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Direct Limits of Zuckerman Derived Functor Modules
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Abstract. We construct representations of certain direct limit Lie groups
G = lim G™ via direct limits of Zuckerman derived functor modules of the
groups G™. We show such direct limits exist when the degree of cohomology
can be held constant, and discuss some examples for the groups Sp(p, c0) and
SO(2p, ), relating to the discrete series and ladder representations. We show
that our examples belong to the “admissible” class of Ol'shanskii, and also
discuss the globalizations of the Harish-Chandra modules obtained by the derived
functor construction. The representations constructed here are the first ones in
cohomology of non-zero degree for direct limits of non-compact Lie groups.

1. Introduction

The theme of this article is the construction of irreducible unitary representations
of certain direct limit Lie groups. Such groups are not locally compact and their
representation theory may be ill behaved. The obvious way to construct their
representations is to build them as direct limits of irreducible unitary representa-
tions of the approximating groups. However, one may not be able to obtain every
irreducible unitary representation of the limit group by this procedure.

Ol'shanskii [18, 19] has established a representation theory for the classical
direct limit Lie groups under a restricting condition, that we call “O-admissibility,”
and which is equivalent to continuity of the group action in the strong opera-
tor topology. One striking fact is that Ol'shanskii completely describes the O-
admissible unitary dual of the limit groups even though the unitary dual remains
unknown for the finite dimensional groups. In particular he has shown that the
O-admissible representations arise as direct limits of irreducible unitary represen-
tations of the constituent groups. It is of interest to see which parts of the unitary
duals (in terms of the standard classifications) of the finite dimensional groups
contribute to the O-admissible unitary dual of the limit group. Ol'shanskii himself
has addressed this question via an analog of Howe duality. (See also Neretin and
Ol'shanskif [17].)

In another direction, Natarajan [11, 12] has classified the unitarizable high-
est weight representations of U(p, 00), SO(2,00) and Sp(co,R). These turn out
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to be parametrized by highest weights A*° = (Ay,...,\;,...) where the \; are
eventually constant and within certain bounds. The O-admissible ones, however,
are only those for which the eventual value of ); is 0. More generally, Neeb and
(Orsted [16] have classified the unitary highest weight representations of Banach-Lie
groups of automorphisms of symmetric domains in Hilbert spaces and the corre-
sponding Banach-Lie algebras. Recently, Natarajan, Rodriguez-Carrington and
Wolf [15] have constructed a version of the Bott-Borel-Weil Theorem for direct
limits of compact groups.

The appropriate generalization of these results to the non-Hermitian sym-
metric case is to consider direct limits of Zuckerman’s derived functor modules.
A particular advantage of such a construction is the link it establishes with the
Langlands classification of the irreducible (g, K)-modules for finite dimensional
real reductive Lie groups.

In this article, we arrange derived functor modules into direct systems to
generate unitary representations for the limit groups SO(2p,c0) and Sp(p, 0).
As in [15], we need to hold the degree of cohomology constant over the direct
system.

The derived functor approach proceeds in two steps. The first involves the
construction of highest weight modules and we discuss this in Section 2. Section
3 contains the main theorem about the existence of direct limits of Zuckerman
derived functor modules. In Section 4 we consider the natural requirement that
the cohomology of the limit should equal the limit of the cohomologies. Section 5
lifts the obtained direct systems of Harish-Chandra modules to their globalizations
to obtain representations of the limit groups. Finally, Sections 6 and 7 provide
examples where the hypotheses of our theorems are satisfied.

The example of Section 6 is obtained by considering the coherent continua-
tions of the Borel-de Siebenthal discrete series. An interesting aspect of this case
is that our direct systems eventually consist of the continuations alone, so that the
discrete series itself does not contribute to the limit representations. In Section
7 we line up ladder representations of Sp(p,n) to get ladder representations of
Sp(p, 00). Both situations yield examples of O-admissible representations.

We finish this section by collecting some standard definitions and notations.
Let G be a real Lie group and M a compact subgroup of G. Write gy and mg for
the Lie algebras of G and M. Here, and subsequently, we denote complexification
by dropping the  subscript.

By a (g, M)-module we mean a complex vector space V' which is simulta-
neously a representation space for g and M (both representations being denoted
by 7) such that:

1. The differential of the M action equals the action of my as a subalgebra
of do-

2. m(Ad(m)X) = 7(m)7(X)m(m)~!, for every me M, X € g.

3. Every vector v € V' is M -finite: the span of the M -orbit of v is finite

dimensional. Further, the representation of M on this finite dimensional space is
continuous with respect to its natural topology.

The category of (g, M)-modules is denoted C(g, M). Every member V of
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C(g, M) has a direct sum decomposition

Vz@ann,

where M is the unitary dual of M, V, is a representation space corresponding
to v, and n, is its multiplicity. We say V' is admissible if each n,, is finite. The
category of admissible (g, M)-modules is denoted A(g, M).

Now we restrict to the case where G is a connected real semisimple Lie
group and K is a maximal compact subgroup of G. Let (m,H) be a continuous
representation of G in a separable Hilbert space H (i.e., the map G x H — H,
(xz,v) — m(z)v, is continuous). Then the space of K -finite analytic vectors in H,
denoted Hp, is a (g, K)-module and is dense in H. We call Hx the underlying
Harish-Chandra module of H, while H is said to be a globalization of Hg. By a
theorem of Harish-Chandra every admissible (g, K)-module arises as the Hg of
some H.

A (g, K)-module V is called unitarizable if it has an inner product (,) such
that:

1. (kv, kw) = (v,w), for every k € K, v,w € V.

2. (Xv,w) = —(v, Xw), for every X € go, v,w € V.

If H is a unitary representation space of G' then H g is clearly a unitarizable
(g, K)-module. Conversely, given a unitarizable admissible (g, K)-module V', its
Harish-Chandra globalization mentioned above is a unitary representation of G
on the completion of V.

Thus we have a framework for algebraicizing our problem. It is often simpler
to work with the category C(g,m) of (g, m)-modules. These are representation
spaces of g in which every vector is m-finite, i.e., the space U(m)v is finite
dimensional for every vector v. A (g,m)-module is a (g, M)-module if all its
m types are actually M types. For (g,m)-modules we have again the notions of
admissible and unitarizable, adapted in the obvious way from the above.

If V is some g module, and m a Lie subalgebra of g such that V is m-
semisimple, then V, denotes the submodule of m-finite vectors.

Let L be a Levi subgroup of G with Lie algebra [y. The Zuckerman functor
[ takes V € C(g,IN¢) to the submodule T'V € C(g, &) of its E-finite vectors.
C(g,I N €) has enough injectives [1], so the right derived functors I of I' are
defined. For instance, we start with the Koszul resolution X; = U(g) ®y ) A'(g/t)
of the trivial representation and then set I; = Homc(X;, V)e to get an injective
resolution of V. Applying I' to each element of the injective resolution 0 — V — 1,
we get the complex I'lj — I'l; — ... and IV is the i-th cohomology of this
complex.

For V € C(g,m), (m =€ or [N ¢) define the contragredient representation
space V¢ to be the subspace of m-finite maps in the algebraic dual V*. Similarly
the conjugate dual V is defined to be the subspace of m-finite maps in the algebraic
conjugate-dual V*. Then V¢,V € C(g, m).

It is useful to consider the full subcategory A(g, m) of C(g, m) which consists
of the m-admissible modules. .A(g,¥) contains the irreducible (g, €)-modules. I'
and I map A(g, [N¢) into A(g, ¢). Further, A(g, m) is closed under V — V and
V +— Ve, (For details on Zuckerman functors see Knapp [8].)



342 HABIB

Let # be a Cartan involution of GG, with corresponding Cartan decomposi-
tion gy = € + po- Suppose €, has a Cartan subalgebra hy whose complexification
b is a Cartan subalgebra of g. Choose a set of positive roots A*(g,h). Let g
be a corresponding parabolic subalgebra of g with Levi decomposition q = [+ u.
Write u, = unN€ and s = dimu,. Finally, denote by by the Borel subalgebra of [
defined by A1 (I,h) = AT (g, h) N A(L ).

We will work with a sequence G™ of semisimple Lie groups, with choices
of maximal compact subgroups K" and @-stable Levi subgroups L™ (f-stability
makes the Levi subgroups reductive). We assume the presence of homomorphic
embeddings ¢, , : G" = G™, n < m, which also map K" into K™ and L" into
L™, and satisfy %;m 0 tmn = %,,. We denote their derivatives also by %y, .

By a direct system of (g", m")-modules we mean a collection {V", ¢, n}
where V" € C(g",m") and ¢ppn : V™* — V™ (n < m) are linear maps such that
Olym © Ompn = P1n and the diagram

commutes. Here n < m, the horizontal arrows are given by the action of g" on
V™, and the vertical ones by in, : g" < ¢ and ¢pp, 0 V® — V™. Given such
a direct system we get a limit representation for the direct limit algebra g> in
an obvious way. We similarly define direct limits of representations at the group
level.

We will also need the dual notion of an inverse system of (g", m™)-modules.
This is a collection {W™, ¢, ,} where W™ € C(g",m") and ¢, : W™ — W"
(n < m) are linear maps such that

Y (i (X)0) = Xtpn(v), VX egt, veWm

Such an inverse system leads to an inverse limit representation of g=.

For details on direct and inverse limit constructions in this context, the
reader should consult the articles [13, 14, 15] of Natarajan, Rodriguez-Carrington,
and Wolf.

Acknowledgements. The results of this article complete those in my Ph.D.
thesis at the University of California, Berkeley. I am greatly obliged to my advisor,
Professor J. A. Wolf, for support and direction in finding them. I also thank the
Mehta Research Institute at Allahabad, and the Bangalore Centre of the Indian
Statistical Institute, for support while preparing this article.

2. Direct Limits of Highest Weight Modules

Let (G", K™, L™) be a sequence as described above, with the Lie algebras (gf, €7, [§) .
The basic construction in this article is to take a direct system of (g",[" N £")-
modules and apply I'* to get a direct system of (g, €")-modules. The (g", ["NE")-
modules that we will consider are quotients of generalized Verma modules, which
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we describe in this section. In this section, and hereafter, we should keep in mind
that G™ is Sp(p,n) or SO(2p,2n), while the embeddings iy, : g" — g™ are the
ones from Section 6.

Extend the i,,, to the universal enveloping algebras U(g"). Let h” C
g" be choices of Cartan subalgebras such that i,,, maps h” into A™. Let an
element A" of h™ be represented by a tuple (Ay,...,A,,). Consider an oco-
tuple A*® = (Ay,..., Am,...) such that each truncation A" = (Ay,...,\y,) is a
dominant integral weight of I". Define the ¢(I")-module M(\") = U(I") Ry en)Can
and let F'(\") be the (finite-dimensional) irreducible quotient. F(A™) becomes a
representation of q" by letting u™ act trivially, and then the generalized Verma
module N(A") = U(g") Qu(qry F(A") is a U(g")-module with highest weight A™.
Its irreducible quotient is denoted L(A™).

All the modules M (\"), F(A\"), N(A\"), and L(A") have a canonical invari-
ant Hermitian form known as the Jantzen Hermitian form [7]. Let us denote this
form by &, in all cases. The kernel of this form is always the maximal submodule
of the module under consideration. Dividing by this kernel therefore gives the
unique irreducible quotient.

Proposition 2.1.  The modules N(\") and L(A") form direct systems.

Proof. It is easy to see that the M (A\") form a direct system of modules under
the embeddings e, : M(A") — M(A\™) whose action is X @ 1 > i, ,(X) ® 1.
It was shown by Natarajan in [12, §3| that the e,,, preserve the form &, and
hence fall through to the quotients F(A"). Now define j,,, : N(A") — N(A\™)
by X ® v = ipn(X) @ emn(v). By the same argument as before, these fall
through to the irreducible quotients L(\™) to give us a direct system of irreducible
C(g™, I" N €")-modules. n

3. Direct Limits of Derived Functor Modules

Consider a sequence of triples (g",€",["), as in Section 2, with embeddings iy, :
g" — g™ (n < m) which map € <— €™ and [® < [™. Suppose also that u?
is mapped isomorphically onto u*. (Thus the "middle dimension” s = dim(u?)
is independent of n. This is the main assumption of this paper and is made
throughout.) Let V"™ be a sequence of C(g",[")-modules with embeddings j,
which are compatible with the 4,,,. Let F denote the forgetful functor from
C(g™, I™N¥™) to C(g", " NE"), or from C(g™, &™) to C(g",€").

Proposition 3.1.  Let V € C(g™, ™ N€™). Then I o F(V) = FoT{V).

Proof.  We first show that I'o F(V) = F o I'(V). On the left side, we pick
out the €"-finite vectors of V', while on the right side we pick out the " -finite
vectors of V. Since the spaces are already [™ N ¢™-finite (hence [™ N £"-finite),
and € = (I N €™) + u?, we are picking out the u? and u-finite vectors. The

isomorphism shows the two choices are the same. And then, since the F functors
are exact, we have "o F = (T o F)' & (Fol)' 2 Fol". |
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Proposition 3.2. The injections jm, induce a direct limit of the modules
reve.

Proof. The map jp, : V* — V™ induces a homomorphism jp,, : V" —
F(V™) in the category C(g",[" N¢"). Applying the Zuckerman derived functors,
we get a map ['"j,,, : T'V" — I o F(V™) in the category C(g", "), giving a
homomorphism V" — Fol*V™ (by Proposition 3.1) in C(g", €"), as needed. ®

Note that the induced maps I'j,,, have not been shown to be injective.
Now suppose the representations V" carry invariant Hermitian forms ¢,, and that
the maps jn, preserve these forms. We shall show that I'*j,,, preserves the
induced forms. The following duality result is useful:

Theorem 3.3.  [2, Theorem 7.3] Let V" € A(g", 1" N¢€"). Then we have a
natural isomorphism T'V™ & (T2~¢y Y,

The form ¢, induces a map ¢, : Ve — V" by gg,}(u)(v) = ¢n(u,v).
Applying the functor I'*, we get a map ['*¢, : V™ — V™ = (I'*V"). This
induces an invariant Hermitian form ['*¢,, on ['*V™.

Proposition 3.4.  Let V" € A(g", " NE") form a direct system given by maps
Jmn 2 V= V™. Let ¢, be invariant Hermitian forms on V" which are preserved
by the jmn. Then the I'*j,,,, preserve the induced forms I'°¢, . Hence they are
injections when the induced forms are positive-definite (i.e., when the I'V™ are
unitarizable).

Proof. Set j = jym,. Let j* : Vm — V" be the adjoint map. For any
u,v € V" we have (j*(ém(ju)))v = (dm(ju))(jv) = ém(ju,jv). The fact that
J is an isometry gives us the commuting diagram on the left, below. This induces
a commuting diagram in the category A(g",[" N €"), drawn on the right.

J J

yn ym vn Fym
bn D o Fom
VeV Vre—m— FV

I'* is a functor, so we get the following commuting diagram in the category

A(g, ") -

IR

rsy » [P0 FV™
I ¢ %0 Fom
rsyn %o FY™

F.Sj*
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Theorem 3.3 implies (I*V"Yy = [5V",

Proposition 3.1 implies I'* o FV™ = F o V™.
Similarly, T'* o FV™ & FoT*V™ & F o ([*V™).
Putting these together, we get the commuting diagram

sy
rsyn Fol¥ym
T FoT ¢y,
(T°V"Y = . Fo ([*V™y
st*
which is the desired result. ]

Thus we have a way of constructing direct limits of C(g", ¢")-modules. Of
course, what we really need are C(g", K™)-modules. In our examples, at least, it
is easy to see that we have also achieved the latter goal.

4. Zuckerman Functors at the Limit

A natural question that arises in such a situation is whether the limit of the
cohomologies is the cohomology of the limit. To address this issue we first discuss
inverse limits.

Suppose we have an inverse system W™ of (g", " N ¢")-modules. Take any
W™ and let W™ — I* be an injective resolution. Following the proof of [6, Chapter
1, Lemma 4.6] we can find an injective resolution W™+t — I* | such that we have
a commuting diagram

I b I

n n+1

Wn Wn+1

with I}, = IP@K? and j” being the projection onto the first factor. By induction
we get a double complex in which the rows are surjective. Applying the Zuckerman
functor to each member, we get the following double complex

FI% FI%—H D
e rr°

n n+1
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Note that I' simply extracts the ul-finite vectors and these algebras are
identified with each other by our stability assumption. So the rows of this double
complex are again surjective, while the i-th cohomologies of the columns give
the derived functor modules I'(W™). We can therefore apply [6, Chapter 1,
Proposition 4.4] to obtain for each i the following exact sequence:

0 — LmWr = (W") — T lim W") — Lim Y (W") — 0
— — —

im(l) . . . ..
where 1(— is the first derived functor of the inverse limit functor.

Proposition 4.1.  Suppose we have a direct system V™ of (g",|")-modules,
such that T*(V™) =0 for i # s = dim(u?). Then

(V™) 2 T (lim V™).

Proof. The adjoint maps give us an inverse system of the contragredients
W™ = (V™)¢. The vanishing hypothesis combined with the above exact sequence
gives us

HIm (W) =2 IT*(im W™).

«— «—

Taking contragredients and applying the isomorphism I'*(WW™) = (I*V™)¢ (an
analog of Theorem 3.3 with the same proof) we get the desired result. |

Remark A. The vanishing hypothesis may not be necessary, if one can show
im(1)
that & = 0. In the compact case of [15] this is trivial because the finite

dimensionality of the representations ensures that the “Mittag-Lefler condition”
[6, Chapter 1, Corollary 4.3] is satisfied.

5. Globalizations

Once a direct system W™ of C(g", K")-modules is obtained we would like to
globalize its members so as to get a direct limit representation of the direct limit
group. In this section we set up an appropriate notion of underlying Harish-
Chandra module for the direct limit representations of direct limit groups. The
results of this section do not require the stability assumption imposed in the rest
of this article.

The classical limit groups G*° have a natural analytic differential structure,
relative to the direct limit topology [13, 15]. If we define the exponential map for
the limit group to be the direct limit of the exponential maps for the component
groups G™, then it is a local analytic diffeomorphism at 0 relative to the limit
analytic structures. It follows that a vector v is analytic with respect to the G*°
action if it is analytic with respect to each G™ action, the action on v of X € g*°
being its action as a member of some g".

Definition 5.1.  Let V' be a representation space, without topology, of K*°. A
vector v € V' is said to be K -finite if it is K™-finite for each n.
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Definition 5.2. A (g™, K°°)-module is a vector space V on which there are
compatible g* and K actions (in the usual sense) and every vector is K *-finite.

Similarly, we have (g°,€>)-modules. The corresponding categories are
denoted C(g™®, K*°) and C(g*, £).

Definition 5.3. Let G* have a continuous representation in a complete, lo-
cally convex, Hausdorff topological vector space V. The subspace H)V of analytic
K°-finite vectors in V is called the underlying Harish-Chandra module of V.

The corresponding results for finite dimensional groups imply that H) is
dense in V and is a member of C(g*>°, K*®). We call V a globalization of HV. A
given member of C(g*>, K*) may have many globalizations.

Suppose the modules W™ in C(g", K™) are unitarizable and the injections
j: W™ — W™ preserve the invariant forms. Then they extend to the Hilbert
space completions, and we get a direct limit of unitary Hilbert space globalizations.
In the non-unitarizable case we can use Schmid’s minimal globalization functor
[20], as follows.

Let W +— Whin be the minimal globalization functor from C(g", K™) into
the category C(G™) of continuous representations of G™ in complete, locally con-
vex, Hausdorff topological vector spaces. Let H be the functor which picks out
the underlying Harish-Chandra module of a representation of G™. F denotes the
appropriate forgetful functors.

Proposition 5.4.  Let W" € C(g", €") form a direct system. Then the modules

W2 also form a direct system.

Proof.  Since K" C K"*t', FW"+t C HF(W™H!). Then, the inclusion W" —

min

FWn™ induces Wi, — (JEW"H)HHn (HFWit)) min = F(WitD); the last
step following from the minimality property. [ |

The direct limit of a countable sequence of complete, locally convex, Haus-
dorff topological vector spaces is also complete, locally convex and Hausdorff in
the direct limit topology. (See Kothe[10].) It is clear, therefore, that W is the
underlying Harish-Chandra module of the globalization W25, = lim W',

min min *

Proposition 5.5. Given a direct system of minimal globalizations, their direct
limit is minimal among the complete, locally convex, Hausdorff globalizations.

Proof.  Consider a direct system W" C(g", K™) with direct limit W, Let
W°° be a globalization of W and W™ = closure of im(W™) in W. Then

W™ is a globalization of W™. The canonical injections W < < W™ lead to

the inclusions W25 — W"o, with W given the direct limit topology. Since the

original topology on W™ is necessarily weaker then the direct limit topology, this
inclusion is continuous with respect to the original topology. [ ]

Remark B.  The mazimal globalization functor (Schmid [20]) can be analo-
gously used for inverse limit representations. This fits neatly with the fact that
the Dolbeault cohomology constructions give the maximal globalizations of the
Zuckerman functor constructions (Wong [21]). One can then proceed as in [15] to
set up representations in inverse limit sheaf cohomologies.
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6. Continuation of Discrete Series

The classical groups G™ = Sp(p,n) and SO(2p,2n), p < n, satisfy the following
two conditions:

1. rank G™ = rank K" = p.

2. There is only one non-compact simple root and its coefficient in the
expansion of the maximal root as a sum of simple roots is two. ! (With p > 1 for
SO(2p,2n).)

Let gq" = I" + u™ be the parabolic whose reductive part [® is generated by
the compact simple roots. This situation was studied in Section 13 of the article
[2] by Enright, Parthasarathy, Wallach and Wolf, with A" restricted as follows:

Let ¢ € h™ be orthogonal to A(I") and normalized by 2(«,()/{(a,a) =1,
where « is the non-compact simple root. For z € R, define A" = 2(. Let 2 be
the value of z such that A\g+p, where Ay = 2{'(, lies on a wall of the Weyl chamber
C corresponding to the positive system A*([") U —A(u"). Then it was shown in
[2] that z < zf implies N(A") is an irreducible (g,[)-module, and I*N()) is a
discrete series representation of G™ (assuming A" is €"-integral). A continuity
argument shows that N(A") is irreducible for z < a™, where a" is called the
first reduction point and is greater than z{; and also that I'*N(A") is irreducible
unitary for z < a™. Moreover ["N(A") = 0 for i # s in this range.

The values of a™ were calculated in [3] by Enright and Wolf. In [4], Frajria
studied behaviour at and beyond a". Two constants ¢j and ¢} were calculated
such that for z < ¢f (and €"-integral), I'*L(A™) is unitary and for z between c}
and c} it is zero. In the cases of interest to us, it happens that a" < ¢ = c}.

We will see below that the \", as n increases, are compatible in the way
described in Section 2, and give a limit weight A*°. Therefore Proposition 2.1
implies that the modules L(A") form a direct system. We say A\ is £ integral
if each A" is £" integral.

Proposition 6.1. There ezists a constant C' (depending on G* ) such that for
every choice of €° integral A\® satisfying z < C, the modules T°L(A\™) form a
direct system of unitary modules and so yield a unitary representation T'® L(A™)
of the limit group G*. Further, the sequence I'*L(A™) eventually consists of
representations which are not in the discrete series.

Proof.  We verify below, for each case, the following facts:

1. s is independent of n.

2. ¢p is independent of n.

3. zy — —00 as n — 00.

Fact 2 ensures that the sequence consists eventually of unitary modules,
with C' = ¢}. Fact 1 allows us (via Propositions 3.2 and 3.4) to line them up with
isometric embeddings to get a unitary representation of the limit group. Fact 3
implies that the sequence eventually moves out of the discrete range.

We now give the values of s, cfj, and z{ for our two cases.

! Direct limits for the Hermitian symmetric situation, when the coefficient is one, were studied
by Natarajan [12].
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A. G=Sp(p,n)={g9 € Splp+n,C) : ¢'Qg = Q} where Q is the form

_-lp

_Ip
I

The Lie algebra of G is denoted go = sp(p,n). The Cartan involution is 6 : X
—X*, with a corresponding Cartan decomposition g = €+ p. € has a Cartan
subalgebra § which is also a Cartan subalgebra for g. It consists of the diagonal
matrices with entries (ai,...,ap4n, —01 ..., —0ptn). We can form a direct system
of Lie algebras

- —sp(p,n) — sp(p,n+1) — -+ — sp(p, o)

Let e; be the functional on h which extracts the i-th diagonal entry. Then the
roots of (g,h) are e; —e; (i # j), and £(e;+¢;), with 1 <¢,5 <p+n. Let E,
be the 2p x 2n matrix with 1 as the (r,s) entry. Then the root spaces are:

ei—¢j * Eij— Epinijpinti
eite  Eipiniit Ejpinti
—€i—€  Epiniij+ Epinyj
Taking the simple roots to be o1 =e; —e€g,..., Opin_1 = €pin_1 — €ptn, Opin =

2ep+n, the only non-compact simple root is ¢,. The corresponding Dynkin diagram
is drawn below, with the numbers above the simple roots giving their coefficients
in the maximal root.

2 2 2 2 2 1
O O L O OO
o1 Op Optn—1 Op+n

Let A(I) be the root system generated by the compact simple roots, A(u) =
AT\ A(l) and g = [+ u the corresponding parabolic subalgebra. We find that
¢=1(1,...,1,0,...,0) and so A" = (z,...,2,0,...,0), with 0’s after the first p
entries. So we have A\* = (z,...,2,0,...,0,...). Here the i-th component of the
vector is the coefficient of e;. We also have p = (p+n,p+n—1,...,1). The
condition for € integrality of \" is z € Z.

Au) = {e;+e : i < j <p} andso s = dim(u,) = p(p+1)/2 is
independent of n.

The set of simple roots for the positive system AT(I) U —A(u) is {of,

- Opin), Where of = oy for i # p, and 0, = —e; — ;1. It follows that

(N'+p,o))=1if i #p, and —z —p — 2n if i = p. Therefore 2§ = —p — 2n.

For n sufficiently large, [4] gives ¢} = —p + 1.

B. G =50(2p,2n) ={g € GL(2p+2n,R) : ¢'Jg = J, det g = 1} where J is the

form
Iy, 0
0 _IZH ’

The Lie algebra of G is denoted go = s0(2p,2n). A Cartan involution is 6 : X
— X" and this gives the Cartan decomposition g = €+ p. The Lie algebra ¢ has a
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Cartan subalgebra h which is also a Cartan subalgebra for g : § = diag(44,...,4;)
where p+n =1, and each A; is a 2 x 2 block:

0 a;
(5.

We can form a direct limit of Lie algebras

- — 50(2p, 2n) — s0(2p, 2n + 2) e $0(2p, 00)

The roots of (g, h) are +e;£te;, 1 <i < j < p+n, where e; picks out the a;
entry of a member of . Choosing our simple roots to be 0y =e; —eg,...,0/_1 =
€—1 — €,0; = €_1 + ¢, the only non-compact simple root is o,. The case p =1
was dealt with in [12], so we assume p > 1. The Dynkin diagram is:

1
011

QO
owo
o

oy

Again, we have ( = (1,...,1,0,...,0) and A" = (z,...,2,0,...,0), with
0’s after the first p entries, so that A*® = (z,...,2,0,...,0,...). A" is ¢ integral
it 2z € Z.

Auy) ={e;+e; : 4,5 <p} and so s = dim(u,) = p(p — 1)/2. As before,
we calculate 2§ =2 —p—2n and ¢} = —p — 3/2 (for large n). n

Proposition 6.2.  Fach limit representation in the previous proposition is O-
admissible.?

Proof.  We write out the proof in detail for G* = SO(2p, 00). It is similar for
Sp(p, 00). First, we list some definitions and results due to Ol'shanskif [18, 19].
Let K, C K = SO(2p) x SO(c0) be the operators which fix the first 2p + 2n
basis vectors in the standard representation C* + C® of Sp(p,00). If H is a
representation of K°°, then define H,, to be the subspace of vectors fixed by K, .
‘H is said to be tame if U,H, is dense in it. A unitary representation of G*° is
O-admissible if it is tame as a representation of K.

In our examples, the groups K, are connected and so the requirement for
O-admissibility can be phrased in terms of the Lie algebras and the underlying
Harish-Chandra modules: Let V,, be the subspace of vectors in V*° = limV",
V™ e C(g",€"), which are killed by the Lie algebra ¢, of K,. Then the H
corresponding to V*° is O-admissible if U,V, equals V*>°. We need to look at
Vmr=T5L(\").

Let L, = L* N K,,. From an argument of Natarajan [11, Theorem 6] we
know that [, acts trivially on N(\") and on L(A™). But from the block structure

2Natarajan and Rodriguez-Carrington have found O-admissibility criteria for highest weight
representations in some other situations (unpublished).
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of our groups, it is obvious that [, = €¢,. Now ¢, also acts trivially on the
Koszul resolution of X! of the trivial representation (see Section 1), and hence
on Hom¢(X], V") and the subspace I'Homg (X, V™)n. Consequently, it acts
trivially on the quotient T*V™. Since I'*V is the direct limit of the {['*V"}, it
follows that it is O-admissible. ]

7. Ladder Representations of Sp(p, o)

A representation of G is called a ladder representation when the £-types have
highest weights that lie along a line in h*. We use Section 9 of [2] to set up direct
limits of ladder representations of Sp(p,n).

Let go = sp(p,n) and b as defined in the proof of Proposition 4.1. Let
q = [®u be the parabolic subalgebra with A*(I) having simple roots o9, ..., 0p1p-
Decompose u into u; ®u”™, A(uy) = {2e;} and A(uy) = {e;£te; : 2 < j < p+n}.
Split u; into its compact and non-compact parts u; = u7, @ uy,. Let 7 be the
lowest weight in A(uy,), and A" = (2,0,...,0), z € R. Let C. be the Weyl
chamber corresponding to the positive system A*(l,) U —A(u.) for A(8h). Let
ro € W(€,h) be the Weyl group element such that r¢C, is the positive chamber for
AT(Eh), and let p. be half the sum of the elements of A*(¢,h). Then we have:

Theorem 7.1.  [2, Proposition 9.4] For each integer z < 0, T*N(\") =0 for
i # s while T*N(A\") is a unitarizable representation of Sp(p,n). The t-types are

multiplicity free and their highest weights are those elements ro(A" — 1y + pe) — pe,
r € N, which are AT (¥)-dominant.

Proposition 7.2.  For each integer z < 0 the representations T*N(A\"), as
above, form a direct system of Sp(p,n) representations and their limit is O-
admissible. Further, the limit representation I'* N (A*°) is itself a ladder representa-
tion of Sp(p, 00), with the € -types having highest weights (—z+r—p—1)e1+repi1,
reN, r>z+p+1.

Proof.  Observe that A(u,) ={e1te; : 1<j<p}U{2e} andso s=2p—1
is independent of n. Also the highest weights described above are easily calculated
to be (—z+7r —p—1)e; + rey1 and the condition for one of these to be A*(¢)-
dominant is » > z + p + 1. Note the absence of n from these numbers. So
Propositions 3.2 and 3.4, and the proof of 6.2, apply to give the result. ]

Remark C. A question we have not addressed is the classification, if any, of
the representations which can be constructed by our method. The difficulty is
that a particular representation can be constructed by cohomological induction in
various ways, by starting from different parabolics, and the choice affects whether
our method applies. For instance, the discrete series representations can also be
obtained by starting from a Borel subalgebra, but then the middle dimension
does not stabilize. A way out may be offered by Knapp’s method for finding the
Langlands parameters of a cohomologically induced representation (see Knapp [9]
and Friedman [5]).
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