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The Closure Diagrams for Nilpotent Orbits
of Real Forms of Eg4

Dragomir Z. Pokovi¢*
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Abstract. Let O; and O, be adjoint nilpotent orbits in a real semisimple
Lie algebra. Write O; > O, if O, is contained in the closure of ;. This
gives a partial order on the set of such orbits, which is known as the closure
ordering. We determine this ordering for the adjoint nilpotent orbits of the
four noncompact real forms of the simple complex Lie algebra FEg.

1. Introduction

In this paper g denotes a simple complex Lie algebra of type Eg and g, one of its
noncompact real forms. Let G be the adjoint group of g and o the conjugation of
g with respect to gy. There is a unique anti-holomorphic involutory automorphism
of G whose differential is 0. We denote it also by o. The adjoint group Gy of g,
is the connected Lie subgroup of G' corresponding to g,. According to Matsumoto
[14], Gy = Gr where Gr = {a € G : o(a) = a} is the group of real points of G.

Fix a Cartan decomposition g, = & @ py of go and denote by 6 the
corresponding Cartan involution of gy: #(X) = X for X € & and 0(X) = —X
for X € py. Let € (resp. p) be the complexification of €& (resp. py). We extend 6
to a complex linear map of g and use the same letter f to denote this extension.
Furthermore we denote by 6 also the corresponding involutory automorphism of
G. Let K (resp. Kj) be the connected Lie subgroup of G with Lie algebra ¢ (resp.
t ). Then K| is a maximal compact subgroup of Gy, and K = {a € G : 0(a) = a}.

Let NV be the nilpotent variety of g and N'/G the orbit space for the adjoint
action of GG, equipped with the quotient topology. The adjoint nilpotent orbits in
g were enumerated a long time ago by Dynkin. There are 21 such orbits (including
the trivial one). Nowadays one uses the Bala—Carter symbols to label these orbits
[3]. For any orbit O € N'//G we denote by O its closure in g. It is a union of O
and some orbits of smaller dimension.

If 01,0, € N/G and O, C O,, then we write O; > O,. If O; > O, and
O, # Oy, then we write O; > O,. If O; > O, and there is no G-orbit O such that
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O; > O > O,, then we write O; — Oy. The topology of N'/G can be represented
by the so-called closure diagram. Each orbit O € N/G is represented by a dot
and if O; — O, then the dots corresponding to these two orbits are joined by a
line. The dot for O; is placed higher than the one for O,.

Since the closure diagram for N'/G plays an essential role in the paper, we
have reproduced it from [3] in Figure 1. Near each dot, the Bala—Carter symbol
is displayed for the corresponding orbit O, which may be followed by the Cartan
symbols of other regular semisimple subalgebras of g whose principal nilpotent
orbit is contained in O. On the left hand side of the diagram we indicate the
complex dimensions of the orbits on each level.

Let Ng = N Ng, be the nilpotent variety of g, and N; = N Nyp that
of p. The corresponding orbit spaces Nr/Gy and N;/K are also equipped with
their quotient topologies. Both of these spaces are finite. The Kostant—Sekiguchi
correspondence establishes a bijection Ng/Gy — N;/K. For more details about
this correspondence we refer the reader to the book [5]. Barbasch and Sepanski
[1] have shown recently that this bijection is a homeomorphism.

The K-orbits in N; were enumerated in our papers [6, 7]. For the sake
of consistency, we use here the same enumeration. Our original enumeration is
reproduced in [5] where the trivial orbit {0} has been given the number 0. Up to
G'-conjugacy, g has four noncompact real forms:

EI == E6(6)1 EII == EG(?), EIII == E6(714)a EIV == EG(*QG)
where the subscript £ inside the parentheses is the so-called Cartan index
k = dim(pg) — dim(&).

Our main result is an explicit description of the topology of Nr/Gy (or,
equivalently, A;/K): The closure diagrams for Nr /Gy (or N;/K) are given by
Figures 2 (p. 389), 3 (p. 397), and 5 (p.407). In the case EI we work directly with
Nwr/Gy since this real form is of outer type. In the cases EII and EIII, which are
of inner type, it is more convenient to work with N7/K. The case EIV is rather
trivial as it has only two nonzero nilpotent (g-orbits.

The representatives of nilpotent Gg-orbits given in [8] are of special kind
because they are embedded in real Cayley triples. Dropping that restriction, one
can find simpler representatives. Table 3 below (p. 407) gives such representatives
for the case E L

Let us describe briefly the action of Aut(g,) on Nr/Go. We recall that
Aut(gg)/Go = Z5. (By Z; we denote a cyclic group of order £.) If g, is of outer
type (EI or EIV), then Z, acts trivially on Ng/Gy. If gy is of type EII, the
generator of Z, interchanges the orbits 9 and 10, 12 and 13, 28 and 27, and 29
and 30. Finally, if g, is of type EIII, the generator of Z, acts as the reflection in
the vertical axis of symmetry of the EIII diagram in Figure 5.

A few words are in order concerning the use of the computer. First of
all we used it to compile most of our tables. Several of these tables can be
easily verified by hand. Secondly, we often use the computer to determine the
dimensions of various orbits and to analyze the orbit structure of some important
prehomogeneous vector spaces.
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A typical problem that we encounter is the following: Given a nilpotent
element X € gy, decide to which (Gy-orbit it belongs. As a rule, by using a
computer, it is easy to find the dimension of the orbit Gy - X. If there is only
one nilpotent Gy-orbit of that dimension, then the job is finished. Otherwise, for
special types of elements X, we may be able to use the method developed in our
paper [8]. On several occasions we had to resort to additional ad hoc arguments
to finish the job. Two such cases occur in our justification of Table 3.

In addition to our own programs, we used extensively the software packages
Maple and LiE (see [4, 16]).

It is a pleasure to thank a referee for very thorough reading of the manuscript
and useful comments.

72 Eg

70 FEg(a1)

68

66 FEg(as), As+ Ay
64 Ds(a1) As

62 A+ Ay

60 Dy Ay

58 Da(ar), Az +24;, 34,
56 Az + Aq

54 » 242+ Ay
52 As

50 As + 244

48 » 245

46 As + Ay

42 Az, 444

40

32

22

0 0

Figure 1: Closure diagram for Fg
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2. Preliminaries

Fix a o-stable Cartan subalgebra b of g. Denote by R the root system of (g, b).
Then hy = gy N b is a Cartan subalgebra of g;. Choose a system of positive roots
Rt C R. Let a4, 1 < i < 36, be the enumeration of RT used in [8]. It is reproduced
in the Appendix. In particular, {a,...,as} is a system of fundamental roots as
in [2]. The negative root —q; is also written as « ;. Let H; € h be the coroot
corresponding to «;. Then H ; = —H;. For a« € R, g is the root space of a.

Let X; € g% for +i € {1,...,36} be the root vectors chosen so that
together with the H;, 1 < 7 < 6, they form a Chevalley basis of g. For the
convenience of the reader, the Appendix includes the structure constants of g
from our paper [8, Table 13|. They are given here in a more extensive form and
user-friendly way.

An ordered triple (E, H, F') of nonzero elements of g is a standard triple if

[H,E] =2E, [H,F] = —2F, [F,E] = H.

For instance, (X;, H;, X ;) are standard triples for all i. A standard triple
(E,H,F) is a normal triple if H € ¢ and E,F € p.

We enumerate the nonzero G-orbits in N as OF, 1 < k < 20. We can
choose a standard triple (E*, H* F*) with E* € O H* € p, and such that
a;(H*) > 0 for 1 <4 < 6. The nonzero Gy-orbits in Ng will be enumerated as in
our papers [6, 7] and in [5], and we denote them by O} (i = 1,2,...). The K -orbit
in N, that corresponds to Of under the Kostant—Sekiguchi bijection is denoted
by O¢.

If nonempty, p N OF is an equidimensional complex algebraic variety [12,
Proposition 5| with

dim(p N OF) = % dimg(O").

(Recall that dimc(O*) is always even.) Each connected component of p N O
is a single K-orbit. Similarly g, N O* (if nonempty) is an equidimensional real
algebraic variety with

dimR(gO N Ok) = dlmC(Ok)a

and each connected component of g, N OF is a single G-orbit.
Furthermore
O CgoNOF «—= O cpnO*.
Hence gy N OF and p N OF have the same number of connected components. In

particular

gwNOF£0 «— pNnOF£0.

All topological notions (such as closure, connectedness, etc.) refer to the Euclidean
topology in g and the Lie group topology in G.

In Table 1 we enumerate the nonzero G-orbits O ¢ N. Column 2 contains
the Bala—Carter label of OF. In Column 3 we list the integers «;(H*), 1 < j <6.
The next four columns show which orbits O} (or, equivalently, O¢) are contained
in OF. This depends on the type of the real form g,. For instance,
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EI: g NO*= 05U O, pN O =0 U O3
EII: g NO*=0UOf U0, pNO*= 05U 07U 0%
EIIIL : goNO* = Of, pNO* = 0

EIV: g0 N O* = G; pNO*=0.

The last column of this table records the complex dimension of O*.

Table 1: Nonzero nilpotent orbits in Eg and its real forms

k | Bala-Carter | o, (H) EI EIl | ELI | EIV | dimc(OF)
1] A4, 010000 1 1 1,2 22
2 | 24, 100001 2 23 |345 | 1 32
3|34, 000100 3 4,5 40
4| A, 020000 45 | 6,78 6 42
5| Ay + A, 110001 8 9,10 7.8 46
6| 24, 200002 6 11 9 2 48
7| Ay+24, |001010]| 10 |12,13,14 50
8| A, 120001 7 15,16 | 10,11 52
9|24,+A4, |100101]| 11 17 54
10 | As + A, 011010 15 | 18,19 56
11 | Dy(ar) 000200 | 12,23 | 20,21,22 58
12 | Ay 220002| 9 25,26 | 12 60
13| D, 020200 13 | 23,24 60
14 | A+ A, 111011| 16 | 27,28 62
15 | Ds(ay) 121011| 17 | 29,30 64
16 | As 211012 14 31 64
17 | Fs(as) 200202 19,22 | 32,33 66
18 | Ds 220202| 21 | 3435 68
19 | Eg(ar) 222022 | 18 36 70
20 | Eq 222222 20 37 72

For 1 <k <20 and any integer j set
s(j, k) ={X €g:[H",X] =jX}, R(j,k)={a€R:a(H*)=j}.

Then
g(0,k) =0+ > % (k)= D ¢, j#0.

a€R(0,k) a€eR(j,k)

Introduce the subalgebras

a(i,k) = o(j, k), >0,

j2i

and let Q(k) be the parabolic subgroup of G corresponding to q(0,%). The
centralizer, L(k), of H* in G is a Levi factor of Q(k) with Lie algebra g(0, k).

The following theorem, due to Kostant (see [11, Theorem 4.3] or [5, Lemma
4.1.4]), is valid for arbitrary complex semisimple Lie algebras. For the last assertion
of the theorem see [13, Satz 2, pp. 182-184].
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Theorem 2.1.  Let (E*, H® F¥) be a standard triple, as above, with E* € OF.
Then

O*Ng(2,k) = L(k) - E¥
is a dense open subset of g(2,k), and
O N q(2,k) = L(k) - E¥ + q(3,k) = Q(k) - E¥
is a dense open subset of q(2,k). Moreover O = G - (2, k).
Table 2 lists the indices i of the roots «; that belong to R(j, k) for j > 2.

Those for R(2, k) are listed first and separated from the other (if any) by a semi-
colon.

Table 2: Indices of roots in R(j, k), j > 2.

R(2,k); R(j,k), j > 2

36;

23 27 30 32 33 34 35 36;

24 26 28 29 30 31 32 33 34 ; 35 36
281314171920 2224 25262728 29 30 31 323334 35; 36

17 20 22 23 25 26 28 29 31 ; 27 30 32 33 34 35 36

16711121617 18 20 21 22 25 26 28 29 31 ; 23 27 30 32 33 34 35 36
15 18 19 21 22 23 24 25 26 27 28 30 ; 29 31 32 33 34 35 36
281314192324 ;172022 2526 27 28 29 30 31 32 33 34 35 36

12 16 17 18 20 21 22 24 25 ; 23 26 27 28 29 30 31 32 33 34 35 36

13 14 15 17 18 20 21 23 ; 19 22 24 25 26 27 28 29 30 31 32 33 34 35 36
489101213 141516 17 18 19 20 21 22 23 25 27 ;

24 26 28 29 30 31 32 33 34 35 36
126781112131416 1819 21 24 ;

17 20 22 23 25 26 27 28 29 30 31 32 33 34 35 36
24910121516 18 21 23 ;

81314 17 19 20 22 24 25 26 27 28 29 30 31 32 33 34 35 36

14 17111213 14 15 16 ;

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
151278111215 16;

13 14 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
16 | 161314 15 ;

711121617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1711467891011 13141519

12 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1811246791011 15;8 12131416 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36

191123568910 ; 7111213141516 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36
201123456;78910111213141516 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36

— O O 00 =IO O i W N =

—_ —_
]

—_
w
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3. Type EI

In this section gy = EI is the split real form of g = E¢. Hence ¢ is of type C, and
K = Spg/Z,y. Let ' be a Cartan subalgebra of ¢ and {51, 2, B3, 84} a base of the
root system of (¢ ') as in [2].

In Table 3 we list the nonzero Gy-orbits O C Ng, 1 < i < 23. In the
first column of this table we give the unique integer k such that Of C OF (see
Table 1). We can choose a normal triple (E’, H', F') such that E' € O}, H' € ¢/,
and B;(H') > 0 for 1 < j < 4. The integers ;(H') are listed in the third column.
They uniquely determine the orbit O¢ (or O}).

Table 3: Nonzero nilpotent orbits in ET

k| 4| Bj(H) Representative F € O Type of E
1] 1[0001 ] X3 Ay
21 210100 | (Xo3)+ (X36) 24,
30 3(1001 | (Xaa) + (Xs0) + (X34) 34,
41 410002 | Xo+ X35 A,
(X2) + (Xoa) + (X30) + (X34) 44,
4 52000 (Xo) + (Xaa) + (X30) + (—X34) 44,
50 810101 | (X7 + X31) + (Xoa3) Ay + Ay
6| 610200 | (X;1+ X31)+ (X6 + Xo9) 24,
71101010 | (Xa2+ Xos) + (Xi5) + (Xa3) Ay + 24,
8 710102 X2+X23+X24 A3
9111|1101 | (Xi2+ Xos) + (Xi6 + Xa2) + (Xo4) 24, + A4
10 (151011 | (X34 Xoz+ X14) + (Xi5) Az + Ay
111212002 | (Xi3+ Xoz3 + X14) + (Xa) + (X35) Az + 24,
(X4 + Xo7) + (Xi3 + Xig) + (Xua + Xo1) | 342
111230020 | (X34 Xos + X1a) + (X4) + (= X15) As + 24,
Xy + Xig + Xo7 + X5 Dy(av)
121 910202 | Xo+ Xo1 + X1+ Xy Ay
1311312004 | X4+ X0+ X5+ Xos3 D,
141161111 | (X34 X6+ X7+ X14) + (X35) A+ A
151711112 X5+ Xg+ X7+ X1 + Xoo Ds(aq)
16 |14 1211 | Xis+ X1 + Xi5 + X6 + X1 As
1711912202 | (X34 X1+ Xi5 + Xe + X14) + (Xy) As + Ay
1712210220 | (X3 + X1+ X5+ X+ X1g) + (—X4) | A5+ Ay
X1+ X+ Xo + X7+ Xq1 + Xy FEg(as3)
1812112204 | X4+ Xo+ X5+ X1+ X Dy
1911812222 X1+X2+X5+X6+X8+X9 Eﬁ(al)
2012014224 | Xi+Xo+ X3+ Xy + X5+ X FEg

The fourth column gives a representative E € Of. In most cases these
representatives have been extracted (with some rescaling using the action of the
identity component of the maximal torus of Gg) from our paper [8]. Only in
the cases ¢ = 17, 18 we are using new simpler representatives. Furthermore for
i € {4,12,22,23} we have included an additional representative of different type.
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The representative of type Eg(az) belongs to either O3 or Of° (see Ta-
ble 1). By using the method of our paper [8] one can easily verify that the element

E =v10X1 + \/6(X1 + X4+ Xe) + \/§(X7 — Xog — X0+ X11)
belongs to 022. Consequently the same is true for the element
E =X+ X1+ X4+ Xe+ X7 — Xo — Xy + X1
By using Table 14 from the Appendix it is easy to check that:
exp(ad(—X3 — X5 + X_2))(E1) = X1 + Xy + Xo + 2X7 + 2X11 + Xy.

We conclude that the representative of type Eg(az) indeed belongs to O%2.

The last column gives the type of E. For instance, if ¢ = 23 the first
representative is (Xi3 + Xoz + X14) + (X4) + (—X15) and its type is Az + 2A4;.
This means that {3, a3, @14, 4, 15} is a base for a closed root subsystem of
type As + 2A4; with {ay3, as3, @14} being a base for the A3 component.

The second representative of O is F = X, + Xj9 + Xo7 + X15 of type
Dy(ay), i.e., it is a subregular nilpotent element in a regular subalgebra of type
Dy. Indeed {ay, s, a5, 03} is a base of a closed root subsystem of type D, with
Qo+as = apg and ap+ag3 = agr. Consequently E € gon O = O22U02®. A more
delicate argument is needed to show that in fact £ € O2. By using the method
of my paper [8], one can check that the element 2X, + X5 — Xo3 +v/3(X19 + Xo7)
belongs to O2*. Hence the same is true for By = X, + X135 — Xo3 + X19 + Xo7. By
using Table 4 from the Appendix, we find that

exp(—ad X_o)(F1) = X4 + X9 + Xo7 + 2X75.

This implies that also £ € 023,

Note that our enumeration of the orbits O} has two obvious flaws: The
dimensions of O} do not increase with 4, and there are two pairs O, 03 C OF
with [{ — j| > 1 (for £ =11 and 17).

We now proceed to the proof of the main result of this section.

Theorem 3.1.  Let gy be of type E1. The closure diagram of the orbit space
Nwr/Gy is as given in Figure 2. (The dotted horizontal lines in this diagram connect
two Gg-orbits that are contained in the same G -orbit.)

Proof. @ We claim that if ¢ and j are two vertices in Figure 2, with ¢ higher
than j, which are connected by a solid line, then O} > O). Let k be such that
Of C O*.

Assume first that k # 4,11,17 or, equivalently, that gy N OF = OF. Then
Theorem 2.1 implies that the intersection of O} with

90(2, k) =goNa(2, k)

is an open dense subset of q¢(2, k). Hence in order to prove that Op > (93 it suffices
to exhibit an element F € q4(2, k) N O}. Table 4 provides the list of such elements
FE for each pair ¢, j as above.
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Figure 2: Closure diagram for E1

For instance, let 2 = 15 and j = 11. Then Table 4 gives the element
E = (Xi3+ Xis) + (X1a + Xo1) + (Xo7)

of type 24, + A;. Consulting Table 1 we see that F € O° (Col. 2) and E € O}'
(Col. 4). Since k = 10 and the roots au3, ais, @14, (o1, a7 belong to the union of



390 Pokovié

R(s,10) with s > 2 (see Table 2), we indeed have E € qy(2,10). It follows that
Op° > 0.

Table 4: Elements E € q4(2,k) N Oy N O},

1 ¥ E Type
20 | 18 X1+X2+X5+X6+X8+X9 Eg(a,l)
18 | 21 X10+X2+X9+X1+X11 D5

21 | 22 | (Xis+ X1 — X5+ X+ Xug) + (Xy) | A5+ Ay
21 |19 | (X3 + X1+ Xi5 + Xe + X1a) + (Xa) | A5+ A4y

22 | 14 X13+X1 —X15+X6+X14 A5
19 | 14 | X3+ X1 + X5 + X + X1s As
22 | 17 | X5+ Xg + X7+ X1 + Xoo Ds(ay)
14,17 | 16 | (X153 + X16 + X7 + X14) + (X15) Ay + A
17 |13 | X5+ Xg + X7+ X1y Dy
16 9| X3+ X6+ X7+ X4 Ay
9112 | (X1 + Xig+ Xig) + (Xg) + (X32) Az + 24,
9123 | (X1 + X9+ Xig) + (—Xs) + (X32) As + 24,
13 [ 12 | (X13 + Xog + X14) + (X4) + (X15) Az +2A,
13 | 23 | (X3 + Xog + X14) + (X4) + (—X15) | A3+ 24,
12,23 | 15 | (X153 + Xoz + X14) + (X4) Az + A
15 | 11 | (Xi3 4+ Xig) + (X1 + Xo1) + (Xor) 247 + Ay
151 7] X3+ Xoz + X1y As
7110 | (Xo+ Xo3) + (Xog) + (Xog) Ay + 24,
11| 10 | (X124 Xos) + (Xi6) + (Xa4) As + 24,
11| 6| (X124 Xos) + (X6 + Xo2) 24,
10 | 8| (Xao + Xog) + (Xi5) Ay + Ay
6| 8| (Xi+ Xa1)+ (Xo) As + Ay
10| 5| (—Xi5) + (Xo2) + (Xa3) + (X25) 44,
8| 4| Xi7+ Xz Ay
45 | 3| (X2) + (Xa4) + (X30) 34,
3 2 (X24) + (Xg()) 2A1
11 0]0 0

Now let k¥ = 4. Then from Table 3 (p. 387) we see that ¢ = 4 or 5 and
j = 3. Since
Xo+ Xos + X0 + X34 € O,
Xo + Xos + X30 — X34 € Of,
X5+ Xoy + X530 € O3,
it is clear that Og, Of > O3. A similar argument shows that O}?, 02 > Ol (when
k=11) and 0}°, 02?2 > O}* (when k = 17).
Now let 7 = 22 and j = 17. Then k£ = 17 and Table 3 gives the represen-
tative

E:X1+X4+X6+X7+X11+X196032
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of type Fg(as). Since the roots oy, ay, as, az, 011, and «ai9 are linearly indepen-
dent, it is clear that the element

E1:X1+X4+X6+X7+X19

belongs to the closure of OZ2. Since E; is of type Ds(ay1), it must belong to O},
cf. Table 1. Hence 0322 — O}7. This completes the proof of our claim that if
i and j are two vertices which are connected in Figure 2, with ¢ above j, then
O > O}.

Now we are going to prove that there are no edges missing in Figure 2.
Analyzing the graph in Figure 2, it turns out that it suffices to show

05 ¢ OF, O ¢ 0P, 0f¢ 08
Since O C 08, 0§ C 0f, and 0% ¢ O3 (see Table 1 and Figure 1), it

follows that O ¢ OF. It remains to prove that O* ¢ O} and O3 ¢ OF.
Let k =17. From Table 1 we see that

k 19 22

We examine in more details the prehomogeneous vector spaces (L(k),g(2,k)) and
(Q(k),q(2,k)). We have L(k) = (GL)3/{((1,¢,¢?)) where the positive roots
corresponding to the GL, factors are as,as, and o and ¢ = e?™/3. As an
L(k)-module, ¢(2,k) is a direct sum of three simple modules Vi, V5, V3 whose
bases are:

Vi {X13, Xs, X4, Xo, X19, X14, X10, X15},
‘/2 : {X17X7}7
Va {XGaXll}-

The action of L(k) on g(2,k) lifts to (GLy)®. As a module for (SLy)3, Vi is the
tensor product of the 2-dimensional simple modules for each of the three factors
SLy, while V5 (resp. V3) is the 2-dimensional simple module for the second (resp.
third) factor SLy on which the other two factors SLs act trivially. The elements
(t1,t2,t3) of the central 3-dimensional torus (GL;)? of (GLy)? act on each V; by
scalar multiplications: as (t1t2t3)™! on Vi, as t3t3 on V,, and ¢2t3 on V3. Note that
the element (1,¢,(?) indeed acts trivially. We mention that the prehomogeneous
vector space (L(k),g(2,k)) has only finitely many orbits [10, Theorem 5.21].

Write an arbitrary X € q(2,k) as X = X® + X@ 4+ X® 4 X' where
X' € q(3,k) and the X©) € V, are written as:

XY = 2 X3+ 29X + 23Xy + 24X + 11 X190 + Y2 X 14 + y3X10 + ¥a X1,
X(Q) = 21X1 +22X7,
X(3) = ’UJ1X6 + w2X11.

Define the homogeneous polynomials f; : q(2,k) = C (i =1,2,3) by

(X)) = 42173 + 2274) (—y1Y3 + Yovs) — (—T1Y3 + Toys + T3Y1 + Tayo)?,
f2(X) (2174 — 2023) (2191 + 22Y2) — (2101 + 22%2) (21Ys + 22Y3),
[3(X) = (wiys — waxs)(wiyr + waz1) — (wiye + waks) (W1Ys + Was).
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It is tedious but straightforward to check that each f; is a relative invariant for
the action of Q(k) on q(2, k). The singular set S of this prehomogeneous vector
space has three irreducible components: The three hypersurfaces S; defined by
the equations f;(X) = 0, respectively. The generic Q(k)-orbit in q(2, k) is

Q=4q(2,k)\ S =q(2,k)NO".

By computing the dimension of the orbit Q(k) - £/, where E is the representative
of Of* from Table 3, we conclude that S; N O is a dense open subset in 3.
Hence S, C O16.

Let Qo = Q2N qy(2,k) and set

I ={X €q(2k): i(X) >0}, T7={X €q(2,k): fi(X) <0}

By analyzing the action of Q(k)r on q¢(2,%k), we find that €y is the union of
two Q(k)r-orbits € and €. As representatives of these orbits we can take the
following elements, cf. Table 3:

Ei = (X13+X1+X15+X6+X14)+(X4) EQG’
EY = (X34 X1+ Xo5+ Xo+ Xua) + (—Xu) € Q.

One can show that L(k)r has exactly 8 connected components. It is not
hard to exhibit an element from a non-identity component of L(k)g that fixes Ej,
and similarly for E}. Hence each of the orbits f and f has at most 4 connected
components. Now consider the elements:

E'= 21 X13 4+ yoX14 + yaXa5 + 23Xs + X1 + Xo

where the coefficients x1, ys, y4, 3 are £1. All of them belong to €23. We choose
8 of them by indicating the signs of the coefficients and compute the signs of the
nonzero real numbers f;(E’):

T1 Y2 Ys I3 ‘ L o /s
+ + + +]+ - -
- - + +|+ + +
-+ - + |+ - +
-+ 4+ -+ + -
-+ + +|- + -
+ - + +| - - +
+ + - +| - + +
+ + + -1 - - -

Since the sign patterns in the last 3 colums of the above table are all
different, these 8 elements belong to different connected components of €2,. We
conclude that Qf and € have each exactly 4 connected components.

A computation shows that the representatives E’ with fi(E’) > 0 belong
to O;° and those with f;(E’) < 0 belong to O3?. We obtain that

q0(2,k)ﬂ089296 CF+, qO(Z,k)ﬂO(Q)Q :Qg CF_
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We claim that if X € Tt NSy, then X® =0, i.e., 2; = 2o = 0. Observe
that fo(X) is a quadratic form in the variables z; and z, and that its discriminant
is —fi1(X). As we assume that fi(X) > 0 and fo(X) = 0, it follows that
21 = 29 = 0 as claimed. Another computation shows that the intersection of O
with the codimension 2 subspace defined by z; = 2, = 0 is dense in this subspace.
Consequently, I'* NS, C O, A similar argument shows that [T N S; C OF.
Since we have already shown that S; C O, it follows that the boundary, say A,
of Q) in qo(2, k) is contained in O6. Consequently,

Go- A C O,

As OB ¢ O (see Figure 1 and Table 1) and O} C O, we deduce that
O ¢ Go - A. Since Q(k)r is a parabolic subgroup of Gy, the homogeneous
space Go/Q(k)r is compact. It follows that the set Gy - A is closed. Hence

W:O(%QUG()A

and so OF ¢ OF.

Finally we show that O3 ¢ Of, so let k = 6. Then g, N OF = OS, and
L(k) = Sping-T». As an L(k)-module, g(2, k) is a direct sum of two simple modules
Vi and V, with bases:

Vi {X1, X7, X192, X17, X138, X9, Xog, X29},
Vo - {XG,X11,X16,X20,X21;X25,X28;X31}-

The space V3 = g(4, k) is also a simple L(k)-module. The three modules Vi, V5, V3
are pairwise non-isomorphic and q(2,k) = Vi @ V5, & Vs.
Write any X € q(2,k) as X = XU + X@ 4+ X6 with X&) € V, and

XU = 2 Xy + 25 X7 4 23 X190 + 24 X107 + 25X 18 + 26 X0 + 27 X096 + 25 X09,
X =y Xg+ 1o X11 + ysXie + yaXoo + Ys Xo1 + 16 Xos + yrXos + ys X1

The quadratic forms fi, fo : q(2,k) — C defined by

[(X) = mias+ Tox7r — T3T6 + T45,

f2(X) = yiys + Yoyr — Ys¥s + Yays,

are relative invariants for the action of Q(k) on q(2,k). Let S; C qo(2,k) be
the hypersurface defined by f;(X) = 0 ( = 1,2). Let S = S; U Sy and let
Qo = q0(2,k)\S- Then Qp = q¢(2,k) N O and q¢(2, k) N O is a dense open subset
of S. Consequently

0§ = 08U O8.

By applying [9, Theorem 4.1] to the adjoint module g = ¢ @ p, one can show
easily that OF # O3. Indeed we have d(2,8) = 29 while d,(2,5) = 28. (For the
definition of the integers d;(j, k) see the next section.) It follows that Of # O
which entails that Of # Of. ]
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Table 5: Nonzero nilpotent orbits in p (go = EII)

k| i | Bj(HY E' Type of £
1 [ 1]001001 | X_o Aq
2 | 21100012 | (X 13)+ (X 14) 24,
2 | 3 1010100 | (X35) + (X _3) 24,
3 | 41001003 | (X g)+ (X 92)+ (X 95) 34,
315 101011 | (X35) + (X_g) + (X_19) 34,
4 | 6 | 000004 | X_os+X_97 Ay
(X_2) + (X_24) + (X_30) + (X_34) 44,
4 | 7 1200020 | X34+ X_19 Ay
(Xo7) + (X35) + (X_s) + (X_19) 44,
4 1 8 00200 2 | (X35) + (X-17) + (X-19) + X _90) 44,
519 |21001 1 | (X324 X_13) + (X_20) Ay + A
5 |10 | 10012 1 | (X33 + X 14) + (X _17) Ay + Ay
6 |11 ]02020 0 | (X31 + X 90) + (X302 + X 13) 24,
7 |12 130100 0 | (X33 4+ X 90) + (X32) + (X _19) Ay + 24,
7 [ 1300103 0 | (X32 + X_17) + (X33) + (X_19)) Ay + 24,
7 |14 ] 11011 2 | (X34 + X _19) + (X_17) + (X _90) Ay +2A,
8 | 15| 10201 4 | X35 + X_os + X_o7 As
8 |16 | 01210 2 | X _ o5 + X34 + X _o5 As
9 |17 | 11111 1 | (X320 + X 17) + (X33 + X 20) + X 19 24, + A
10 [ 18 | 10301 1 | (X_92 + X34 + X_25) + (X30) As + A
10 [ 19 | 11111 3 | (X_92 + X34 + X_25) + (X_24) As + A
11 | 20 | 00400 0 X29 + X30 + X_17 + X_19 D4(0,1)
(X32 + X 97 + X33) + (X _g) + (X_19) Az + 24,
(Xas + X_13) + (X350 + X_90) + (X34 + X _59) | 34,
11 121 | 02020 4 | X35 + X _19+ X_os + X _3 Dy(ay)
(X_26 + X35 + X_o98) + (X_19) + (X_o7) As + 24,4
11 [ 22120202 2 | (X_90 + X33+ X _90) + (X32) + (X_24) Az +2A,
12| 25| 40004 4 | X350 + X 95 + X _ o5 + X33 Ay
12 126 | 22022 0 | X530 + X _17 4+ Xog + X _o4 Ay
13123 | 00400 8 | X 99 + X35+ X 30+ X 31 D,
1312420402 4 | X390 + X _97 + X33+ X_o4 D,
14 | 27 | 12113 1 | (X350 + X 90 + X31 + X _94) + (X _99) Ay + Ay
14 |28 | 31121 1 | (X350 + X _17 4+ Xog + X _94) + (X _95) Ay + Ay
15129 | 31310 4 X33 +X_27+X32 +X_24+X29 D5(CL1)
15|30 | 01313 4 X32 + X_25 + X_26 + X31 + X_24 D5(CL1)
16 | 31 | 13131 3 | X 90 + Xog + X_o4 + X351 + X _o5 As
1732122222 2 | (X_g2 + Xog + X _os + X531 + X_95) + (X30) As + Ay
17 1 33 | 04040 4 | Xog + X31 + X3p + X33 + X_o4 + X _o7 FEg(as3)
(X904 X9 + X 94 + X1 + X _95) + (X_30) | A5+ Ay
18 | 34 | 22422 4 | X390 + X _97 + X 94 + Xo9 + X351 Ds
18 | 35 | 40404 8 | X34 + X _o7 + X390 + X _o06 + X _og Ds
19 | 36 | 44044 4 | Xo7 + Xog + X309 + X371 + X_99 + X_93 Eﬁ(al)
20 | 37 | 44444 8 | Xog + X _o7 + X _96 + X30 + X 08 + X351 Eg
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4. Type EII

In this section g, = EII and so ¢ is of type A5 + A; and K = (SLg/Z3 x SLy)/Zs.
As g, is of inner type, we may assume that § C €& The roots

bir=ai, Po=as, B3 =ou, bos= a5, P5=as Fs=—as

form a base for the root system of (¢ 5).

In Table 5 we list the nonzero K-orbits O} C Nj, 1 < i < 37. In the
first column we give the integer k such that 0! C O*. We choose a normal triple
(E*, H', F") such that E* € O, H" € , and B;(H") > 0 for 1 < j < 6. The
integers B;(H') are listed in the third column. They uniquely determine the orbit
Ot. The fourth column gives the representative E' € O! (in some cases several
representatives are listed). The last column gives the type of E*.

As in [9] we set

gH’(Oa]):Eﬂg(]:Hz)a gH’(la]):pﬂg(]aHz)a

and

Ps(Hi) = ng(l,j).

jzs

By Qg we denote the parabolic subgroup of K with Lie algebra.

agi = »_ o (0, 7).

720

In Table 6 we list, for each 7, the indices k of the roots « whose root space
is contained in py(H?). We first list those k for which g* is contained in gg:(1,2)
and separate them by a semi-colon from the other indices (if any).

Table 6: Root spaces in gg:i(1,2) and ps(HY)

i po(H?)
1] —-2;
2| —2,-8,-13,-14, —19, —24;
3| —2,-8,34,35;
4| —8,-13,-14,-17,-19,—-20, —22, —25, —27; —2
5| —8,—13,-14,-19,35; -2
6| —2,-8,—-13,-14, -17,-19, —20, —22, —24, —25, —26, —27, —28, —29, — 30,
—31, —32, —33, —34, —35;
7| —2,-8,-13,-14,-19, —-24,27, 30, 32, 33, 34, 35;
8| —8,—-13,-14,-17,-19, —20, —22, —25, —27,35; —2
9| —13,-19,—-20,—-24, 32, 34, 35; —2, -8, —-14
10 | —14,-17,-19,—24,33, 34, 35; —2, -8, —13
11| —13,-14,-17,-20,29, 31, 32, 33; —2,—-8,34,35
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Table 6: (continued)
i po(HY)
12 | -8, -13, —14, -19, —20, —25, 26, 29, 30, 32, 33, 34; —2,35
13 | —8,—-13,-14, -17,-19, —22, 28, 30, 31, 32, 33, 34; —2,35
14 | —17,-19, —20, —24, 34, 35; —13, —14, —2, —8
15 | —24, 27,35, —17,—20, —22, —25, —8, —13, —14, —19, —2
16 | —19, —22, —25 —27,34: —13, —14, —17, —20, —8, 35, —2
17| —17,-19, -20, 32, 33; —13,—14, 34, -8,35, -2
18 | —17, =20, —22, —25. 30, 32, 33,34; —8, —13,—14, —19, 35, —2
19 | —22,-24, —25.34; —17,—19, —20,35, —13, —14, —8, —2
20 | —8,—13, —14, —17, —19, —20, —22, 24, —25, 26, —27, 28, 29, 30, 31, 32, 33, 34;
—2,35
921 | —19, —22, —24, 25, —26, —27, —28, —30, 34, 35;
13, 14,17, -20,—2, -8
22 | =17, =20, —22, —24, —25. 30, 32, 33,34; —8, —13, —14, —19, 35, —2
23 | —24,-26,-28, -29, —30, —31, —32, —33, —34, 35;
—8, —13,—14,—17, —19, —20, —22, —25, —27, —2
24 | —24,-27,30,32,33,34; —17, —20, —22, —25, —8, —13, —14, —19, 35, —2
25 | —17, =20, —22, —25, —26, 27, —28, —29, 30, —31, 32, 33, 34, 35;
—2,—8,—13,—14, —19, —24
26 | —17,—19, —20, —24, 27, 29, 30, 31; —13, —14,32,33, —2, —8, 34, 35
27 | =20, -22,-24,30,31; —17,—-19,33,—-13,32,—14, 34, -8, 35, -2
928 | —17,—24,—25,29,30; —19, —20, 32, —14,33, —13, 34, —8, 35, —2
29 | —22, —24, —27, —28,29, 32, 33;
—17,34,-19, -25, -13, -14, —-20, 35, —8, —2
30 | —24,—25, —26, —27, 31,32, 33;
—20,34,—19, —22, —13, —14, —17, 35, —8, —2
31 | —22,-24, —25,29,31; —19,32,33, —17, —20, —13, —14, 34, 35, —8, —2
32 | —22, 24, -25,29,30,31; —17, 19,20, 32,33, —13, —14, 34, —8,35, —2
33 | —19, —-22,-24, -25, 26, —-27, —28, 29, —30, 31, 32, 33;
—13,-14,-17,-20, 34, 35, =2, -8
34 | —24,-27,29, 30, 31;
—22,-25,32,33,-17,-19, —20, 34, —13, —14, —8, 35, —2
35 | —26,—-27,-28, —29, 30, —31, 32, 33, 34;
—17,-20,—22, —24, —25. 35, —8,—13, —14, —19, —2
36 | —22, —25, —26, 27, —28, 29, 30, 31;
17, —19, —20, —24, 32,33, —13, —14, 34, 35, -2, —8
37 | =26, —27,—-28, 29, 30, 31;
—99,-24, —25, 32,33, 17, —19, —20, 34, —13, —14, 35, —8, —2

Theorem 4.1.  Let gy, be of type EIL. The closure diagram of the orbit space
Ni/K is as given in Figure 3. (The dotted horizontal lines in this diagram join
the K -orbits that are contained in the same G-orbit.)
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Figure 3: Closure diagram for E1I

Proof. Let i and j be two vertices in the diagram of Figure 3 which are joined
by a solid line with 4 being above j. In order to prove that Ot > O it suffices, by
[9, Theorem 3.1], to show that the orbit O@] meets the subspace p,(H?). For each
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such pair (with j # 0) we have exhibited in Table 7 an element

E € py(H) N O.

The fact that E € p,(H*) can be verified using Table 6. The fact that
E € O] follows from the observation that E € gg;(1,2). There are a few cases
where this condition fails. In these cases we exhibit in the last column of the table
an element w of the Weyl group Wy of (¢ 5) such that w(E) € gg;(1,2). The
element w is expressed as a product of reflections s; (corresponding to the roots

ak).
Table 7: Elements E € p,(H)N O}
i ] Type E w
37| 36 E6(CL1) X29 +X30 +X31 +X_25 +X_26 +X_28
37135 | Ds Xag + X 97+ X530 + X 96 + X_og
36 | 34 | Ds X31 + X 98 + X 90 + Xo7 + Xy 858481
35|33 | As+ Ay | (X_o6+ X3z + X o7 4+ X0+ X _23)
+(X_19)
34 | 33 | Eg(as) Xog + Xg1 + X o9 + X o4 + X 95 + X_o7
34 132 | As + Ay (X,QQ + Xog + X_o4 + X531 + X,25) + (X30)
33 1 30 | Ds(a1) X3o+ X 95+ X33+ X 97+ X 96
33|29 | Ds(ar) X33+ X_09 + X3p + X o7 + X_og
32,33 | 31 | As X_99 + Xog + X_ o4 + X371 + X_o5
29,31 | 28 | Ay + A1 | (Xs3+ X0+ Xog + X_04) + (X_25) S5
30,31 | 27 | Ag+ A1 | (Xso+ X 95+ Xa1 + X 94) + (X _20) S3
35|23 | Dy X o7+ Xag + X 99+ X 3 84
29,30 | 24 | Dy X3+ X_97 + X33+ X_o4
30|25 | Ay X30 + X _95 + X_96 + X33
29 125 | Ay X3+ X 98 + X 90 + X33
28 | 26 | Ay Xgo+ X 174+ Xog+ X o4
27 | 26 | A, oo+ X 90+ Xa1 + X o4
25 | 21 | Dy(aq) X3+ X 90+ X o5+ X 93
24 | 21 | D4(ay) Xas + X 19+ X g4 + X o7
23 |21 | Ag+2A; | (X_o6+ X35+ X_9s8) + (X_19) + (X_97)
24,2526 | 22 | A3 +2A; | (X_17+ X350 + X _90) + (X34) + (X _24)
26 | 20 D4(a1) X29 +X3() +X,17 +X,19
24 | 20 | Dy(aq) X3g+ Xy + X g+ X o7
21,22 |19 | A3+ Ay | (X o9+ X3u+ X _95) + (X _04)
20,22 | 18 | A3+ Ay | (X o9+ X34 + X _95) + (X30)
18 | 17 | 2A5 4+ Ay | (X324 X_17) + (X33 + X_90) + (X9
18,19 | 16 | As X_ 9o + Xag + X_o5
921 | 15 | As Xas + X o4 + X_o7
16,17 14 | As + 24, (X34 + X_lg) + (X_17) + (X_Qo)
15| 14 | Ay +2A; | (Xa5 + X_o4) + (X_17) + (X -20)
17 | 13 | A+ 24, | (X32 + X_17) + (X33) + (X_19)
17 |12 | A+ 2A; | (X353 + X _90) + (X32) + (X _19)
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Table 7: (continued)

i | j | Type K w
17 [ 11 | 24, (X2 + X 17) + (X33 + X _2)
13,14 | 10 | Ao + Ay | (X4 + X_19) + (X_17)
11110 | Ao+ Ay | (X33 + X_14) + (X_17)
12,14 | 9| As+ Ay | (X34 + X_19) + (X_20)
11| 9| Ao+ A | (X2 + X 13) + (X _9)
14 8 4A1 (X35) + (X 17) + (X719) + (X*QO)
15| 6| A, X_og +X_ o7
9,10 | 7| A, Xs4 + X 19
7.8 5|34 (X35) + (X_g) + (X_10)
68| 434, (X ) + (X 92) + (X 95)
51 3|24, (X35) + (X _s)
45| 2|24, (X_13) + (X _14)
23| 1| A X9

In order to complete the proof of Theorem 4.1 it remains to show that
Ot # Of when (i, ) is one of the following pairs:

(6,3), (12,4), (13,4), (12,10), (13,9),
(17,16), (20,19), (29,27), (30,28),
(32,6), (23,11), (23,12), (23,13),
(35,32), (11,4), (25,20), (36,23).

For the first nine pairs the assertion follows immediately from [9, Theorem 4.1]
and Table 8 where we list the dimensions d;(j, k) for the Z,-graded 27-dimensional
simple g-module V =V, @& V; (dimV, = 15, dim V4 = 12). These dimensions are
defined by

di(j, k) = dim(V; N ker p(E)’)

where (E, H, F) is a normal triple with E € OF and p is the representation of g
afforded by the module V. For each of the nine pairs (r, s) we give in Table 9 the
reason why OF # O7: We have d;(j,7) > d;(j, s) for suitably chosen ¢ and j.

In order to deal with the remaining eight pairs (i, j), we need a more detailed
description of the space p. As a module for SLg x SLg, p is isomorphic to Vo ® V3
where V; is the fundamental 20-dimensional module for SLg (i.e. the third exterior
power of the defining representation) and V; is the defining 2-dimensional module
for SLy. Let Ry (resp. Ry) be the set of roots whose root spaces are contained in
¢ (resp. p). Set Rf = RN R" and R; = R;\R{. Each of the sets R and R;
consists of 20 roots. The subspaces

pt= Y g% » =) ¢

a€RY QERT

are simple SLg-modules isomorphic to Vy and p = p™ @ p~. An isomorphism
¢ :pT — p~ of SLg-modules is given by ¢(X) = [X_36, X|. In Table 10 we give
the p-images of the basis of p™ consisting of root vectors.
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Table 8: The integers d;(j,k) for the module V(w;)

k dO(jak)a .721 dl(j7k)7 .721

111215 912

211015 71112

311014 15 712

41915 6912

5191315 61112

6915 6612

7191115 6 10 12

8191215 6912

918111415 41012

10 | 711 15 51011 12

111691414 15 381112

12 1 81013 15 31012

13161015 510 10 12

14 | 71114 15 491112

15| 71012 15 4691112

16 | 791214 15 47912

171691314 15 381012

18169121315 37912

191691214 15 3791112

20169121215 36912

211691214 15 3691012

22168121315 3791112

231699121215 33669912

241679101213 15 356891112

25 5710111415 25710111112

26 [ 561011141415 267101112

27 146101114 14 15 267101012

28 561011131415 167101112

291569101213 14 15 156891112

301469101213 15 25689111112

3114589121314 14 15 14589111112

3214589121214 14 15 14589111112

3314589121314 14 15 14589101112

34 1457810101212 14 14 15 1346799111112

35 1457810111213 1415 13467891011 1112

36133669911111313141415 [0336688101011 1112

371335567799111112121313]022446688991010
14 14 15 11 11 12

We shall also need the subspaces

Note that

ps (H") = p* Npy(HY).

po(H') = p3 (H') @ py (H').
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When viewed as a K-module, all the weights of p are simple. The weight
diagram of this module is exhibited in Figure 4 where a vertex with label i
designates the root space of a;. The subspaces p™ and p~ are clearly visible
as the left and right half of that diagram. The arrows show how the root vectors
of the simple roots f,...,3s act on the weight spaces. For (s only two arrows
are shown. The highest weight vector is X 5 and the lowest X5.

Table 9: Some pairs (r,s) with O] ¥ O3

r S dz(]ar) dz(],S)

6| 3| do(2,6)=15 | do(2,3) =14
12 | 4| dy(2,12) =10 | dy(2,4) =9
13| 4| di(2,13) =10 | dy(2,4) =9
12 [ 10 | do(1,12) =8 | do(1,10) =7
13| 9| do(3,13) =15 | do(3,9) = 14
17 | 16 | do(3,17) = 13 | do(3,16) = 12
20 | 19 | dy(4,20) = 12 | dy(4,19) = 11
30 | 28 | d1(1,30) =2 | di(1,28) =1
3223 [ di(2,32) =4 | di(2,23)=3
3323 |di(2,33) =4 | di(2,23)=3

Let m : p — p™ be the projector with kernel p~. Note that = commutes
with the action of SLg. Any Z € p can be written uniquely as Z = X + ¢(Y)
with X, Y € p™. The orbit SL, - Z consists of all vectors

(aX +bY) + ¢(cX + dY)
with ad — bc = 1. Hence
m(SLy - Z) = (X, Y)\{0}

where (X,Y) denotes the subspace of p* spanned by X and Y.

Table 10: The isomorphism ¢

X oX) | X oX) | X oX) | X oX)
Xy X 35 | X1g —X_30 | Xog —X_g5| X31  X_y7
Xy —X_ 3| Xgg —X 99| Xoy —X 94| Xzo —X_ 14
Xz X33 | Xgo X gg | Xog —X_ 99| X33 —X_ g3
Xig X3 | Xoy  Xog7 | Xog  X_go | Xas X_3g
Xz —X_ 31| Xos X gs | Xzo X 19| X3z —X_o

The pair (SLg X GL1,p™), where GL; is the maximal torus of the SL, factor
of K leaving p™ and p~ invariant, is a regular prehomogeneous vector space (see

[15, p. 145]). There are four nonzero orbits in this space:

ptNOS ptNOY, p N0, ptNO;
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with representatives
Xos + X, Xg + Xog + Xos, Xo+ Xog, X

and dimensions 20, 19, 15, 10, respectively. The singular set of this prehomoge-
neous vector space is the hypersurface S = p™\Ob.

Figure 4: The weight diagram of p

We start with the pair (32,6). Note that O3 # O follows immediately
from Table 9, but the claim that O3 % O% that we have to prove is much stronger.
Let E € O3 be the representative from Table 5 and write E = X + (YY) where

X = Xog+ X530 + X31, ¥V = —Xp5 — Xo7 — Xos.

Since 7(SLy - E) C (X,Y) C S, we have 7(03?) C S and so O}* C S+p . Since
S is closed and S C p™, it is clear that S +p~ is closed. Hence 032 C S+p~ and
consequently O ¢ O3 ie., O % O,

Next we consider the pairs (23,11), (23,12), (23,13). Let E be the repre-
sentative from Table 5 of one of the orbits O, 0%, O13. Write E = X + ¢(Y)
with X, Y € p*. Tt is easy to check that (X,Y) C O? U {0}. Consequently,

7(SLy - E) C p™ N O2,
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and
(K - E) = SLg - 7(SLy - E) C p™ N O2.
Since
po(H?) = p3 (H?) @ p; (H*)
and

ps (H?) = (X35) C 07 U {0},

we conclude that the orbit K - E does not meet p,(H??). Now [9, Theorem 3.1]
implies that
OF # 01,01, 0.

Let us now consider the pair (35,32). The representative £ € O3 from
Table 5 can be written as £ = X + ¢(Y) where

X =Xog+ X30+ X31, YV =—-Xo6— Xo7 — Xos.

Hence if E' € SLy - E' then 7(E') is a nonzero linear combination of X and Y. It
is easy to verify that all such elements 7(E’) belong to Of. On the other hand

PEL(H%) = (X330, X32, X33, X34, X35) C @

Since dim O* > dim ©?, we conclude that O N 02 = @ and so
SLg - m(E") Np (H*) = @.
This implies that 032 = K - E does not meet p,(H?>?). Hence O3° % 032
Next we consider the pair (11,4). We have
p(H') =V @ (V)
where
V = (Xa9, X31, X32, X33, X34, X35) C pt.

It is easy to check that V' N(O? is an open dense subset of V. As dim Of > dim O%,

we conclude that
VNOi=9(V)NO; =0Q.

The representative E € OF from Table 5 belongs to p~. Hence
SLy - E = (E, o~ (E))\{0}.
Since
SLe - H(EYNV C O{NV =,

and
SLs- ENo(V) Cc OfNe(V) =0,
we can conclude that Of = K - E does not meet p,(H''). Hence O} # Of.
We now turn to the pair (25,20). The centralizer of H?® in K is SLy - T3

where Tj is a 3-dimensional central torus. The space gg2s(1,2) is a direct sum of
three simple modules for this centralizer:

ap>(1,2) =V Vo @ V.
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The basis elements for these modules are:

Vi Xor, X3, Xag, X33, X34, X3s;
Vo o Xig1, X 98, X o5, X_90;
Vs o X 99, X 96, X 99, X 17.

We write an arbitrary X € p,(H%) as
X=xO 4 x® 4 x6G L x
where X' € p3(H?®) and X® € V; are given by:
XM = 21 Xo7 + 2 X30 + 3 X390 + 24 X33 + 25 X34 + 6 X35,

X® = X 5 4 19X o5 + 13X 05 + 1 X o,
X(3) = le_Qg + ZQX_QG + Z3X—22 + Z4X—17'

The singular set S of (Qg2s,po(H?®)) is the union of two hyperquadrics
S = {X ep(H?): f(X)=0},
Sy = {X €p(H?): g(X) =0},
where f and g are the relative invariants defined by
f(X) = m136 — Tox5 + T34,
9(X) = Y124 — Yoz3 + Y320 — Ya21.

The intersection S; N O? (resp. SoNO?) is a dense open subset of S; (resp. Sy).
Since the orbits O?°, O?! and O?? have the same dimension, we conclude that
0?% does not meet p,(H?%). This implies that O % O,

The last (and most difficult) pair we have to consider is (36,23). We shall
need some facts about the prehomogeneous vector space (Qpgss,po(H?%)). The
centralizer of H3® in K has the form

ZK(H36) = SLQ - T5

where the positive root of this SLs is a4 and T5 is a 5-dimensional central torus.
As a module for this centralizer, the space ggss(1,2) is a direct sum of the following
five simple modules:

‘/1 = <X7225X726>a Vé = <X277X30>a ‘/3 = <X7257X728>:
Vi=(Xa), V5= (Xa).

The torus 75 acts on each of the V; by scalar multiplications.
Write an arbitrary vector X € p,(H?%) as

X =21 X 99 + 20X 96 + Y1 Xo7 + Y2 X30 + 21X 25 + 20X 08 + uXog + vX3 + X’

where X' € py(H?®). The singular set S of this prehomogeneous vector space is
the union of the three hyperquadrics:

Sit izt yszr =0; So: mize — 29221 =0; Sz z1y2 + 22y1 = 0;
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and two hyperplanes:
Sy u=0; S5: v=0.

Let

Yi = Xor+ Xog+ X3 + X_op + X g3,
Yo = (Xg1 4+ X_os + Xor + X990 + Xygg) + (X_g),
Y3 = Xog+ Xgo+ Xa1 + X 99 + X g3,
Yy = Xop+ X0+ X1 + X 990+ X 93,
Y5 = Xor+ Xog+ X30 + X_09 + X_os.

Then Y; € S; and a simple computation shows that the orbit (Qgss - Y; is a dense
open subset of S;. It is not hard to verify that

Y,Y5€ O Y, 0P Y, e0¥ Y;eOF.

It follows that S C O3, The upshot of this argument is that the proof of @3¢ % O
is reduced to that of O3 % 0.
We now turn to the pair (34,23). It is immediate from Table 9 that

O 3 OF, OF # OF.

The centralizer of H3** in K is just the maximal torus Ty (with Lie algebra ).
The space p,(H?!) has dimension 18 while its subspace gys4(1,2) has dimension
5 and a basis:

{X30, X 27, X 94, Xog, X31} -

Write an arbitrary vector X € p,(H?') as
X =21 X30 + 22X o7 + 23X 04 + 24 Xo9 + 25 X31 + X'

where X' € ps(H?3*). The singular set S of the prehomogeneous vector space
(Q s, po(H?Y)) is the union of the five hyperplanes: S;: x; = 0}.
Now let

Vi = X o7+ X_ o+ Xog+ X3 + X9 + X 95,
Yo = (X_op+ Xog + X o4 + X31 + X _95) + (X30),
Y, = X304+ X_ o7+ X o4+ X3 + X3o + X 5,

Ys = X3+ X o7+ X 94+ Xog + X30 + Xs3.

Then Y; € S; and the orbit (Qgss - Y; is a dense open subset of S;. It is not hard
to verify that Y; € O3 and observe that Y3 is the representative E32 € O3 listed
in Table 5. It follows that

S1US, C 02U OB,

We also have L
S,USs Cc O3

because a computation shows that each of the orbits G - Y, and G - Y5 has
dimension 64.
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If Y € S3 then the orbit G - Y has dimension < 58, and so S3 C OB, As
0?3 is not contained in the union of 032 and O} we infer that it does not meet
po(H3*). We deduce that O3* % 0.

This completes the proof of the theorem.

An interesting feature of the above prehomogeneous vector space is that the
hyperplane S3 contains infinitely many () yss-orbits. Indeed dim S3; = 17 while
each of the orbits in S3 has dimension < 15. [ ]

5. Types EIIl and EIV

Let g, be of type EIII and so ¢ is of type Ds + C and K = (Spin,, x GL;)/Z,.
We may assume that h C €. The roots

Bi=ai, Po=o3, [z=ou, [fr=as B=ow

form a base of the root system of (¢ ). We also set 85 = as.

Table 11: Nonzero nilpotent orbits in p (go = EIII)

k| i B;(H") E' Type of E*
1] 1]00001 0 Xs A,

1| 200010 —2| X ¢ A,

2| 3110000 1| (Xa3)+ (Xs) 24,

2| 410000 —2 | (X_g)+ (X_3) 24,

2 5]00011 —2 | (X36)+ (X_) 24,

41 602000 —2| X33+ X ¢ A,y

5 7111010 —2 | (X5 + X )+ (X33) Ay + Ay
5| 811001 =3 | (X364 X 20) + (X 21) Ay + A,
6| 940000 —2 | (Xoz3+ X_91)+ (Xa6+ X_20) | 249
811000013 —2 | Xoy+ X_g+ X3 As
8111 | 00031 —6 | X_99+ X35+ X_30 As

12 112 | 02022 —6 | X o0+ X531 + X 9 + X3o Ay

Table 11 lists the nonzero K -orbits O C N;, 1 <4 < 12. Tts description
is the same as that of Table 5 (except that Bs(H®) may be negative).

Theorem 5.1.  Let gy be of type EI11 or EIV. Then the closure diagram of the
orbit space N1/K is as given in Figure 5.

Proof.  Assume first that g = EIV. Then there are only two nonzero orbits in
N : O} of dimension 32 and O? of dimension 48. Since N is an equidimensional
variety, in this case it is irreducible. Hence O? > 0.

From now on let gy = EIIL
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60
52
48 48 @)

46

42

32

2 O

22

EIII 0 @ EIV

Figure 5: Closure diagrams for EIII and EIV

Table 12: Elements E € p,(H) N O}

1 Ji Type E w
12 | 11 A3 X_20+X31 +X_21 S15
12 | 10 A3 X31 + X_Ql + X32 S17
12| 9|24, (X352 + X _01) + (X33 + X_2)
9,11 | 8| Ay + Ay | (Xs6+ X_90) + (X_21)
9,10 | 7| Ax+Ar | (Xz2 + X ) + (X33)
8| 6| A, X+ X 20
8| 4124, (X _20) + (X-21)
7| 6| A X3+ X ¢
T 3|24 (X32) + (X33)
6| 5|24, (X36) + (X_¢)
45| 2] 4, X
35| 114, Xsg

Let (i,7) be a pair of vertices in the EIII diagram in Figure 5 which are
joined by a solid line with i above j. We show that O > (O] by exhibiting an
element _

E € p,(H) N O].

This is accomplished in Table 12 whose description is the same as that of Table 7.

It remains to show that O! % ! when (7,7) is one of the four pairs:
(10,4), (11,3), (3,2), and (4, 1). In all four cases this can be verified by applying
[9, Theorem 4.1] to the module V(w;). We omit the details. n
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6. Appendix

Here is our enumeration of the positive roots of Eg. (The simple roots are enu-
merated as in [2].)

Table 13: Positive roots of Eg

o 1 o, 1 o, 1 (67}
100000 | 10 000110 | 19 011110 | 28 011211
010000 | 11 000011 | 20 010111 | 29 112210
001000 | 12 101100 | 21 001111 | 30 111211
000100 | 13 011100 | 22 111110 |31 011221
000010 | 14 010110 | 23 101111 | 32 112211
000001 | 15 001110 | 24 011210 | 33 111221
101000 | 16 000111 | 25 011111 | 34 112221
010100 | 17 111100 | 26 111210 | 35 112321
001100 | 18 101110 | 27 111111 | 36 122321

O 00 ~J O U i W N .

Consider the structure constants N(i,j) of Eg defined by

where «; and «; are roots such that o;+a; = a4 is also aroot. Then N(i,j) = £1.
Table 14 records the above relations for 7 > 0. The other such relations can be
easily written down because N(—i, —j) = N(,7).

The relation displayed above is recorded in the table by inserting in the
i-th box the entry j : N(i,j)X). For instance we have

[X25X4] = _XB: [X25X78] = X*4a [X25X713] = _X79'
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Table 14: Some defining relations of Eg

3: X7, 9: Xlg, 13: X17, 15: Xlg, 19 : XQQ, 21: X23, 24 - XQG, 25: X27,
28 : X30, 31: X33, —7: —X_g, —12: —X_g, —17: —X_13, —18: —X_15,
—22:—X 19, =231 —X 91, —26: —X 94, —27: —X 95, —30: —X o,
—33:—-X 3

4:—Xg, 9: X3, 10: Xy, 12: X7, 15: Xqg, 16 : X9, 18 : Xoo,

21: Xos, 23: X7, 35: X3¢, —8: X 4, —13: —X 4, —14: —X 4,
—17: =X 19, =19: =X 15, —20: —X 14, —22: =X 15, —25: =X oy,
=27 —X_Qg, —36 : —X_35

1: —X7, 4: —Xg, 8: X13, 10 : X15, 14 : Xlg, 16 : X21, 20 : X25,

26 : ng, 30 : X32, 33 : X34, =7: X_l, —9: X_4, —13: —X_g,

—15: _X—IO; —19: —X_14, —21: —X_16, —25: —X_Q(), —29: _X_26,
—32: —X 30, —34: —X 33

2: Xg, 3: Xg, 5: Xl(), 7 Xlg, 11: X16, 19 : X24, 22 : X26, 25: XQS,
27 : X309, 34: X35, —8: =X o9, —9:—-X 3, —10: —-X 5, —12: =X o,
—16: =X 11, =24 : —X 19, —26: —X 99, —28: =X o5, —30: =X o7,
—35:—X_3

4: —Xl(), 6 : _XII: 8: X14, 9: X15, 12 : Xlg, 13: X19; 17 : XQQ,

28 : X31, 30 : X33, 32 X34, —10: X_4, —11: X_6, —14: _X—S,

—15: —X_g, —18: —X_lg, —19: —X_13, —22: —X—l?, —31: —X_Qg,
—33: —X_30, —34: —X_32

5 X117 10 : X16, 14 : Xg(), 15: X21, 18 : X23, 19 : X25, 22 : X27,

24 1 Xog, 26 : X3p, 29: X359, —11: =X 5, —16: —X 1,

—20: =X 14, =21 : =X 15, =23 : —X 15, —25: =X 19, =27 : =X o9,
—28: —X 94, =30 : —X 96, —32: —X o

4:—Xqo, 8: Xq7, 10: Xqg, 14 : Xoo, 16 : Xo3, 20 : Xo7, 24 : — Xy,
28 1 —X39, 31: —Xg4, —1: X3, =3:—-Xq, —12: X 4, —17: —-X g,
—18: _X—IO; —22: —X_14, —23: —X_16, =27 : —X_Q(), —29: X_24,
—32: X_28, —34: X_31

3: —X13, 5: —X14, 7: —X17, 11: —XQ(), 15: X24, 18 : X26, 21: ng,
23 : Xg(], 34 : —X36, -2 —X4, —4 : XQ, —13: X_3, —14: X_5,
—17: X 7, =20: X 11, —24: —X 15, —26: —X 15, =28 : — X o1,
—30: —X 93, —36: X 34

1:—Xq9, 2: —Xq3, 5: =X, 11: —Xo1, 14 : Xoy, 20 : Xog, 22 : —Xog,
27 : —X39, 33: X35, —3: —Xy, —4: X3, —12: X 4, —13: X o,

—15: X 5, =21 : X 11, —24: —X 14, —28: =X o5, =29 : X 99,

—32: X_27, —35: —X_33

10

2: —X14, 3: —X15, 6: —X16, 7 —Xlg, 13: X24, 17 : X26, 25 : —X31,
27 : —X33, 32 : X35, —4 X5 —5: —X4, —14: X_Q, —15: X_3,

—16: X—67 —18: X_7, —24: —X_13, —26: —X_17, —31: X_25,

—33:X 97, —35: —X 3

11

4: —Xlﬁ, 8: XQ(), 9: Xgl, 12: X23, 13: X25, 17: X27, 24 : —X31,
26: — X33, 29: — X3y, —5:—X4, —6: X5, —16: X 4, —20: —X g,
—21: =X g, =23: —X 19, —25: =X 13, =27 : =X 17, =31 : X_o4,
—33: X_26, —34: X_29
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Table 14: (continued)

12 | 2: —Xq7, 5: —Xqg, 11: —Xo3, 14 : Xog, 19: Xog, 20 : X3¢, 25 : X39,
31: —X35, —1: Xg, —4: X7, =7:—-Xy, =9: =X, —17: X_o,
—18: X_5, —23: X—lla —26: —X_14, —29: —X_lg, —30: —X_Q(),
—32:—X 55, —35: X 5

13| 1: —X17, 5: —Xlg, 10 : —X24, 11: —X25, 16 : —ng, 18 : ng, 23 : X32,
33 : X36, -2 Xg, —3: Xg, —8: —Xg, —9: —XQ, —17: X_l, —-19: X_5,
—24 . X_l(), —25: X_H, —28: X_16, —29: —X_lg, —32: —X_23,
—36: —X_33

14 | 3: —Xqg, 6: —Xop, 7:—Xoo, 9: —Xo4, 12: —Xog, 21 : X351, 23 : X33,
32 : X36, -2 Xl(), —5: Xg, —8: —X5, —10: —XQ, —19: X_3,
—20: X—G; —22: X_7, —24: X_g, —26: X_lg, —31: _X—217
—-33: —X_23, —36 : —X_32

15| 1: —Xlg, 2: —Xlg, 6: —Xgl, 8: —X24, 17 : ng, 20 : X31, 27 - —X34,
30 : —X35, —3: XlO, -5 Xg, —9: —X5, —10: —Xg, —18: X_l,
—19: X_Q, —21: X—G; —24: X_g, —29: —X_17, —31: —X_Q(),
—34: X_27, —35: X_30

16 | 2: —Xogp, 3: —Xo1, 7:—Xo3, 13: Xog, 17: X3, 19: X31, 22 : X33,
29: — X35, —4: Xy, —6: Xy, —10: —Xg, —11: =Xy, —20: X o,
—21: X 3, =23:X_ 4, —28: —X_13, =30: —X_47, =31 : —X_q9,
—-33: —X_QQ, —-35: X_Qg

17 | 5: —XQQ, 10 : —X26, 11: —X27, 15: —ng, 16 : —Xg(), 21 : —X32,
31: —X36, —1: X13, -2 Xlg, -7 Xg, -8 —X7, —12: —XQ,
—13: —Xl, —22: X_5, —26: X_l(), —27: X_H, —29: X_15,
—30: X_16, —32: X_Ql, —36 : X_31

18 | 2: —Xg9, 6: —Xo3, 8: —Xog, 13: —Xog, 20: X33, 25: X34, 28 : X35,
—1:X45, =5: X9, —7: X9, —10: =X7, —12: = X5, —15: — X},
—22:X 9, —23: X 4, —26: X g, —29: X 13, —33: —X o,
—34: —X_25, —-35: —X_28

19| 1: —Xoo, 4: —Xo4, 6: —Xo5, 12: —Xgg, 16 : — X317, 23 : X34, 30 : — X3,
-2 X15, -3 X14, —5: X13, —13: —X5, —14: —Xg, —15: —XQ,
—22: X_l, —24: X_4, —25: X_6, —29: X—12; —31: X_16,
—34: —X_23, —36 : X_30

20 | 3: —X25, 7 —X27, 9: —ng, 12 : —Xg(), 15: —X31, 18: —X33,
29: — X34, —2: X5, —6: Xy, —8: —Xyy, —11: Xg, —14: —Xj,
—16: —-X,, —25: X 3, —27: X 7, =28 : X 4, —=30: X 19,
—31:X 15, —33: X 13, —36: X o

21 [ 1: —Xo3, 2: —Xo5, 8: —Xog, 14: —X31, 17: X39, 22: X34, 26 : X35,
-3 X16, —6: X15, —9: —XH, —11: Xg, —15: _XG; —16: —Xg,
—23: X_l, —25: X_Q, —28: X_g, —31: X_14, —32: —X_17,
—34 . _.X_22, —35: —X_26

22 | 4: _X26, 6: —X27, 9: X29, 16 : —X33, 21 : —X34, 28 : X36, -1 ZXlg,
-2 Xlg, -5 X17, =7: X14, —14: —X7, —17: —X5, —18: —XQ,
—19: =Xy, —26: X 4, —27: X 4, —29: —X 4, —33: X 44,
—34: X 91, —=36: —X o




Pokovié 411

Table 14: (continued)

23 | 2: —Xog7, 8: —X30, 13: — X359, 14: — X33, 19: — X34, 24 : — X35,
—1: Xgl, —6: Xlg, —7: Xlﬁ, —11: Xlg, —12: _Xlla —16: —X7,
—18: —Xﬁ, —21: —Xl, —27: X_Q, —-30: X_g, —32: X_lg,
—33:X 14, —34: X 19, —35: X o4

24 | 1: —X26, 6 : —ng, 7 ng, 11: X31, 23 : X35, 27 : X36, —4 . Xlg,
—8: X15, -9 X14, —10: X13, —13: —Xl(), —14: —Xg, —15: —Xg,
—19: —X4, —26: X_l, —28: X_6, —29: —X_7, —31: —X_u,
—-35: —X_23, —36 : —X_27

25 | 1:—Xg7, 4: —Xog, 10: X3y, 12 —X39, 18 : — X34, 26 : X35, —2: Xoy,
-3 Xg(), —6: Xlg, —11: X13, —13: _Xlla —19: _XG; —20: —Xg,
—21: —XQ, =27 X—17 —28: X_4, —31: _X—107 —32: X_lg,
—34: X_lg, —36 : —X_26

26 | 3: —ng, 6 : —Xg(), 11: X33, 21 : —X35, 25 : —X36, —1: X24, —4 . XQQ,
—8: Xlg, —10: X17, —12: X14, —14 . —Xlg, —17: _XIO; —18: —Xg,
—22: —X4, —24 —Xl, —29: X_3, —30: X_G, —33: _X—11,
—35: X_Ql, —36: X_25

27 | 4: —X30, 9: X39, 10 : X33, 15: X34, 24 : — X34, —1: Xo5, —2: Xo3,
—6: Xogg, —7: Xy, —11: Xy7, —17: —Xy1, —20: — X7, —22: — X,
—23:-X,, =25: =Xy, =30: X_4, -32:—-X_4, -33: —-X_yo,
—34: —X_15, —36 : X_24

28 | 1: —X30, 9 —X31, 7: X32, 18 : —X35, 22 : —X36, —4 . X25, —6: X24,
—8: Xgl, -9 XQ(), —13: —X16, —16: X13, —20: —Xg, —21: —Xg,
—24 —XG, —25: —X4, —30: X_l, —31: X_5, —32: —X_7,
—35: X_lg, —36: X_QQ

29 | 6: —X39, 11: X3y, 16: X35, 20 : X3, —3: Xog, —7: —Xo4, —9: — X9,
—12: Xy, —13: X5, —156: X7, —17: = X5, —18: — X3, —19: — X,
—22: Xy, —24: X7, —26: —X3, —32: X 4, —34: —-X 11, =35: —X 44,
=36 : —X_9

30| 3:—X3o, 5:—X33, 15: X35, 19: X35, —1: Xog, —4: Xo7, —6: Xy,
—8: X23, —12: XQ(), —16: X17, —17: _Xlﬁ, —20: —Xlg, —23: —Xg,
—26: —XG, —27 : —X4, —28: —Xl, —32: X_3, —33: X_5,
—-35: —X_15, —36 : —X_19

31 | 1: —X33, 7 X34, 12 : X35, 17: X36, -9 XQg, —10: —X25, —11: —X24,
=14 : X9, —15: X9, —16: Xq9, —19: — X1, —20: — X5, —21 : — X4,
—24: X1, —25: Xy, —28: —X5, —=33: X |, =34:-X ;, =35:—-X o,
—36: X 47

32 5:—X3g4, 10: — X35, 14: — X34, —3: X539, —6: Xog, =7 : —Xog,
-9 —X27, —12: X25, —13: X23, —17: —X21, —21: X17, —23: —Xlg,
—25: —Xlg, —27: Xg, —28: X7, —29: _Xﬁ, —30: —X3, —34: X_5,
—35: X_l(), —36: X_14

33 | 3: —X34, 9: —X35, 13: —X36, —1: X31, —95: X30, —10: —X27,

—11: _X26, —14 . X23, —16: XQQ, —18: XQ(), —20: —Xlg, —22: —X16,
—23: —X14, —26 : Xlla =27 : XlOa —30: —X5, —31: _XI: —34: X,g,
—35: ng, —36: X*13
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Table 14: (continued)

34

4: —X35, 8: X36: -3 X33, —5: X32, —T: —X31, —11: —ng,

—15: —X27, —18: X25, —19: X23, —21: XQQ, —22: —Xgl, —23: —Xlg,
—25: —Xlg, =27 X15, —29: Xlla —-31: X7, —32: —X5, —-33: —Xg,
—35:X 4, —36: —X 4

35

2: —X36, —4 : X34, -9 X33, —10: X32, —-12: —X31, —15: —Xg(),

—16: —ng, —18: ng, —21: XQG, —23: —X24, —24 . X23, —26: —Xgl,
—28: —Xlg, —29: X16, —-30: X15, —31: X12, —32: —Xl(), —33: —Xg,
—34 . —X4, —36 : X_2

36

—2: X35, =8 : —X34, —13: X33, —14: X39, —17: — X3, —19 : — X5,
—20: —ng, —22: X28, —24: X27, —25: Xg(;, —26: —X25, =27 —X24,
—28: —XQQ, —29: X20, 30 : Xlg, —-31: X17, —32: —X14, —33: —X13,
—34: Xg, —35: —X2

1]
2]
3]
[4]

[5]
[6]

[7]

8]
[9]

[10]

[11]

[12]

References

Barbasch, D., and M. R. Sepanski, Closure ordering and the Kostant-
Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), 311-317.

Bourbaki, N., “Groupes et Algebres de Lie,” Chapitres IV, V, et VI
Hermann, Paris, 1968, 288 pp.

Carter, R. W., “Finite Groups of Lie Type: Conjugacy Classes and Com-
plex Characters,” J. Wiley, New York, 1985, xii+544 pp.

Char, BW., K.O. Geddes, G.H. Gonnet, B.LL Leong, M.B. Monagan, and
S.M. Watt, “Maple V Language reference Manual,” Springer—Verlag, New
York, 1991, xv+267 pp.

Collingwood, D. H., and W. M. McGovern, “Nilpotent Orbits in Semisim-
ple Lie Algebras,” Van Nostrand Reinhold, New York, 1993, xiii+186 pp.

Pokovié, D.Z., Classification of nilpotent elements in simple exceptional
real Lie algebras of inner type and description of their centralizers, J.
Algebra 112 (1988), 503-524.

—, Classification of nilpotent elements in simple real Lie algebras Ege)
and Eg_96) and description of their centralizers, J. Algebra 116 (1988),
196-207.

—, Explicit Cayley triples in real forms of G, Fy, and Eg, Pacific J. Math.
184 (1998), 231-255.

—, The closure diagrams for nilpotent orbits of real forms of Fy and G,
J. Lie Theory 10 (2000), 491-510.

Kimura, T., S. Kasai, and O. Yasukura, A classification of the represen-

tations of reductive algebraic groups which admit only a finite number of
orbits, Amer. J. Math. 108 (1986), 643—692.

Kostant, B., The principal three-dimensional subgroup and the Betti num-
bers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.

Kostant, B. and S. Rallis, Orbits and representations associated with sym-
metric spaces, Amer. J. Math. 93 (1971), 753-8009.



[13]
[14]

[15]

[16]

Pokovié 413

Kraft, H., “Geometrische Methoden in der Invariantentheorie,” Vieweg,
Braunschweig — Wiesbaden, 1984, x+308 pp.

Matsumoto, H., Quelques remarques sur les groupes de Lie algébriques
réels, J. Math. Soc. Japan 16 (1964), 419-446.

Sato, M., and T. Kimura, A classification of irreducible prehomogeneous
vector spaces and their relative invariants, Nagoya Math. J. 65 (1977),
1-155.

van Leeuwen, M.A.A., A.M. Cohen, and B. Lisser, “LiE”, a software
package for Lie group theoretic computations, Computer Algebra Group
of CWI, Amsterdam, The Netherlands.

D. Z. Pokovié

Department of Pure Mathematics
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
djokovic@Quwaterloo.ca

Received April 24, 2000
and in final form March 4, 2001



