert: Hyp — Vert, X —
vert(X), is a continuous and open mapping. It is convenient to write the quotient
space S1(2,R)/Z exp(RH + RQ) as the set of left cosets Zexp(RH + RQ) - g,
g € SI(2,R).

(iv) We conclude from 4.4(vi) that vert(hor(X)) = Vert \{vert(—X)} and
that hor(vert(X)) = Hor \{hor(—X)}.

(v) Further information about actions on Hyp and about its order struc-
ture can be found, e.g., in [6], p.571f.

4.7. Proposition. We retain the notation of the preceding paragraph. The
following assertions hold:

(i) The map c:Hyp — Horx Vert, X — (hor(X),vert(X)), is an open
topological embedding of Hyp into the space Hor x Vert = T x T.

(ii) ¢ maps Hyp onto the set ¢(Hyp) = {(h,v) € Horx Vert | h # —uv},
which is dense in Hor x Vert.

(iii) The inverse of the corestriction Hyp — c¢(Hyp) of ¢ sends every pair
(h,v) with h # —v to the unique point X € hNw.

Remark. In terms of the identifications in 4.6 the map c¢ is defined by
c(g-Zexp(RH)) = (g - Z exp(RH + RP), Z exp(RH +RQ) - g~ 1).

Its inverse is given (under the proviso that ANwv # @) by (h,v) — g-Z exp(RH),
for any g € hNw.

Proof. (i) By 4.6(ii) and (iii) we know that Hor x Vert is homeomorphic with
T x T and that the map ¢ is continuous. By 4.4(i) ¢ is injective, hence its
restriction to any compact subset of Hyp is a topological embedding. It follows
by the invariance of domains that ¢ is an open map, hence an open topological
embedding.

Assertions (ii) and (iii) follow from 4.4(vi). n

4.8. The compactification (Hyp~,c). The above proposition shows that the
space Hor x Vert, together with the map c, is a compactification of Hyp. We
abbreviate Hor x Vert by Hyp™ .

4.9. Nilpotency Points in Hyp~. We henceforth call an element of the form
(hor(X), —hor(X)) = (hor(X),vert(—X)), X € Hyp, a nilpotency point.

(i) The set of all nilpotency points in Hyp™ is the remainder Hyp™ \c¢(Hyp)
of the compactification (Hyp™,¢).
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(ii) The set of all nilpotency points in Hyp™ can be identified with the
space of all one dimensional subspaces R-N, N € Kill°. Under this identification
the nilpotency point (hor(X),—hor(X)) corresponds to the line hor(X)— X, for
every X € Hyp.

(iii) For every X € Hyp the closure of c(hor(X)) [c(vert(X)] in Hyp™
contains exactly one nilpotency point, namely the point (hor(X),—hor(X))
[(— vert(X), vert(X))].

(iv) Let h € Hor, v € Vert. If (h,v) is not a nilpotency point then
RhNRv =R(hNwv). If h=hor(X) and v = —hor(X) then Rh = Rv, moreover
Rh =Rh U Px-

4.10. Proposition. Let (X,,) be a sequence in Hyp such that for suitably chosen
real numbers t,, the limit N = limt,X,, erists and is a nonzero nilpotent matrix
with N € hor(X)—X for some X € Hyp. Then limc¢(X,,) = (hor(X), —hor(X)).

Proof. We assume, with no loss of generality, that X = H,N = P. Write
X, =a,H+ B,P+ v,Q. Then

ltn] = A(tnXpn) =0, than =0, t,0, — 1, tyyn — 0.

In particular, |3,| — oco. Applying our formulas in 4.5 we see that for every
seR
Xp+5(Bn(an — 1)H + 2P — (o, — 1)2Q) € hor(X,,),

Xn+s(Bn(an +1)H + B2P — (an +1)2Q) € vert(X,,).
(Note that S, # 0 for sufficiently large n.) We now put s = —1/4,, and find

hor(Xr,) = hor (H + WCO . vert(X,) = vert (—H + 72(1; a")Q> :

Next we choose n so large that t¢,, # 0 and compute

2(1
( -+ an) — lim 2(tn + tnan) —
ﬁn n tnIBn

which implies that limhor(X,) = hor(H) and limvert(X,) = vert(—H). The
assertion follows. n

0

lim
n—oo

4.11. Remark. Note that by Proposition 4.10 the space Hyp~ can be con-
sidered as the quotient space of the space of all one parameter subsemigroups

contained in exp(KiI|+), where for each N € Kill® the one parameter semigroups
exp(Rf N) and exp(—R{ N) are identified. Occasionally this identification re-
quires some care when nilpotency points are involved.
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4.12. Rectangular bands. (i) Recall that every cartesian product S = M xN
of nonvoid sets is an idempotent semigroup with respect to the multiplication
(m,n)(m/,n’) = (m,n'). Such semigroups are called rectangular bands (cf., e.g.,
[3] I, p.25).

(ii) Note that with respect to this multiplication every subset M, =
M x {n}, n € N, is a left zero semigroup, and every subset N,, = {m} x N,
m € M, is a right zero semigroup. Moreover, for fixed (m,n) € S the map
M, x N, = S, ((z,n),(m,y)) — (x,n)(m,y) = (z,y), is an isomorphism.

(iii) Every rectangular band S is a simple semigroup, that is, if I is a
two sided ideal in S then I = S.

4.13. Elementary properties of topological rectangular bands. Let M
and N be two nonvoid topological spaces and let S = M x N be the associated
rectangular band. Then the following assertions hold:

(i) S is a topological semigroup, i.e., the multiplication is jointly continuous.
Moreover, the multiplication of S is an open mapping.

(ii) A subset S’ of S is a subsemigroup [open subsemigroup] [closed sub-
semigroup] [connected subsemigroup] if and only if there exist nonvoid

[ nonvoid open] [nonvoid closed| [nonvoid connected| subspaces M' C M
and N' CN with S=M'x N'.

(iii) The interior Int Sy of a subsemigroup Si of S is either void or a sub-
semigroup of S.

Proof. Assertions (i) and (ii) follow immediately from the definition of the
multiplication and the continuity and openness of the projections p1: M XN — M
and pa: M x N — N.

(iii) By (ii) we know that S’ = M’ x N’, where M' C M, N' C N.
Since Int(M' x N') = Int(M’) x Int(NN') our assertion follows from (ii). u

4.14. The diamond product. We now put M = Hor, N = Vert and write
Hyp™ for Hor x Vert, endowed with the rectangular band structure of 4.12. Then
we pull back the multiplication of Hyp™ to a partial multiplication, the diamond
product ¢, on Hyp. This amounts to:

If hor(X) intersects vert(Y') then the diamond product X ¢Y of X and
Y is defined as the point of intersection, that is, {X ¢Y} = hor(X) Nvert(Y).

(i) By the above discussion the diamond product X ¢Y is defined for all
X,Y € Hyp with hor(X) # —vert(Y), it is jointly continuous and associative as
long as all products involved are defined.

(ii) In particular, all vertical and all horizontal lines are semigroups with
respect to the diamond product. The horizontal lines are right zero semigroups,
and the vertical lines are left zero semigroups with respect to <.

(iii) If X ¢Y is not defined then Y € —hor(X). If both X¢Y and Y ¢ X
are not defined then X = -Y.
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4.15. Example. The diamond products A¢B and B¢ A of A= H + P and
B = H +~vQ compute to

A¢B=H, BoA= (4 — By)H + 48P + 4vQ) .

44 By

Note that B¢ A exists if and only if 8y # —4. In the special case =7y =2 we
get A*B =P+ Q (=T in the notation of [5]).

4.16. Remark. The space Hyp™ not only bears the natural rectangular band
structure of above but also two natural actions of S1(2,R):

SI(2,R) x Hyp™ — Hyp~™, (g, (h,v)) = g~ (h,v) = (g9-h,v),
Hyp™ x SI(2,R) — Hyp™, ((h,v),g) > (h,v)-g=(h,v-g).

These actions induce partial actions of S1(2,R) on Hyp, which we also denote
with a “-.” For instance, if (*?) € SI(2,R) with a # 0 then (*!)-H = H+2(Q),
and H - (‘cl 3) = H+ %bP. We do not use this additional structure as yet, but
shall exploit it in [17] for the construction of compactifications.

5. Rectangular domains

5.1. Connected ¢ -semigroups.

(i) A ¢ -subsemigroup D of Hyp is connected if and only if for every two
elements X,Y € D lying on the same horizontal or vertical line the line
segment joining X and Y lies in D.

(ii) The intersection of an arbitrary family D; of connected ¢ - subsemigroups
of Hyp is connected.

Proof. Assertion (i) follows from 4.13(ii), assertion (ii) is then an immediate
consequence of (i). n

5.2. Rectangular domains. An open connected ¢ -semigroup D C Hyp
is called a rectangular domain. Note that in a rectangular domain all diamond
products X <Y are defined. (Thus Hyp itself is not a rectangular domain.) It
can be deduced from what is shown below that every rectangular domain is an
open domain (in Hyp) in the topological sense, i.e., it is the interior of its closure
(KurATOWSKI, cf.[4], p.37).
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5.3. Examples. (i) The intersection D(+) of Hyp with the interior of s[(2, R)*
is a rectangular domain, which is bounded by the four half lines +H + R - P
and £H + R(J{ - (). More specifically, a straightforward computation verifies that
the map

) 1—Au 21 2)
:RY x Rt — D A — -H -P .

is bijective (with inverse j='(aH + P +vQ) = (I_Ta, Hia) ); it is a homomor-

phism if RT x Rt is endowed with the rectangular band structure of 4.12. Note
that the identities

. 2\ 1
\p)=H+2uP + (-=H - puP+ =
J(A 1) wP+ ( I MQ)

2\ 1
= H +2)\ (~H+ =P -\
+ Q+1HM (—H + 5 Q)

show that j maps the sets {A} x RT onto horizontal line segments, the sets
Rt x {u} onto vertical line segments.

(ii) If the intersection of an arbitrary family of conjugates of D(+) is
nonvoid and open then it is a rectangular domain. This follows from 5.1(ii).

5.4. Basic properties of rectangular domains. For a rectangular domain
D the following assertions hold:

(i) Let X € D. Then —hor(X)ND = —vert(X)ND =0.

(ii) The closure ¢(D) of ¢(D) in Hyp~ is the product A x B of two proper
closed arcs A C Hor, B C Vert.

(iii) The nilpotency points of c(D), if they exist, are corner points, i.e.,
contained in 0A x OB, and no two of them lie on the same bounding
arc. Thus ¢(D) contains at most two nilpotency points.

(iv) The interior Int(D) of D in Hyp coincides with D.

(v) The closure of D is compact if and only if ¢(D) does not contain nilpo-
tency points.

Proof. Assertion (i) follows from the fact that X ¢Y is not defined if ¥ €
—hor(X) and Y ¢ X is not defined if Y € —vert(X).

(ii) Since D is connected and c is an open and isomorphic embedding
we know that ¢(D) is an open connected subsemigroup of Hyp™ . By (i) we can
have neither hor(D) = Hor nor vert(D) = Vert. Thus ¢(D) = Ax B, where A is
an arc in Hor with two distinct endpoints a1, as, and B is an arc in Vert with
two distinct endpoints by, bs.

(iii) Since c¢(D) is the interior of ¢(D), the nilpotency points of ¢(D)
must lie on the boundary of ¢(D). The boundary of D is the union of the four
line segments

hi € ({ai} x B), o E M (Ax{b)),  i=12, =12
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Thus every nilpotency point in m must be an endpoint of one of the arcs
c(hi), 1 = 1,2. Since c(h;) contains at most one nilpotency point, this implies
the assertion.
(iv) Since ¢ is continuous and open we have Int(D) = ¢~*(Int (¢(D))),
hence the assertion follows from (ii) and (iii).
Assertion (v) is a consequence of 4.9(i). u

5.5. Rectangular domains and exponential subsemigroups of SI(2,R).

(i) If D is a rectangular domain then the set Wy = RT D is open and conver,
and its closure W = Wy is a Lie semialgebra. Moreover, exp(W) is a
closed subsemigroup of S1(2,R).

(ii) Conversely, if W is a Lie semialgebra with nonvoid interior in sl(2, R)
and expW is a semigroup then the intersection D = Wy N Hyp of its
intertor Wy = Int W with Hyp is a rectangular domain.

Proof. (i) We first notice that the map
f:RY x Hyp — Kill", (¢, X) — tX,

is a homeomorphism. Since D is an open subset of Hyp and since f is an
open map, the image f(RT x D) = Rt D is an open subset of Killt. Now pick
two elements X,Y € D. We write S(X,Y) for the connected ¢ -semigroup
generated by the line segments conv{X, XY} and conv{X,Y¢X}. First
we will show that R S(X,Y) is a Lie semialgebra. If X and Y lie on the
same horizontal or vertical line then R} S(X,Y) is a wedge in the Borel algebra
generated by S(X,Y), hence it is a Lie semialgebra. Suppose now that X and
Y do not lie on the same horizontal or vertical line. Then the polyhedral wedge

C=R{X+RIXY +RIY*oX +RIY

is the intersection of four closed half spaces, each bounded by one of the four
Borel algebras generated by the two dimensional faces

RIX+RIXoY, RIX+RIYVoX, RIV+RIX0Y, RIV+RIY<X.

Thus C is a Lie semialgebra. Moreover, since the boundary of C' does not
contain nonzero nilpotent elements, we conclude that C\ {0} C Kill™.

Since f is a homeomorphism, it maps the boundary (Rt x S(X,Y)) =
Rt x 9(S(X,Y)) of Rt x S(X,Y) in RT x Hyp onto the boundary of f(R™ x
S(X,Y)) in Kill*. Hence

RTO(S(X,Y)) = (Rt S(X,Y)).

On the other hand, the boundary of C'\ {0} in Kill" is exactly Rt*9(S(X,Y)).
Thus C \ {0} and R*S(X,Y) have the same boundary in Kill™. Also, these
two sets have non-empty intersection. Since both of these sets have dense and
connected interior, they must coincide, i.e., RTS(X,Y) = C \ {0}. Hence
RS S(X,Y) = C, which shows that Rf S(X,Y) is a Lie semialgebra.
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In particular, we see that Wy = RT D is convex, so W = W, is a wedge.
Since every two elements of Wy lie in a Lie semialgebra contained in W, Corollary
I1.2.16 of [5], p. 89, applies and shows that W is a Lie semialgebra. Also,
W C Kill*, hence exp(W) is a closed subsemigroup of SI(2,R), by 3.8.

(ii) Suppose that W is a wedge with nonvoid interior in s((2, R) such that
exp W is a semigroup. Then by 3.8 W is the intersection of certain conjugates of
sl(2,R)*. Note that for any two elements X,Y € s[(2,R)* N Hyp the diamond
product X ¢Y | if defined, also lies in s(2, R)™ . It follows that W NHyp is closed
under the ¢ -product, as far as the latter is defined. The diamond product is
defined for all X,Y in the interior Wy N Hyp = Int(W N Hyp) (since Wy N Hyp
lies in a conjugate of Int(sl(2, R)*) N Hyp). Recalling that the diamond product
is an open map (4.13(i)) we see that Wy N Hyp is a ¢-semigroup. The inverse
image f~1(Wp) = Rt x (WyNHyp) of Wy under the map f in the proof of (i) is
connected, so Wy N Hyp is connected. Thus Wy N Hyp is a rectangular domain.m

5.6. Remark. Since the boundary of a rectangular domain consists of two
horizontal and two vertical line segments the above assertion (ii) implies that
the Lie wedge of an exponential subsemigroup of S1(2,R) with inner points is
the intersection of at most four half spaces bounded by Borel algebras. This
assertion was formulated first in [5] (p.110; its proof was left to the reader as
exercise E.IL.1).

5.7. Nilpotency points and nilpotent elements. Let D be a rectangular
domain and write Wo =R*D, W =W,.

(i) If ¢(D) contains a nilpotency point (a,—a) then the Borel algebra b =

R - a intersects W in a closed face which in its algebraic interior contains
a nonzero nilpotent element N .

(ii) Conwversely, if W contains a nonzero nilpotent element N then N lies
in the algebraic interior of a closed two dimensional face of W and
¢(D) contains a nilpotency point (a, —a), where a is the horizontal line
contained in the Borel algebra generated by N .

(iii) Let k be the cardinality of the set of nilpotency points in c(D). Then
Wy = RT D is the intersection of exactly 4 — k distinct open half spaces
in sl(2,R), each of which is bounded by a Borel algebra. The closed wedge
W' contains exactly k linearly independent nilpotent elements.

Proof. (i)Let X € anW,Y € —anW. Then X,Y are nonzero and lie in the
boundary of W, also N = X +Y is a nilpotent element (by 4.4(iii)). If N # 0
then the assertion follows. If N =0 then X = -Y € H(W) and thus W Nb is
one of the two closed half spaces of b bounded by RX , and these must contain
a nonzero nilpotent element.

(ii) Suppose that N is a nonzero nilpotent element in W. Then N € oW,
since Int W C Kill*. Let F be a closed two dimensional face of W with N € F.
We have seen in 5.6 that F' = bN W, where b is a Borel algebra. Since the
Borel algebra b passing through N is uniquely defined, we conclude that N
must be contained in the algebraic interior of F'. It follows that D meets both
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the horizontal line a and the vertical line —a in b, and thus ¢(D) must contain
the nilpotency point (a, —a).
The proof of (iii) is left to the reader. [

6. Examples of connected subsemigroups of S1(2,R)

6.1. In this section we discuss a collection of typical examples of connected
subsemigroups of SI(2,R). Some of these will be used later to illustrate the
application of our main results.

The main focus of attention is given to three dimensional exponential
subsemigroups and their Lie wedges. In fact, we shall see in the next section that
our examples include a representative of each conjugacy class of three dimensional
exponential subsemigroups.

It is instructive (and very convenient, too) to represent our examples
as compression semigroups, some aspects of this approach, in particular the
observation that all semigroups of our list are defined on ‘semialgebraic’ sets,
seem to be of independent interest.

6.2. Compression semigroups. Let S be a semigroup which acts on some

space X . Then for every subset M of X we define the compression semigroup
in S of M as the set

comprg(M) < {s€ S| sM C M}.

The original definition of compression semigroup (as used, e.g., in [6], p.203)
supposes that S is a group, since the main application is to find maximal sub-
semigroups of a group. In our present setting S will usually be a subsemigroup of
G = SI(2,R) (acting on R?) and it will make a difference whether the compres-
sion semigroup is formed only within S or in the whole group G. In general, an
inclusion S C S’ implies a corresponding inclusion comprg(M) C comprg (M),
but this inclusion is proper in most cases, even if S has inner points in S’ (cf.
the example in 6.10 below).

6.3. Remark. The following observation is checked easily by straightforward
calculation.

Let S be a subsemigroup of a group G which acts on a space X . Then for any
subset Y C X and a € G we have

(i) comprg(aY) = acomprg(Y)a™t;
(i) comprg(aY) =S Nacomprg(Y)a=!.
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6.4. Example. The semigroup SI(2,R)*, with Lie wedge sl(2,R)", is the
compression semigroup in SI(2,R) of the cone Rf x Ri . Note that SI(2,R)* =
exp (sI(2,R)T) is an exponential semigroup.

6.5. Example. It is well known (cf.[5], p.419) that the set

SI(2, R) T+ & { (ch 2) e Sl(2,R)* | 1< a}

is a closed subsemigroup of SI(2,R)* with Lie wedge W = Rf H+RJ P+ R§ Q.
Also, the decomposition

(2 2)=(h D6 D)

shows that S1(2,R)** is the Lie semigroup generated by W. Tt is checked
easily that S1(2, R)** is the compression semigroup in S1(2,R) of the set M, 4
{(z,y) €eR?* [z > 1,y > 0}

Likewise the set
SI(2, R)+t— & { <‘Cl Z) eSI(2,R)T | 1< d}

is a Lie subsemigroup of SI(2, R)* with Lie wedge W = —R{ H + R P+ RS Q,
and this semigroup is the compression semigroup in SI(2,R) of the set M, &

{(z,y) eR? |2 >0,y >1}.

The semigroup SI(2,R)*~ is the image of S1(2,R)** under the (outer)
automorphism which, on the level of Lie algebras, takes H to —H and inter-
changes P and (). Both of these semigroups fail to be exponential.

6.6. Example. Now we form the intersection of the two semigroups in the
preceding example:

SI(2, R)+H+— & { <(cl 2) €SI(2,R)" [1<aand 1< d}

:{(‘(’; 2) 681(2,R)+|1§a§1+bc}

is a closed subsemigroup of SI(2,R)* with Lie wedge W = Ri P + R Q. We
claim that every element s = (* %) € S1(2, R)T™*~ decomposes in the form

s = exp(qQ) exp(pP) exp(¢'Q) € exp(W)3, with p,q,q € R{'{,

so SI(2,R)*++~ = exp(W)3. Indeed, this decomposition is trivial if b =0 (and
thus a = d = 1), whereas for b > 0 we have the decomposition

()= (e DG D (5 7)
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6.7. Example. The compression semigroup comprg (M, N M,) of the intersec-
tion My N M, = {(z,y) € R®* |z >1,y>1} in G = SI(2,R) is the semigroup

{(Z Z) € SI(2,R)* \a—}—bZlandc-l—le},

==

which properly contains SI(2,R)™+ ¥~ . (For example, the matrix ( i) belongs

to this compression semigroup, but not to SI(2, R)*++~ )

6.8. Example. For a fixed real A > 0 we define the cone
Cx={(z,y) €R* |z > )y > 0}

and write Sy for the compression semigroup of Cy in SI(2,R)™. Then

Sy = {(Z Z) € SI(2, R)*

_ {(‘Z Z) € SI2,R)*

Indeed, for (% 2) € SI(2,R)™ the inequalities

atih> )\c+d}
A
()

(Aa+b)(a— Ac) > )\} .

a+b/A>X+d and (Aa+b)(a—Ac)> A

are equivalent, since multiplying the first inequality with a > 0 yields (note that
ad =1+ bc)

a(a+b/A) > dac+ad=Arac+1+bc=1+ Ae(a+b/N),

and this is equivalent to (Aa + b)(a — Ac) > A. Thus in (*) the two sets on the
right are the same.

Looking at the special case x = 1,y = 1/X we see that for every matrix
s = (1) € SI(2,R)* with sCy C Cy the inequality a +b/X > Ac + d holds.
Conversely, if s = (¢ Z) € SI(2,R)* with (Aa+b)(a — Ac) > X then a — Ac > 0

and
1\ _ [(a+b/A 1Y [a
s(l/)\)—<c+d/)\>60>\ as well as 3(0>—<C)EC>\,
(1 L1
therefore sC\ = s(Ry | 1 | + Ry 0 ) CCh.
by

Note that all semigroups Sy are conjugate to Si:

- (8 a)s (KT 8

and that Sy € S, whenever A > p > 0.
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We now compute the Lie wedge of S; using the following one parameter
subsemigroups of Si:

@ 0 s . . .

Sa= { (a ~1/a l/a) |a > 1} with infinitesimal generator A = 2Q) + H,
h 0 . . . .

Sg = 0 1/h | h > 1} with infinitesimal generator H,

Sp = {( éb b —bl/b) |b> 1} with infinitesimal generator B = 2P — H.

For every element s = (;‘) “3’3) € S1 we have the decomposition

SIS ICRATCRO!

a:\/z, b:W, h=+(u+v)(u—w)

(recall that by (*) the inequality u+v > z+w is equivalent to (u+v)(u—w) > 1).
Thus the Lie wedge W; of S; is spanned by the three vectors A,B,H:

where

W1 =R{H+R§ (H+2Q) + Ry (—H + 2P),
and S; is the Lie semigroup generated by Wi,
S1=845uS = SuSaSp = SuSpSa.
Note also that Sg4Sp = SpSa, SaSy = SgSa, but SgSp 2 SpSy. Since W,

is a Lie semialgebra contained in Killt we deduce from 3.8 that S; is exponential.

6.9. Remark. It is not difficult to deduce right from its definition that S is
divisible:

Since the dyadic fractions are dense in R, and since the restriction of

exp to Killt is a diffeomorphic embedding, it suffices to show that if for some
s = (Z 2) € SI(2,R)T the square s> € S; then s € S;. Applying the definition

of S7 to
2 a?+bc bla+d)
“\cla+d) d*+be

we see that s? € S; implies a? + bc + b(a + d) > c(a + d) + d? + be, which is
equivalent to (a +d)(a—d+b—c) >0, or,since a+d>0,t0o a+b>c+d.
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6.10. Example. The compression semigroup of C; with respect to the whole
group G = S1(2,R) properly contains S;. Since

1 1
Example 6.4 and Remark 6.3 show that comprg(C1) is conjugate to SI(2,R)*,

namely
1 1 1 -1
comprg(Ch) = (O 1) S1(2, R)* (O 1 ) .

(3 _3) ¢ S1. Furthermore,

This set contains, e.g., the element (1 1) (2 1) (1 _1) =3

01/\11/\0 1
1 1 1 -1
— + +
si=siame n (1 Dsaw () 7).

A more specific (but straightforward) calculation shows that

comprG(Cl):{(z 2) € S1(2,R) |a+ch+dZOanda2020}.

6.11. Example. The anti-isomorphism sending every matrix s to its transpose

sT maps S; onto the semigroup

51:{(Z 2) € SI(2,R)* |a+czb+d}
_ {(‘C’ Z) € SI2R)* | (a—b)(a+0) 21}.

Its Lie wedge is L(S') = Rf - H+ Ry - A+ R} - B, where A = 2P + H,
B = 2(Q) — H. This semigroup is the compression semigroup of the dual cone
C'={(z,y) |z >0,y > —x} of Cy.

More generally, the map s — s7 maps each semigroup S onto a semi-
group S*. Each S* is the compression semigroup in SI(2,R)* of the cone
C*» = {(z,y) | > 0,y > —Az} and all semigroups S* are conjugate to S*.

6.12. Example. For A\, pu € Rt we let S{ = Sy N S¥. Then S{ is the
compression semigroup in S1(2,R)* of the union C\ UCH* = {(z,y) € R? | z >
0, —pr <y < %x} Note that every semigroup S is exponential. Also, S is
conjugate to Sﬁf,’ if and only if Ay = Xp’. The Lie wedge of S is spanned by
the vectors H, H + 2P, H + %Q and (A — 1)H + 2AP + 2Q (the Lie wedges
for general A,y can be deduced readily). We leave the straightforward proofs to
the reader.
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6.13. Semialgebraic Semigroups. Recall that a subset of R™ is called a
semialgebraic set if it is the solution set (in some R™ ) of finitely many polynomial
equalities and inequalities, or a finite union of such sets (cf. [2], p.162). It is
natural to say that a semigroup S is a semialgebraic semigroup, if it is defined
on a semialgebraic set and the multiplication is defined by polynomial functions.
In this sense all semigroups of this section are semialgebraic. More generally, if we
have an algebraic action of a semialgebraic semigroup S then every compression
semigroup in S of a semialgebraic set is a semialgebraic semigroup.

7. Conjugacy classes of exponential Lie wedges in sl(2, R)

7.1. In this section we give a complete list of the conjugacy classes of Lie

semialgebras with nonvoid interior in Kill™. Since by 5.5 these Lie semialgebras
are in 1-1-correspondence with the rectangular domains in Hyp this amounts
to giving a list of the conjugacy classes of rectangular domains in Hyp. A first
natural classification of the rectangular domains in Hyp is based on counting the
number of nilpotency points.

7.2. The three types of rectangular domains. A rectangular domain D
is said to be of infinity type k, or a type k rectangular domain for short, if c¢(D)
contains exactly k nilpotency points in Hyp™ . (Note that 0 < k < 2.)

We say that a wedge W is a semialgebra of infinity type k, or a type k

semialgebra for short, if Int W = RT D, where D is a type k rectangular domain.

Proposition 5.7 says that every rectangular domain belongs to exactly
one of the above types. Also, a Lie semialgebra W is of type k if and only
if it does not meet the interior of the light cone Kill® and is the intersection of
exactly 4—k half space semialgebras (or equivalently: contains exactly & linearly
independent nilpotent elements).

7.3. The rectangular domains of infinity type 2. FEvery type 2 rectangular
domain is conjugate to Int(sl(2, R)*) N Hyp.

Proof. This is an immediate consequence of the well known fact that all Lie
semialgebras (indeed all Lie wedges) in sl(2, R) with nontrivial edge and nonvoid
interior are conjugate to sl(2,R)* (cf., e.g., [5], p.109f). n

7.4. The rectangular domains of infinity type 1. FEvery type 1 rectangular
domain 1s conjugate to the rectangular domain

(i) Dy with the three corner points H, H + 2P, H —2Q
or to

(ii) the transpose DT of Dy, with the three corner points H, H — 2P,
H+2Q.



BRECKNER AND RUPPERT 583

Proof. Let D be a rectangular domain of type 1. Then by assumption, the
boundary of D in Hyp has exactly three corner points, say A, B, C. We
may assume that A = B¢C. Upon applying a suitable inner automorphism we
enforce that A = H, so that B = H + AP and C = H + u(@) for some nonzero
A, 1 € R. Also, the diamond product C'¢ B does not exist, hence, as we have
seen in Example 4.15, we must have Ay = —4. Now the inner automorphism
et2dH with t = 1/2(log2—1log |\|) carries the triple (4, B, C) either to the triple
(H,H + 2P, H —2Q) or to the triple (H,H — 2P, H +2@Q). It follows that D is
conjugate either to D; or to DY . |

(Note that DT is mapped to —D; by conjugation with the rotation matrix
0—1
9=} 0) )

7.5. For the list of conjugacy classes of type 0 rectangular domains we need a
device which to every such domain assigns a convenient reference point and an
area.

(i) Consider the element H € Hyp. We noticed already in 4.6 that the
inner automorphisms of sl(2,R) act transitively on the space Hyp, so for every
X € Hyp there is an inner automorphism ¢ carrying X to H. For every
such inner automorphism ¢ we also have ¢(hor(X)) = hor(H) = H + RP and
p(vert(X)) = vert(H) = H+ RQ.

(ii) The inner automorphisms fixing H are exactly the maps e
t € R, and these act transitively on each connected component of hor(H)\ {H}.
Thus if X,Y € Hyp with Y € hor(X) \ {X} then there is exactly one inner
automorphism ¢ with ¢(X) = H and either o(Y)=H+ P or ¢(Y)=H — P.

(iii) Similarly, if X,Y € Hyp with Y € vert(X) \ {X} then there is a
unique inner automorphism 1 such that ¢ (X) = H and either ¢(Y) = H + Q
or (Y)=H-Q.

tadH
)

7.6. Orientation. For any X € Hyp we say that

(i) an element Y € Hyp lies on the right of X, or X lies on the left of Y,
in symbols: X < Y, if there exists an inner automorphism of sl(2, R)
sending X to H and Y to H + P;

(ii) an element Y € Hyp lies above X, or X lies below Y, in symbols:
X <, Y, if there exists an inner automorphism of sl(2,R) sending X to
H and Y to H+ Q.

7.7. Remark. (i) On each horizontal line the relation <; induces a total
order. (Note that there is an inner automorphism o with o(H — P) = H and
a(H) = H + P.) Similarly, <, induces a total order on every vertical line.

(ii) The partial orders induced by <; and <, are preserved under every
inner automorphism. (The outer automorphisms reverse them.)
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7.8. Lower left corner and characteristic of a type 0 rectangular
domain. Let D be a type 0 rectangular domain. Then the boundary of
D in Hyp has four corners. The corner point A of 0D will be called the lower
left corner of D if A <, B for every B € 0D Nhor(A) and A <, C for every
C € 0DNvert(A). It is immediate that a lower left corner of D exists and that it
is uniquely defined. Since by definition inner automorphisms respect the ordering
on horizontal or vertical lines, the lower left corner of a rectangular domain D
is carried to the lower left corner of ¢(D) by every inner automorphism ¢ of
sl(2,R).

We now assign to each type 0 rectangular domain D a characteristic
(D). Let A be the lower left corner of D and let B, C be the corner
points adjacent to A, so that B € hor(A), C € vert(A). Then the Lie bracket
[B—A,C — A] is a positive multiple r- A of A, we define (D) = /r. Note that
§ is invariant under inner automorphisms. For A = H the number §(D)? is just
the Euclidean area of the rectangle spanned by the vectors B — A and C' — A.

7.9. Remark. The characteristic 6(D) can be computed also in terms of
opposite corners of D (without knowing the lower left corner of D), after
conjugating one of them onto H. If H and Y = aH + P + (@ are opposite
corners of D then §(D) = H_ia\/|ﬁfy|. (We shall see in 8.8 that 1 +a > 0.)
Observing that H¢Y = H + ﬁl_—ﬁaP and Y¢H = H + 1%|-—an this formula is
checked by straightforward calculation.

7.10. The conjugacy classes of type 0 rectangular domains. Let D
be a rectangular domain of type 0 with 6(D) = A. Then D is conjugate to the
rectangular domain Do(\) with the four corner points

A=H, B=H+\P, C=H+)Q,
CoB = (4= N)H +4\P +4)Q) .

1
44 \2
Proof. Applying a suitable inner automorphism we enforce that H is the

lower left corner of D. Then, similar to the proof of 7.4, we apply an inner
automorphism et for a suitable real ¢t which maps D onto Dg()\). ]

7.11. Conjugacy classes of exponential Lie semialgebras. Let W be a

Lie semialgebra with nonvoid interior which is contained in KillT. Then exactly
one of the following assertions holds:

(i) W is conjugate to sl(2,R)" ;
(il) W is conjugate either to
W(D:) =R H + R (H +2P) + R{ (H — 2Q)

or to
W(D{) =Ry H + Ry (H — 2P) + Ry (H +2Q);
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(iii) there erists a unique positive real number X such that W is conjugate to

W(Do(A\) =Rf A+ R B+RIC+ R Co B, with
A=H, B=H+)P, C=H+)Q,

1
CeB = 1= (4= X)H +4XP 4 4)Q) .

Proof. This is immediate from the above classification of rectangular domains
in view of the 1-1 correspondence between rectangular domains and Lie semial-

gebras with nonvoid interior in Kill™. n

7.12. Lie wedges of exponential compression semigroups. In section
4 we have seen that the compression semigroups Sy, S* and S{ = Sy N S
are exponential. We now explicitly indicate the conjugacy classes of the corre-
sponding Lie wedges. The following assertions can be checked by straightforward
calculation:

(i) The Lie wedge Wy of Sy is conjugate to W (D;). In fact,

_ . Vi 0 10
W,\:u,\W(Dl)u)\l WlthU)\Z( 0 i)(l 1).

VA
(i) The Lie wedge W* of S* is conjugate to W(DT), with conjugating
element (u;")7.

(iii) The Lie wedge W} of S} is conjugate to W (Do(—2=)). In fact,

Ve

2 (‘/X 0
No~t  witho = #
VAR 0 41E

A

Wf‘ = ’UW(D()(

7.13. The above list shows that every conjugacy class of exponential Lie semi-
algebras with nonvoid interior in s[(2,R) contains a representative which is the
Lie wedge of an exponential compression semigroup. The following proposition
formulates this fact in terms of exponential semigroups.

7.14. Conjugacy classes of exponential subsemigroups. Let S be a
three dimensional exponential subsemigroup of S1(2,R). Then S is conjugate to
exactly one of the following semigroups:

(i) SI(2,R)*;

(i) $1= {(ﬁ 2) € 8I(2,R)* |a+bzc+d};

(iii) St = (S))T = {(‘; 3) € S1(2,R)* |a+czb+d};

(iv) S} = {(Z Z) €SI(2,R)* |a+c>b+d anda-l—%bz)\c-i-d}, for

some \ € Rt . m
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7.15. Remark. The above proposition says that all three dimensional exponen-
tial subsemigroups of SI(2,R) are semialgebraic semigroups in the sense of 6.13.
(The exponential subsemigroups of dimension 0,1,2 are trivially semialgebraic.)

8. An asymptotic formula for the diamond product

8.1. Proposition. For two points X,Y in Hyp the following assertions are
equivalent:

(i) There exist a positive real s and a bound B € N such that for all natural
numbers m > B and n > B the product exp(msX)exp(nsY) lies in
exp(Kill*).

(ii) There exists a positive real s such that exp(sX) and exp(sY) (alge-
braically) generate a semigroup which is contained in exp(Kill™).

(iii) The semigroup generated by exp(RTX) U exp(RTY) s contained in
exp(Kill1).

(iv) There exists a Lie semialgebra W C Kill™ containing both X and Y in
its interior.

(v) X and Y lie in the same connected component of the open set Hyp\1,
where T denotes the tangent plane of Hyp at —X . (Note that 7NHyp =
hor(—X) U vert(—X).)

(vi) The set Rt X + RYY (equivalently, the line segment conv{X,Y} ) does
not meet the light cone Kill°®.
Proof. The implications (iii) = (ii) = (i) are obvious. To see the implica-
tion (iv) == (iii) we only have to recall that exp W is a closed semigroup if W
is a Lie semialgebra with nonvoid interior contained in exp(Kill™), and that the

restriction of exp to Kill* is a homeomorphic embedding.

In order to establish the implications (i) = (v), (v) = (iv), and
(v) <= (vi) we simplify matters by applying a suitable inner automorphism so
that X = H. We write Y = aH + P + Q. Then the tangent plane of Hyp at
—X is the plane — X +R- P+ R- @, so (v) is equivalent to o > —1.

Pick A\, € R and let (“ b) = exp(pY). Using the formulas for exp we

cd
compute the number 7(A, p) = trace(exp AX exp pY):

(%)
(A, ) = ae* + de=* = (cosh () + asinh(y))e* 4+ (cosh(p) — asinh(p))e™>
= (1+ a)cosh(A + p) + (1 — a) cosh(A — p).

(i) = (v) By 2.3 we know that a matrix lies in exp(Kill") if and only if its
trace is > 2, so assertion (i) implies that 7(A, p) > 2 for any A = ms,pu = ns
with m,n € B+ N. But if @ < —1 then limy_,o, 7(A,A) = —o00, and if « = —1
then 7(A,A) = 2. Thus we see that a« > —1, and therefore (v) holds.
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(v) = (iv) Case 1: |a| < 1. Then we conclude from o+ 3y =1 that 3

and v have the same sign. Applying an inner automorphism of the form e” ad H ,

h € R, we enforce that § = . Then both X = H and Y = aH + (P + Q)

lie in the plane RH + R(P + Q). Thus a suitable rotation e?2d(P=Q) will map
sl(2,R)* onto a semialgebra W which contains both X and Y in its interior.

Case 2: a = 1. Then either 8 = 0 or v = 0,80 Y = H + P or
Y = H+~@. Then a rotation e’ ad(P-Q) will map sl(2,R)* onto a semialgebra
which contains both X and Y. (For instance, if Y = H + 2P then o = § will
do the job. This situation can be reached by applying suitable automorphisms
and/or anti-automorphisms.)

Case 3: a > 1. Then B and ~ have opposite sign. Using a suitable
inner automorphism e” ad H e enforce that B = —~. Then o?+ By = 1 implies
that || < a. A straightforward calculation shows that both X = H and
Y = aH + B(P — Q) lie in the interior of the semialgebra R(P + Q) + R (H +
P-Q)+Rf(H-P+Q). Infact, H=3(H+P-Q)+ 3(H—-P+Q) and

oH+B(P-Q)=(H+P-Q)+ %L (H-P+Q).
(v)<=(vi) Let s and t be positive reals. Then sX +tY = (s+ at)H +

BLP +~tQ € Kill® if and only if (s — £)2 + 2st(a +1) = 0, L.e., a+1 = — &=

This implies the equivalence of assertions (v) and (vi). u

8.2. Remarks. For later use we record the following observation of the above
proof: If X = H and Y = aH + BP + Q@ then assertion 8.1(v) just means that
a>—1.

8.3. Scholium. Suppose that X, Y € Hyp do not belong to the same Borel
algebra. Then the assertions listed in 8.1 are also equivalent to

(i) There exist positive reals s,¢ and a bound B € N such that for all
natural numbers m > B and n > B the product exp(msX)exp(ntY)
lies in exp(Kill™).

Proof. The implication (i) = (i) is obvious. To see that (i/) = (v), we
suppose, without losing generality, that X = H and Y = aH + P + Q.
Then we choose two sequences (mg) and (ng) of natural numbers such that
limmy = limng = oo and lim(mgs — ngxt) = 0. Let Ay = mys and pg = ngt. If
a < —1 then relation (x) of the proof of 8.1 implies that lim (A, ux) = —o0.
Since (i/) holds and since X and Y do not belong to the same Borel algebra,
we conclude that o > —1. n

8.4. Scholium. For two points X,Y € Hyp the following assertions are
equivalent:

(i) The line segment conv{X,Y} meets the interior Kill™ of the light cone.

(ii) For any choice of positive reals s, ¢ there exist natural numbers m,n € N
such that the product exp(msX) exp(ntY) does not belong to the image
of the exponential function.
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(iii) There exist positive reals s,¢ and natural numbers m,n € N such that
the product exp(msX)exp(ntY) does not belong to the image of the
exponential function.

Proof. The implication (ii) = (iii) is obvious.

(i) = (ii) Assertion (i) implies that X and Y cannot lie in the same
Borel algebra. Choose my and ng as in the proof of Scholium 8.3. Then for
large k the trace 7(mygs,ngt) of exp(mgsX)exp(ngty) is < —2, so assertion
(ii) follows from 2.3.

(iii) = (i) If (iii) holds then the line segment conv{X,Y} cannot be
tangent to the light cone, otherwise X and Y would lie in the same Borel algebra
b, which is impossible since exp b is a group. Thus the implication (iii) = (i)
follows from 8.1. ]

8.5. Proposition. Let X,Y be two elements in Hyp, not belonging to the same
Borel algebra. Then the following assertions hold:

(i) There exists a bound B > 0 such that exp(sX)exp(tY) ¢ exp(Kill), for
all s,t > B.

(ii) Let s,t € R" such that the elements exp(sX) and exp(tY) generate a

semigroup S with S C exp(Kill"). Then X and Y satisfy the equivalent
conditions of 8.1.

Proof. (i) Pick s,t € R*, and, for notational convenience, put exp(tY) =
(¢ 2). By 2.3(v) we have to show that the trace of exp(sX)exp(tY) is # 2 for
all sufficiently large coefficients s,¢.

We assume, without losing generality, that X = H and write ¥ =
aH + BP + Q. Since X and Y do not belong to the same Borel algebra,
we must have gy # 0. Now the equation trace(exp(sX)exp(tY)) = 2 boils
down to e®a + e~ %d = 2, which means that e® satisfies the quadratic equation
ax? —2x+d = 0. If ¢ is sufficiently large to ensure that a # 0 then the solutions
of this quadratic equation are

1+v1l—ad 1+£+/—bc 1+£sinh(t)y/—py

a a ~ cosh(t) + asinh(t)

()

and these are real only if 8y < 0. But the expressions on the right of (xx)

remain bounded if ¢ — oo, so if s and ¢ are chooser sufficiently large then e°

cannot satisfy the above quadratic equation and the assertion follows.
Assertion (ii) is a consequence of (i) and 8.3. u

8.6. Corollary. Let X,Y € Killt and let S be the semigroup generated by
xz =exp(X) and y = exp(Y). Then the following assertions are equivalent:

(i) The semigroup S is contained in exp(KillT).

(ii) There exists a Lie semialgebra in Killt which contains both X and Y .
Equivalently, either X and Y are linearly dependent or S is contained
in a conjugate of S1(2,R)™ .
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(iii) The line segment between X and Y does not meet the interior Kill™ of
the light cone Kill°.

Proof. Case 1: X and Y belong to the same Borel algebra. Then all three
assertions (i)—(iii) are satisfied, so their equivalence is obvious. (Note that if
X and Y are linearly independent then Rf X + R}Y is a two dimensional
Lie semialgebra which can be conjugated onto a Lie subsemialgebra of either
RH +Rf P or RH —R{ P.)

Case 2: We assume that both X and Y belong to Killt but do not
belong to the same Borel algebra. Then, in particular, X and Y cannot be
linearly dependent. Note that every exponential subsemigroup is conjugate to a
subsemigroup of SI(2,R)*, by 3.8. Put

1 1

A " =am”

XO ==
Note that X, Yy sit in Hyp but not in a single Borel algebra. By 8.5(ii) our
assertion (i) implies that X, Yy satisfy the equivalent assertions (i)—(vi) of 8.1,
conversely, if X, Yy satisfy 8.1(i)—(vi) then our (i) follows. In other words,
S C exp(KillT) if and only if Xy, Y, satisfy the equivalent conditions of 8.1.

Also, our assertion (iii) holds if and only if X,,Y, satisfy 8.1(vi), and
if 8.1(iv) is true for Xy, Yy then our (ii) follows. Finally (ii) = (i), so the
equivalence of (i)—(iii) follows.

Case 3: At least one of X, Y belongs to Kill’, and X, Y do not belong
to the same Borel algebra. With no loss of generality we assume that X = P and
write Y = aH + P 4+ v@Q. Note that v # 0. We first remark that in this case
assertion (iii) is equivalent to v > 0. Indeed, since by assumption o2 + 8y > 0,
the number

AMX +pY) = A(paH + (A + pf)P + Q) = p(e® + By) + Ay

is nonnegative for all A\, u € Rt if and only if v > 0. Thus the set Rt X +RTY
does not meet the interior Kill™ of the light cone if and only if v > 0.

Next we show that (i) implies that v > 0. Write y = (¢ 7). Then for
m € N we have

trace (z™y) = trace (yz™) = trace(y) + me.

If v < 0 then ¢ < 0 and, for m sufficiently large, trace(z™y) < —2, so S is not
contained in the image of the exponential function, a fortiori not in exp(Kill ™).
It follows that (i) implies v > 0 and hence (i) = (iii).

Since (ii) trivially implies (i) it remains to show that (iii) = (ii). Sup-
pose that (iii) holds. Then for every n € N the elements X,, = (1 — %)X + %Y,
Y, = %X +(1- %)Y are in Kill™ and do not lie in the same Borel algebra, hence
by the discussion of case 2 the line segment between X,, and Y,, is contained in

a Lie semialgebra which lies in Kill™. Write W,, for the semialgebra W,, gener-
ated by X,, and Y,,. Then the W,,’s are monotone increasing, hence the closure
of the union | J W, is a Lie semialgebra (cf. [5], Corollary I1.2.16, p. 89) which
contains both X and Y. This finishes the proof. [ |
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8.7. Remark. Suppose that X and Y are linearly independent elements in
Kill°. Then exp(Rt X) exp(RTY) nexp(Kill®) = @.

Proof. Let us assume, with no loss of generality, that X = P, and write
Y = aH + BP + ~vQ, with a®? + 8y = 0. For any s,t € Rt we have
trace(exp(sX) exp(tY)) = 2 + stvy, so trace(exp(sX)exp(tY)) =2 if and only if
v = 0, equivalently, Y is a multiple of X = P. This implies the assertion. ]

We now come to the main result of this section, a useful formula which
expresses the diamond product ¢ in terms of products in S1(2,R). For inves-
tigations “in the large” it plays the role the Trotter Product Formula plays for
investigations “near the identity.” This formula is based on the following obser-
vation:

8.8. Remark. Let (Z 3) € S1(2,R) and suppose that the products

e@):(eos 693><Z 2) 7'(8):<Z Z) (eo e98>

lie in exp(Kill™) for certain positive reals s which can be chosen arbitrarily large.
Then a > 0 (for otherwise trace(¢(s)) < 2 if s is large) and for any sufficiently
large s € Rt the elements £(s) and r(s) sit in exp(Kill*). Now our formulas
for the function rlog yield

e‘a—e °d 2e°b 2e%c
(1) rlogf(s) = ———— -H+ ——-P+ - Q,
u u u
efa —e °d 2e7°b 2e’c
() rlogr(s) = ———— - H + P+ —-Q,
u u u
where u = /(e®a + e~*d)? — 4. This implies
2b 2
lim rlogf(s) = H + —P, lim rlogr(s) = H + —CQ
§—00 a §—00 a

Note that in the terminology and notation of 4.16 we have (z 3) -H=H + %Q
and H - (‘C’ 3) =H+ %bP. Thus the two formulas in the display above can be
considered as formulas for the natural partial left and right action of SI(2,R) on
Hyp.

8.9. Theorem: An asymptotic formula for the diamond product.
Assume that X,Y € Hyp satisfy one (hence all) of the conditions listed in
Proposition 8.1. Then X <¢Y 1is defined and

XoY = lim  rlog (exp(sX)exp(tY))

(s,t)—(00,00)

= lim lim rlog (exp(sX)exp(tY))

§—00 t—00

= lim lim rlog (exp(sX)exp(tY)).

t—o00 s—00
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Proof. We first note that if the pair (X,Y") satisfies the conditions in 8.1 then
so does (=Y, —X). Thus if we can show that under our assumptions the above
three limits of rlog (exp(sX)exp(tY)) exist and lie in hor(X) then, by applying
this result to the pair (—Y, —X), we find that each of the corresponding limits
of

rlog (exp(sX) exp(tY)) = —rlog (exp(—tY) exp(—sX))

exists and lies in — hor(—Y") = vert(Y'), hence is contained in hor(X)Nvert(Y) =
{X ¢Y}, and the assertion follows.

Applying a suitable inner automorphism we enforce that X = H. Pick
two sufficiently large positive reals s and t. Write ¥ = aH + BP + vQ
and exp(tY) = (¢ 2). Then a = cosh(t) + asinh(t), d = cosh(t) — asinh(t),
b = Bsinh(t), ¢ = ysinh(¢) and inserting this into formula (}):

efa —e°d 2e5h 2e 5¢c

P+

H +
U U

rlog(exp sX exptY) = - Q,

with \/(e*a + e=*d)? — 4, we see that

lim  rlog (exp(sX)exp(tY))

(Sat)%(ooaoo)

= lim lim rlog (exp(sX)exp(tY))

§—00 t—00

= lim lim rlog (exp(sX)exp(tY))

t—o00 s—00

2

1+«

=H+ P € hor(H).

(note that by 8.2 we already know that 1+ a > 0) and the assertion follows. =

8.10. Remark.

(i) The arguments of the above proof can be used almost verbatim to
show that under the hypothesis of 8.9 the following slightly more general equality
holds:

XY = lim rlog (exp(sX') exp(tY”)).

(s,t)—(oc0,00)
(X1, Y —=(X,Y)

Details are left to the reader.
(ii) For X = H, Y = aH + BP + vQ € Hyp with a > —1, the proof
of Theorem 8.9 also yields, without taking recourse to 4.5, the special formula

Ho(aH + BP+~Q) = H + 7£.P.

8.11. Corollary. Assume that X, Y € Hyp satisfy one (hence all) of the
conditions listed in Proposition 8.1. Let s, t be arbitrary positive reals and denote
by S the semigroup generated by exp(sX) and exp(tY). Then S C exp(Kill™),
moreover, the diamond products X ¢Y and Y ¢ X exist and lie in the closure of
the set rlog(S).

Proof. This is an immediate consequence of Theorem 8.9. [ ]
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8.12. Remark. The formulas of Theorem 8.9 cannot be extended to the
closure of the set of all pairs (X,Y") satisfying the conditions of Proposition 8.1.
The boundary of this ‘admissible’ set consists exactly of the pairs (X,Y) with
Y € hor(—X) U vert(—X), which means that at least one of the two products
X¢Y and Y ¢ X does not exist. For instance, if Y € hor(—X) then there are
arbitrarily large numbers s,t € RT such that exp(sX)exp(tY) is unipotent, and
thus rlog(exp(sX)exp(tY)) is not defined.

As an example consider the case X = H—-2Q, Y = H+2P. Here X¢Y
is not defined (cf. 4.15), whereas Y¢X = H. The elements X and Y span a
Borel subalgebra, which does not contain H. Thus no formula involving only
products of the form exp(sX) or exp(tY) can yield Y ¢ X.

9. Rectangular bands coming from subsemigroups of SI(2,R)

9.1. Asymptotic rectangular bands. For a subset S of SI(2,R) we write

def

Up(S) = {X € Hyp | exp(RT X) N S # @} = rlog(S Nexp(Kill ™)),
U(S) £ Uy (9).

If S is a subsemigroup and contained in exp(Kill") and if Uy(S) is not contained
in a single Borel algebra then

def

Asy(S) = c(U(S)) = ¢(Uo(S)) C Hyp~

is called the asymptotic rectangular band of S.

This is an ambitious definition, the term ‘rectangular band’ and the
epitheton ornans ‘asymptotic’ have yet to be justified. We need some preparation.

9.2. Remark. Note that for any subset S of SI(2,R) we have Up(S) =
rlog(S Nexp(KillT)) C Uy(S) = U(S), and therefore U(S) = U(S).

9.3. Proposition. Suppose that X, Y € Hyp with Y € —hor(X) \ {—X}.
Consider two arbitrary positive reals s, t and denote by S the semigroup gen-
erated by exp(sX) and exp(tY). Then Asy(S) contains the nilpotency point
(hor(X), —hor(X)).

Proof. Without losing generality we assume that X = H and Y = —H + 8P,
where 8 € R\ {0}. Let m, n be natural numbers so that ms > nt. Using the
formulas for exp and rlog we compute

(e2nt _ 1)ﬂ

1 — e—2ms+2nt :

Z(m,n) :=rlog(exp(msX)exp(ntY)) = H+oP witho =
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Note that hor(Z(m,n)) = H + RP = hor(X). Choose now sequences (mg) and
(ng) of natural numbers such that limn; = lim(mgs — ngt) = oco. Then all
elements of the sequence (Z(myg,ng)) lie on the horizontal line hor(X), but no
subsequence of (Z(myg,ng)) converges in Hyp. Thus (cf. 4.9(iii)) we must have

lim ¢(Z(my, ng)) = (hor(X), — hor(X)), which finishes the proof. n

Now here is the justification for introducing the terminology of 9.1.

9.4. Theorem. Let S C exp(Killt) be a subsemigroup of SI(2,R). Suppose
that U(S) is not contained in a single Borel subalgebra of sl(2,R). Then the
following assertions hold:

(i) The subset U(S) is a full partial subsemigroup of Hyp, that is, if X,Y €
U(S) and X <Y is defined then XY € U(S).

(ii) Asy(S) is a subsemigroup of the rectangular band Hyp™ .

(iii) Let I be a two sided ideal of S. Then U(S) = U(I) and Asy(S) =
Asy(1).
Proof. Pick X, Y € Uy(9).
Case 1: X and Y do not belong to the same Borel algebra. Then by
8.5(ii) the equivalent conditions of 8.1 are satisfied and hence by Corollary 8.11
the diamond product X ¢Y exists and lies in U(S). Moreover, if either X or Y
belongs to Up(I) then X ¢Y € U(I), in view of 8.9.

Case 2: X and Y belong to the same horizontal or vertical line. Then
XoY =X or X¢Y =Y and hence X¢Y € U(S), trivially. Furthermore, the
line segment joining X and Y does not intersect Kill® so the asymptotic formula
of Theorem 8.9 shows that X ¢Y € U(I) whenever X or Y lies in Uy([).

Case 3: X and Y belong to the same Borel algebra b but Y € —hor(X).
Then the diamond product X ¢Y does not exist and the product ¢(X)c(Y) is
the nilpotency point (hor(X), —hor(X)). If Y # —X then Proposition 9.3 shows
that (hor(X), —hor(X)) € Asy(S). Also, if X or Y belongs to Up(I) then 9.3
implies that (hor(X), —hor(X)) € Asy(I).

Thus we may assume that Y = —X . This means that there are numbers
s,t € R such that exp(sX) € S and exp(—tX) € S. If s,t are rationally
dependent then we may assume s =t. If s,¢ are independent over the rationals
then the set Ns — Nt is dense in R and therefore exp(—sX) € S.

For simplicity we suppose, without losing generality, that X = H . Since
Uo(S) is not contained in a single Borel algebra there exists an element Z €
Uo(S)\ (RH +RQ), say Z = aH + P +~vQ with 8 # 0. Pick ¢ € R with
exp(¢Z) € S. Then for every n € N the element exp(nsH) exp((Z) exp(—nsH)
lies in exp(Kill") N'S, hence

Zy, & tlog(exp(nsH) exp(¢Z) exp(—nsH)) = e 7
— aH+€2nS,3P+e_2ns’7Q

belongs to U(S). Now lim, . ﬁZn = P, so Proposition 4.10 shows that
lime(Z,) = (hor(H),—hor(H)) € Asy(S). Moreover, if either X € Uy(I) or
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Y € Uy(I) then Z, € U(I), for all n, hence lime(Z,,) = (hor(H),—hor(H)) €
Asy(I).

Case 4: X and Y span a Borel algebra b but X € —hor(Y), with
Y # —X. Then X¢Y exists. Here we assume, with no loss of generality, that
Y = H. Then X can be written in the form X = —H+pP with p # 0. We claim
that there exists an element Z € Uy(S) with Z ¢ RH +RP and Z ¢ —H +RQ.
Indeed, since Up(S) is not contained in RH + RP we can find a Z € Uy(S5), say
Z = aH+ BP+~Q with v # 0. Let s,t € Rt with exp(tZ) € S, exp(sH) € S.
Recalling formula (1) of Remark 8.8 we find

27 sinh(t)
cosh(t) 4+ asinh(t)

lim rlog(exp(tZ)exp(sH)) = H
§—00

Replacing Z by rlog(exp(tZ) exp(sH)) for suitably large s we now enforce that
Z ¢ —H + RQ, since v # 0 we also have Z ¢ RH + RP. Thus, applying what
we have learned in Case 1 and Case 2, we see that Z¢Y € U(S). Note that with
Z = aH+BP+~Q wehave Z¢Y = H+ $25Q. Let (Y, = anH 4 8, P +7,Q)
be a sequence in Uy(S) with limY,, = Z¢Y. Then a,, — 1, B, — 0, 7y, 4 0.

We claim that X and Y,,, for sufficiently large n, satisfy the condition
(v) of 8.1, that is, Y,, ¢ —hor(X) and Y,, ¢ —vert(X). Since —vert(X) =
hor(—X) = H + RP we see that Y,, ¢ —vert(X), for large n. Also, the formula
in 4.5 yields —hor(X) = H — pP + R(—2pH + p?*P — 4Q). Thus Y,, € —hor(X)
if and only if the equations

an=1-2pz, fn=-p+p’s, Yn=—4

have a solution z € R. But since o, — 1 and 7, # 0 such a solution cannot
exist for all large n.

It follows that we can apply 8.11 once more, and conclude that X ¢Y,, €
U(S),so X¢Y =lim, X?Y, € U(S).

Furthermore, if X € Uy(I) then, by the discussions in Case 1 and Case
2, the diamond products X <Y, lie in U(I), hence X*Y € U(I). Similarly,
if Y € Up(I) then, invoking the results in Case 1 and Case 2, we see that the
diamond product Z<¢Y lies in U(I). Hence we can choose Y, € Uy(I) and
therefore X¢Y =1limX<¢Y, € U(I).

Summarizing the results established case by case above we now note that
for fixed X,Y € Up(S) the diamond product X ¢Y belongs to U(S) if it exists
and that ¢(X)c(Y) € Asy(S) otherwise. Passing to limits, this proves (i) and
(ii). In the same vein we note that X ¢Y € U(I) if X ¢Y exists and either X
or Y lies in Up(I); if X¢Y does not exist then ¢(X)c(Y) € Asy(I). Passage
to limits shows that Asy(I) is a two sided ideal of Asy(S). But the rectangular
bands are simple semigroups (by 4.12), so we conclude Asy(S) = Asy(I), and
whence U(S) = ¢ (Asy(S)) = c 1 (Asy(I)) = U(I). ]



BRECKNER AND RUPPERT 595

9.5. Remark. In the course of the above proof we also have seen that, under
the assumptions of the theorem, the set

{XoY | X,Y € Uy(S) and X, Y satisfy the conditions of 8.1}

is dense in U(S).

9.6. Proposition. Let S C exp(Kill") be a subsemigroup of S1(2,R). Suppose
that the set Uy(S) contains at least two elements and that it satisfies one of the
following conditions:

(i) Uo(S) is contained in a horizontal line,
(ii) Uo(S) is contained in a vertical line,

(iii) Uop(S) is not contained in a Borel algebra.

Then U(S) is a perfect set, i.e., none of its points is isolated.

Proof. Consider an arbitrary element X € Up(S). Each of the conditions
(i), (ii), and (iii) implies the existence of an element Y € Uy(S) \ {X} such
that X and Y satisfy one (hence all) of the conditions listed in 8.1. (In
particular, the semigroup generated by exp(R™X) U exp(RTY) is a subset of
exp(Kill*).) Without any loss of generality let us assume that X = H. Put
Y =aH + 8P +~Q. Since X #Y we can also assume that 8 # 0. (The case
v # 0 is treated analogously.) Fix a positive ¢ such that exp(tY) = (¢ 2) €S
and a # 0. Pick positive reals s and s’ such that exp(sH) and exp(s'H) lie
in S. Then rlog(exp(sH)exp(tY)exp(s'H)) € Uy(S). Furthermore, applying
formula () of 8.8 we obtain that

8'—00 s—00 s'—00 a

2 —2s'
lim lim rlog(exp(sH)exp(tY)exp(s'H)) = lim (H—i— be P) = H.

Since b # 0, the matrix H cannot be an isolated point of U(S), which finishes
the proof. [ ]

9.7. Example. The semigroup

51(2,N0)":ef{<zs> \a,b,c,deNU{O},ad—bczl}

is a discrete submonoid of SI(2,R)™, it is the compression semigroup in S1(2, R)
of the lattice N x N. We show that

(i) SI(2,Np)\ {1} is a free semigroup, generated by the matrices x = exp(P)
and y = exp(Q);
(i) U(SL(2,Np)) = sl(2,R)™ N Hyp.
Remark. Tt is well known that the group generated by = and y is S1(2,Z), which

is not a free group (it contains the elements (21 %)) and (j (1)) of order 4 and 3,
respectively.)
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Proof. (i) Write F(x,y) for the free semigroup in two generators, and write
f:F(x,y) = S1(2,Np), w(x,y) — w(z,y), for the canonical evaluation map. Let
1#£s= (¢ g) € S1(2,Nyp). We have to show that s = f(w) for some uniquely
defined word w € F(x,y). We use induction on the number n = be. If bc = 0
then @ = d = 1 and either b = 0 or ¢ = 0, so either s = z® or s = y° and
the assertion is obvious. Suppose now that the assertion is true for all matrices

s = (% 1) €S1(2,Ny) with 0 <b'¢ < be.
Case 1: a < b. Then ad = 1+ bc < bd hence 1 < b(d — ¢) and thus

c < d. It follows that for a < b we have

1 _[a b 1 -1\ [(a b—a
5% _<c d) (0 1>_<c d—c)681(2’N0)’

(D) (5 ) -(h s

By the induction hypothesis there is a unique word w; with f(w;) = sz=1. We
conclude that f(w) = s for w = wyx. This representation is unique since there
is no word w’ € F(x,y) with f(w')y = s.

Case 2: a > b. Then ad = 1+ bc > bd and therefore 1 > b(d — ¢), so
0 > b(d—c). Since bc # 0 we conclude that d < ¢, similar to case 1 this implies

syt = (Z 2) (_11 (1)) = (Z:S 2) € S1(2,Ny).
et () (o) (0 ant) ese

As in case 1 it follows that there is a unique word w with f(w) = s.

(ii) Let p be a positive rational number. Then there are relatively prime
positive integers p,q such that p = £. Remembering elementary number theory
we find infinitely many pairs m,n € N such that pm — gn = 1. The quotients

n . s i Pm—1l __p
- of such pairs (m,n) converge, and lim ;> = lim Eon- = 6=p. Furthermore,

whereas

whereas

m

— 2 2
rlog(m n)z P H+ n P+ d Q
a p Vip+m)2-4  p+m)2-4  /(p+m)?—4
and for m — oo this matrix converges to H + 2pP. Thus, by continuity,

H+ RSP C U(SI(2,Ny)). In the same way, or using the anti-automorphism
s+ sT we see that H + RjQ C U(S1(2,Np)). Similarly, we find

rlog(p n)z p—m H+ 2n P+ 2q 0
¢ m)” Jprmr—4 @ JotmP-4  Jo+m?_4

and we see that —H +RJ P and —H +RJ Q lie in U(S1(2,Np)). Because of the
rectangular structure of U(S1(2,Np)) this implies the assertion. n
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9.8. Example. The semigroup S = SI(2,Ny) N S1, where S} is defined as in
6.12, is a discrete subsemigroup of S1(2,Np). Moreover, it can be checked easily
that for nonnegative integers a,b,c,d with ad — bc = 1 the following assertions
(i)—(iii) are equivalent:

(i) a+b>c+d, anda+c>b+d;
(ii)) (a+b)(a—c)>1, and (a+c)(a—b) > 1;
(iii) @ > b, and a > c.

Moreover, if a = d then these inequalities imply b = ¢, hence a? = b2 + 1,
which means ¢ = 1, b = 0. A straightforward calculation, along the lines of
the preceding example, shows that for 1 # = € SI(2,Ny) we have zSNS # O
if and only if z € (§1)SL(2,Ny), and similarly, Sz NS # O if and only if
z € S1(2,Ny) (7 ). Thus it follows that

S={1}U ((1) 1) S1(2, Ny) G (1’)

Also, by a well known criterion (cf., e.g., [3] II, Corollary 9.8, p.119), this implies
that S\ {1} is a free semigroup. (It can be shown that S has infinitely many
generators.) Recall from 6.12 that the Lie wedge W} of S] is spanned by the
four vectors H, H + 2P, H + 2Q, 2(P + Q). By the preceding example we
know that Uy(SI(2,Np)) is dense in sl(2,R)™ N Hyp, so we conclude that Up(S)
is dense in W N Hyp, hence U(S) = W{ N Hyp.

10. Rectangular domains and umbrella sets

10.1. The umbrella set of a subset in a Lie group. Let S be a subset of
a Lie group G with Lie algebra g. Then we define the umbrella set Umb(S) of
S as:

Umb(S) € {X € g|Tto>0: exp(tX) €S, Vi > to}.
In the present notes S will always be a subsemigroup of G.

The term ‘umbrella set’ is derived from our situation in SI(2,R). If S
is open and S # SI(2,R) then Umb(S) = RtUy(S), so Umb(S) is formed by
‘unfolding’ the set Uy(S) along the half lines passing through its points, like a
‘knirps.” For general semigroups S the set Umb(S) is not fit to serve as an
asymptotic object, but its closure Umb(S) is.

10.2. Remark. The above definition provides a variant of LAWSON’s ‘horizon’
concept ([10], p.21). If S is a subsemigroup with nonempty interior of a Lie
group G then LAWSON defines the horizon of S as the set

def

Loo(S) = {X € g|exp(tX) € Int S for some ¢ > 0}.
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It is not difficult to see that L.(S) = Umb(Int.S) (see the discussion below).
This observation as well as other elementary properties of Umb(S) in the case of
open semigroups S are contained (at least implicitly) in [10]. The major reason
for our slight deviation from LAWSON’s concept is that we are interested also in

one parameter subsemigroups meeting boundary points of S and in semigroups
S with Int S = Q.

10.3. Properties of Umb(S).

(i) Obviously Umb(S) is closed under multiplication with positive scalars,
but except for the case [X,Y] = 0 it is not clear from the definition that
X,Y € Umb(S) implies that X +Y € Umb(S). In fact, examples show
that in the general context Umb(S) need not be additively closed, even if S
is open and G is nilpotent (cf. [11],[12]). Also, if S is closed then Umb(S5)
need not be a closed subset of g. To see this, consider, for example, the
subsemigroup T = {(z,y) € R? | y > 1} of R%2. A simple computation shows
that Umb(T) = {(z,y) € R? | y > 0}.

(ii) Suppose that exp(X) € Int S. Then there exist a neighborhood U of X in g
and a positive number T' such that exp(tY) € Int S forall ¢t > T andall Y € U.
In particular, U C Umb(Int S). This also shows that Umb(S) is open whenever
S is open.

Proof of (ii): Since exp is continuous there is an ¢ > 0 and a neighborhood U
of X in g such that exp([1,1+4¢]-U) C IntS. Since Int S is a subsemigroup,
we have exp([n,n(l+¢)]-Y) C IntS for each n € N and each Y € U. But if
n € Nl with n > 1 then exp([n,n+1])-U) C Int S, so the assertion holds with

(iii) If S is an open subsemigroup of S1(2,R) and S # S1(2,R) then Umb(S) =
Rt Up(S).

We will now show that in the case of G = Sl(2,R) umbrella sets of
subsemigroups have “nice” properties. We start with the remarkable fact that
for open connected subsemigroups S the set Uy(S) is a rectangular domain.

10.4. Theorem. Let S be an open connected subsemigroup of SI(2,R) with
S # S1(2,R). Then S C exp(Kill") and D = Uy(S) is a rectangular domain.

Proof. The inclusion S C exp(Killt) follows from 3.4(iii). Also, D is open,
since S is open and exp is a homeomorphism on Kill*, and D is connected,
since S is connected and rlog is continuous. We know already from 9.4 that the
closure ¢(D) of ¢(D) in Hyp™ is a subsemigroup of the rectangular band Hyp™ .
Thus ¢(D) = hor(D) x vert(D). Furthermore, 8.9 implies that the diamond
product X ¢Y exists for every X,Y € D, hence hor(D) and vert(D) are two
proper arcs. We conclude that Int (c(D)) = hor(D) x vert(D), so Int (c¢(D))

contains no nilpotency points. This yields that Int(D) = ¢~!(Int (¢(D))) is a
¢ -semigroup.
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Thus all we need to show is that D is the interior of D. Suppose that
there exists an interior point of D which does not belong to D. Applying a
suitable inner automorphism of s[(2, R) we enforce that this point is H.

Since H is an interior point of D the horizontal line hor(H) = H + RP
dissects D, that is to say, D \ H+RP is the union of two disjoint nonvoid open
subsets. Since D is connected and dense in D this means that D Nhor(H) # Q.
Similarly, D N vert(H) # (. Thus there exist points X and Y in D with
XoY =H,wewrite X =H+ P, Y =H+~v@. We claim that X and Y can
be chooser so that § and v have the same sign.

Indeed, if this is not the case then there exists a nonzero real number [
such that H+pBP € D but H—-R*BPND = H+R"BQND = . This means,
however, that D does not meet the union H —RtBPU{H}UH +R*3Q. Since
the latter set also dissects D we therefore arrive at a contradiction.

The inner automorphism ¢ = eadtH , with ¢ = ;(log|y|—log|8]) satisfies

o(H) = H, ¢(|f|P) = +/ByP and ¢(|7|Q) = VvByQ. Applying ¢ we thus
enforce that 8 =+, so Y is the transpose of X. Since D is open the matrix

. I} 2 . € 2
Xe=X+e(H+ —2P— _ﬁQ) =14+e)H+(1+ 2)'6P_8_,8Q
and its transpose
_ 2 By — _ .2 €
Y.=Y +e(H ,3P+2Q)_(1+E)H 6ﬁP+(1+2)ﬂQ

are also in D for all sufficiently small € > 0. We know from 10.3 that there exist
positive reals ¢y and e such that exp(tX.) and exp(tY:) lie in S for t > %

and ¢ € [0,e0]. We now fix ¢ > o such that zfjﬁ((g —1 < gg. A straightforward

calculation using our formulas for exp shows that

exp(tX.) exp(tYe) = <Z 2) , where

= (G 1) 1 G 10

If in this formula we put ¢ = 0 then b and 8 have the same sign, whereas for
cosh(t) _ 1 these numbers have the opposite sign. It follows that b = 0

= sinh(f)
for some ¢ in the interval (0, Zfﬁﬁ((f)) — 1), so expRT H meets S and therefore

H € D, a contradiction. This finishes our proof. [ ]

10.5. Theorem. Let S # SI(2,R) be a subsemigroup of S1(2,R) with dense
and connected interior. Then the following assertions hold:

(i) Umb(S) is a Lie semialgebra and its exponential image exp(Umb(S)) is
a closed semigroup;

(ii)) Umb(Int S) is the algebraic interior of Umb(S);
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(ili) The set S, = {s € SI(2,R) | s" € Int S for some power n € N} is an
open semigroup. More specifically, we have

S, = exp(Umb(Int S)) U — exp(Umb(Int S)),

S, ={s€SI(2,R) |1 # s" € S for some power n € N}.

Proof. We first note that S C exp(Killt), by 3.4(iii).

(i) Since S has dense interior we see that Umb(Int S) is dense in Umb(S).
Furthermore, Umb(IntS) = R* rlog(Int S) by 10.3(iii), and rlog(IntS) is a
rectangular domain by 10.4. Combining this with 5.5(i) we get assertion (i).

(ii) Since for a convex open subset C' of a finite dimensional vector space

we always have Int(C) = C it follows that Int(Umb(S)) = Int(Umb(Int S)) =
Umb(Int S).

(iii) We know from (i) and (ii) that exp(Umb(Int S))U— exp(Umb(Int S))
is an open semigroup. Thus we are left to show that the two equalities hold. In or-
der to prove the first one it suffices to show the inclusion S, C exp(Umb(Int S))U
—exp(Umb(Int S)). Pick s € Sy, and let n € N with s™ € Int.S. We suppose
that s € exp(sl(2,R)). By 2.2(ii) and since (s € S,) <= (—s € S,), this will
inflict no loss of generality. Write s = exp(X). Then s = exp(nX) € Int S, so
by 10.3(ii) X € Umb(Int S), hence s = exp X € exp(Umb(Int S)).

To show the second identity we only have to prove that

{s € SI(2,R) | 1 # s™ € S for some power n € N} C S,.

Pick s € SI(2,R) such that 1 # s™ € S for a suitable n € N. Observe that
(—5)?" = 52" also lies in S\ {1}. As before we therefore may and do suppose
that s = exp(X) with 0 # X € sl(2,R). Now X cannot lie in Kill™ (since

S C exp(Killt) and s” # 1), so s = exp(X) € exp(Kill"). Let U be an
open neighborhood of s in exp(Kill"). Define p,: exp(Kill") — exp(Kill™),

z — z™. Since the restriction of exp to Kill* is a homeomorphism, the map
Pr is @ homeomorphism, and therefore p,,(U) is an open neighborhood of s™ in

exp(Kill*). Since Int S is dense in S we therefore find an element s, € - U with
Pn(s«) € Int S. By definition, s, € UN S, and we conclude that s, € S,. The
assertion follows. n

10.6. Corollary. Let S be an open subsemigroup of S1(2,R) with S # SI(2,R).
Then there are countably or finitely many Lie semialgebras W;, j € J, with

nonvoid interior and contained in Kill*, such that

Umb(S) = | Int W
JjeJ

Proof. Note first that Umb(S) = Umb(S Nexp(Kill*)). By Proposition 3.5 we
know that S N exp(Kill™) is the union of the semigroups

Se(z) = U C(zF), z € Snexp(Kill™),
keN
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where C(x) denotes the connected component of z in S. (Since S is open, the
family {C(x)} is countable or finite.) Furthermore, for every z € S Nexp(Kill™)
there is an index n such that Umb(S.(z)) = Umb(C(x™)). Now our assertion is
an immediate consequence of Theorem 10.5. [ ]

10.7. Remark. Let S be a subsemigroup of S1(2,R) with dense interior and

assume that S C exp(KillT). Then Umb(S) = Umb(J) for every two sided ideal
I in §. This can be seen from the following chain of inclusions and identities
(see also Theorem 9.4)

Umb(S) D Umb(I) O Umb(Int I) = Rt Uy(Int I) = R+U(Int I)
=R+U(S) = Umb(S).

Further generalizations to arbitrary subsemigroups S # SI(2,R) with dense
interior are left to the reader.

10.8. Theorem. Let S be a Lie subsemigroup of SI(2,R) with non-empty
interior and let W be its Lie wedge. Then Umb(S) is the semialgebra generated
by W, i.e.,

Umb(S) = ﬂ{Wl Csl(2,R) | W C Wy and Wy is a semialgebra}.

Proof. Denote the intersection

ﬂ{Wl Csl(2,R) | W C Wy and W, is a semialgebra}

by w. Obviously, Umb(S) contains W. We know by Theorem 10.5 that
Umb(S) is a semialgebra. Thus W C Umb(S). Since W is a Lie semialgebra

contained in Kill™, its exponential image exp W is an exponential subsemigroup
of S1(2,R). On the other hand, the inclusion W C W implies that S C exp(W),

hence Umb(S) C Umb(exp(W)) = W. Thus Umb(S) C W . n

10.9. Remark. The Lie semialgebra V generated by a wedge W with W C
Kill™, and not contained in a single Borel algebra, can be computed comfortably

as the intersection of all closed half spaces bounded by a Borel algebra which
contain W . Alternatively: V =R+ - M, where

M={X?Y | X,Y € WNHyp and both X¢Y and Y ¢ X exist}.

To see this, notice that the algebraic interior Wy of W lies in Killt and that
Wy N Hyp is connected, hence D = (Wy N Hyp) ¢ (W, N Hyp) is a rectangular
domain. By 5.5(i) we know that Rt D is a Lie semialgebra. Since it contains W
as well as M this implies the assertion.
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10.10. Example. Let W be the wedge spanned by the three vectors A =
H + 2P, B=H+2Q, and H. Then W is not a semialgebra, since [A, B] =
4H — 4P — 4@ does not belong to the span of A, B. The Lie semialgebra
generated by W is spanned by the four vectors A, B, H,and B*A= P+ Q.
This semialgebra is the intersection of s[(2, R)* with its conjugate ¢(sl(2,R)*),
where ¢ is the inner automorphism which induces a rotation of sl(2, R)* about
the axis R(P — Q) by m/2.

10.11. Proposition. Let W be the Lie wedge of a three dimensional Lie
subsemigroup S of SI(2,R). Then W, Umb(S), and Umb(S) contain the same
nilpotent matrices:

Umb(S) NKill® = W nKill® = Umb(S) NKill°.

Proof. Since W C Umb(S) it suffices to show the equality Umb(S) N Kill® =
W N Kill°. Also, by [5] V.4.23 (p.418) all Lie wedges in sl(2,R) with nontrivial
edge are conjugate to s[(2,R)T, so our assertion is trivial if W is not pointed.

Thus let us assume that W is pointed.

Step 1. We first show that if W does not contain nonzero nilpotent
elements then neither does Umb(S). Assume W to be free of nonzero nilpotent
elements. Then W \ {0} C Kill". Let g:Kill™ — Hyp, X — (1/A(X))X.
The set M & W N Hyp = g(W \ {0}) is compact (since W \ {0} C Kill*) and
connected. Since W\ {0} C KillT we see that for any two points X,Y € M the
line segment conv{X,Y} does not meet the light cone, so Theorem 8.9 implies
that all diamond products X ¢Y with XY € M exist. Using Theorem 10.8 and
Remark 10.9 we conclude that Umb(S) = R (M ¢ M). Since M is compact we
therefore see that Umb(S) = Ry (M ¢ M), and that Umb(S) indeed contains no
nonzero nilpotent elements.

Step 2. Next we suppose that Umb(S) contains a nilpotent element N
which is, however, not contained in W. To simplify our arguments we assume,
not losing generality, that W C sl(2,R)T and N = Q. By 10.9 this means
that there exist elements X,,,Y,, € W N Hyp and numbers ),, € Rt such that
Q@ =1lim )\, (X, ¢Y,). Also, remembering step 1, we know that P € W. By 4.10

(%) lirrlnc(Xnan) = (hor(—H), — hor(—H)).

We claim that a suitable subsequence of (X,,) converges. If not then we can find
a subsequence (X,,) of (X,,) and positive numbers A,, with \,, — 0 such that
(AmXm) converges to a nonzero element. This element must be nilpotent and is
contained in W, hence lim,, \,, X,,, = P. Invoking 4.10 once more, we see that
lim,,, hor(X,,) = hor(H), a contradiction to (x).

Thus (X,) has a convergent subsequence (Xj), and, by the same ar-
gument, (Y,) has a convergent subsequence (Y;). By (%) limgc(Xg,Yy) =
(hor(—H),vert(H)), therefore

hor(lilank) = hor(—H), vert(liin Yy) = vert(H).
It follows that A = limg(Xp +Yx) € RQNW C RIQ. If A = 0 then

0 # limg X = —limg Yy € W, a contradiction to our assumption that W is
pointed. If A # 0 then Q € W, contrary to our assumption in step 2. [ ]
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10.12. Example. We compute Umb(S) and Umb(S) of the Lie semigroup
S = SI(2,R)** of Example 6.5. The Lie wedge of S is W = Rf H+RI P+R{ Q.
Then Theorem 10.8 shows that Umb(S) is the Lie semialgebra generated by
W'. Since W contains the linearly independent nilpotent elements P and @
we conclude that Umb(S) = sl(2,R)*. For (¢ 3) = exp(—aH + BP) with
a > 0,8 € R we do not have a > 1, s0 —H + RP N Umb(S) = @. Similarly,

—H +RQ NUmb(S) = @. Thus Umb(S) = Umb(Int S) U W

10.13. Example. Consider the Lie semigroup S = S1(2,R)*+ T~ of Example
6.6. The Lie wedge of S is W = R(TP + ]RS’Q. Since S has interior points
Theorem 10.8 applies and shows that Umb(S) = sl(2, R)*, which can be ver-
ified easily by direct computation as well. Thus every one parameter subsemi-
group expRT X with X € algint(s[(2, R)™) meets the interior of S. However
H ¢ Umb(S), so Umb(S) is not closed. The only upper [lower| triangular ma-
trices in S are the unipotent elements exp(tP) [exp(tQ)], with ¢ > 0. Thus
Umb(S) = Umb(Int S) UW . Note that W is only two dimensional; nevertheless
the asymptotic behavior of the interior of S1(2,R)T™ %~ is the same as that of
the interior of the apparently ‘larger’ semigroup S1(2,R)*.

Note that, in accordance with Proposition 10.11, W and Umb(S) contain
the same nilpotent elements.
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