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Fusion Algebras for N = 1 Superconformal Field Theories
through Coinvariants, II: N = 1 Super-Virasoro-Symmetry
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Abstract.  We calculate fusion algebras of the NV = 1 super-minimal models
for the Neveu-Schwarz sector. We also state conjectures on the fusion rule and
give some supporting evidences for the Ramond sector. Fusion algebras for the
Neveu-Schwarz sector coincide with Verlinde algebras.

0. Introduction

This is the part I of the series of our paper [13]. In [13], we calculated the fusion
algebras for 0$p(1|2), and here we compute those for the N = 1 super Virasoro
algebras by a similar argument. The N = 1 super Virasoro algebra is the (N = 1)
super-extension of the Virasoro algebra and it has 2-sectors, called the Neveu-
Schwarz sector and the Ramond sector ( NS and R in short resp.). To be concrete,
we obtain the complete description of the fusion NS x NS — NS (Theorem 3.4 and
3.5) and partial results of that R x NS = R and R x R — NS (Proposition 6.5)
with the conjectures for general cases (Conjecture 3.6). Let us add a few words for
vertex operator superalgebras (SVOA for short). It is known that for each central
charge, the vacuum of the N = 1 super minimal model has a SVOA structure [16]
and the rationality holds for the NS-sector of the N = 1 super minimal models
[1]. Our results suggest that it might be more natural to include R-sector as ‘NS
SVOA’-module in order to describe the whole theory.

Let us briefly explain, why this paper can be regarded as the continuation
of the part I [13] and what motivates us to work on these subjects. For non-super
case, there are the functors, called the quantized Drinfel’d-Sokolov functor [8], from
the full subcategory of the category O of an affine Lie algebra g consisting of off-
critical representations to the category O of the corresponding W-algebra W(g).
Via these functors, some classes of admissible representations of slo correspond to
the minimal series representations of the Virasoro algebra (Vir for short). What
is remarkable is that by these functors, integrable sls-modules do not correspond
to any minimal Vir-modules! It is widely believed that such correspondence gen-
eralizes to some classes of admissible representations of g (called non-degenerate
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principal admissible representations [11]) and the minimal series representations
of W(g). On the other hand, the fusion algebras for sly are partially computed in
[3] and completely by [9]. The fusion algebras for Vir are also computed in [7] and
the relations between the fusion algebras for sly and that for Vir are investigated
in [10]. It is quite natural to consider the generalizations of these theories to the
other cases (e.g. the higher rank cases). But unfortunately, some technical difficul-
ties arise and higher rank generalizations are still unclear until now. But for super
case, there are still computable examples other than sly and the Virasoro algebra,
that is the affine Lie super algebra 05p(1|2) and the N =1 super Virasoro algebra.
In fact, Kimura showed that these algebras are related, at least at the level of the
algebras, via Hamiltonian reductions [14]. We expect that these reduction can be
lifted to the functors as in [8] and the series of our papers ( [13] and this paper )
is an attempt toward understanding of these structures.

This paper is organized as follows: In Section 1, we recall the definition
of the N = 1 super Virasoro algebras and Verma modules over them. We also
recall embedding diagrams of Verma modules and resolutions for the minimal series
representations. In Section 2, we define fusion algebras through coinvariants of
Lie superalgebras generated by tensor fields on CP'. In section 3, we state our
main result. We consider not only the minimal models but also the case of generic
central charge. In both cases, we give the multiplication rules of the fusion algebras
for the NS sector in terms of the finite dimensional representations of sl (Theorem
3.4 and 3.5). For the fusion rules for both NS and R sectors, we give a conjecture
at the end of this section (Conjecture 3.6). In Section 4, we calculate a modular
transformation of the (super-) characters of the minimal series representations,
and show an isomorphism between the fusion algebras and Verlinde algebras for
the NS sector. In Section 5, our main results Theorem 3.4 and 3.5 are proved,
and in Section 6, some supporting evidences of Conjecture 3.6 and partial results
are stated. In Section 7, we prove two propositions related with the rationality of
the minimal models.

Acknowledgement. We would like to thank Dr. C. Shweigert for useful com-
ments. Especially, we would like to thank Prof. B. Feigin for discussions. We also
would like to thank the referee for his careful reading and suggestions.

1. N =1 super Virasoro algebra

In this section, we recall some basic facts about the N = 1 super Virasoro algebras.
The N =1 super Virasoro algebra Vir. (e = 3,0) is the Lie superalgebra
over C with the basis {L;,G;,C|i € Z,j € e + Z}. These generators have the
Zo-gradation
deg L; = degC' =0, degG; =1,

and satisfy the commutation relations
[Li, Lj] = (i = j) Liy; + %(
G, L] = (i = %j)Gm,
(Gi, Gy] = 2Lis, + %(2'2 _ %)5”,-,00,
[C,Vird] =0.

.3 .
i° = 1)0i15,0C,
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The N =1 super Virasoro algebras Vir% and Viry are called the Neveu-Schwarz
and Ramond algebras respectively. Below we abbreviate them as NS algebra and
R algebra.

We fix a triangular decomposition of Vir, as follows:

Vire=Virf @ Vir’ @ Vir_,

where
Viry = @ CL; @ Ca;,
i>0 i>0
Vz'rO:{ CLy & CC ife:%,
€ CLyd CGyp CC ife=0,
i<0 i<0
We also set

Virz = Vir @ Vir?.
First we introduce the Verma module M(c,h) over Vir, with highest

weight (c, h) € C?. For e = 1, let th =C1; : , be the 1-dimensional representation
of Virs given by
2

1
.12, =0 if v € Vir?,
1 1 2
2 — 2
C'lc,lh = Clc,flz’
3 p12
Lo1Z2, = h1Z,.

For ¢ =0, let V), = @,—o, C10,., be the 2-dimensional representation of Virg
given by

0
€. lcha

c.19

ch:a —

Lo10, = h10

cha Ocha’
GO chO lc,h.l

We define the Verma module M,(c, h) with highest weight (¢, h) by
M (e h) = Indy ) Ve,

The value ¢ 1s called central charge. In the sequel, we denote the highest weight
vectors 1 ® 12h and 1®17,, by |c, h,) 1 and |c, h)g. Since the choice of the parity
of a highest Welght vector is not essential for our fusion algebras, we choose it
appropriately. Every highest weight module with highest weight (c, #) is a quotient
of the Verma module M,(c, h). In particular, let us denote the irreducible quotient
by Le(c, h).

For our calculation, we need the following two induced modules over the
R algebra. From now on, for any & € C, let us fix the argument of & such that
0 <argé < 2m. Let W), = @,_, (Cl . be the 2-dimensional representation
of Virg defined by

=0 if z € Virg,

— 0
C]'cha’

21%,.,=0 if z € Virg,
C]'(c)ha_c:l'(c)ha’

LO cha hlchoﬂ

GO cha (h__c)zl(c)hl o’
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We set

Mg(c, h) = Ind, V° s W2,
Notice that M{(c, h) =~ My(c, h) if and only if h # Zc. Further we define Mg (c, h)
as follows. Notice that (Cci,h = C{12,,£12,,} are Vzro -submodules of W7, . For
T =4, we set

M; (¢, h) = Ind EV""))(CM,

and call it the half Verma module with highest weight (¢, h : 7). It is clear that
My(c, h) = @r:i M(’)r(c, h).

Here we remark on the injectivity of homomorphisms between Verma mod-
ules. A non-trivial homomorphism between Verma modules over the N =1 super
Virasoro algebras is not always injective. To be precise, for the NS algebra, such
a homomorphism is always injective, but for the R algebra, there exists a non-
zero homomorphism which is not injective. Even though all non-trivial homomor-
phism between Verma modules are not necessarily injective, we could construct
Bernstein-Gel’'fand-Gel’'fand type resolutions for these algebras [12].

Next, we recall embedding diagrams of Verma modules and BGG type
resolutions, which are necessary for our purpose. For ¢t € C\ {0} and a,b € Z>,,
set

c(t) = L 3(t+t7),
°1 1 1 (2)
R, (t) = 8(a —1)t— 4(ab —-1)+ 8(1;2 -t + E(l — 2e).

Note that if the Verma module M(c, h) with central charge ¢ = ¢(t) is reducible
then h = h{ ,(t) for some a,b € Z>q such that a — b € 2¢+1+ 2Z. In this paper,
we consider fusion algebras in the following two cases:

Case 1 Generic central charge i.e. t € Ryo \ Qs¢.-

Case 2 Minimal central charge i.e. t = § for p,q € Z~( such that p,q > 2,
p—q€2Z,p#qand (5,q) =1.

Case 1.  We describe resolutions of irreducible highest weight represen-
tations with generic (not rational) central charge.

Proposition 1.1.  Suppose that t € Ry \ Qso. If there ezist a,b € Z~o such
that a — b € 2¢ + 1+ 2Z, ¢ = c(t) and h = h ,(t), then the following sequence:

1
0 — M.(c,h+ §ab) — M(¢,h) — L¢(e,h) — 0

18 ezract.

Case 2. We state embedding diagrams of Verma modules and resolu-
tions of the irreducible representations Lc(c(%), by (%)) with r,s € Zso. For our

»°'r,s

calculation, it is enough to consider the followmg two cases:
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Case 2.1 r—s€2e¢+1+27Z and

1I<r<gANn(l<s<p) ife=3
I<r<gn(l<s<pA(rs)#(%5) ife=0

Case 2.2

For simplicity, set

hie -—{%@ e {hﬁqﬂq_ﬂ,p_s(a €2z

Worrps(B) 1€2Z+1"7 % | hiyp,(B)  i€2Z+1

Definition 1.2.  [15] Le(c(g), h§) in Case 2.1 and Case 2.2 are called minimal
series representations.

Now we recall embedding diagrams of Verma modules in Case 2.1.

Proposition 1.3. There exist the following embedding diagrams of Verma mod-
ules:

— Me(ca h3:e) — Me(C, h2:e) — ME(C, hl:e) ¢
>§ >§ >§ Mé(c, hO:e)-
- M€(c7 hg:e) - M€(C’ hl?:e) - M€(c’ hll:e) /(

Next we state the resolution for the irreducible highest weight module
LC(C, h())

Theorem 1.4. [12] The following resolutions exist:
Case 2.1
oo = M(c, hg.e) ® Mc(c, hy,.) — -+
o= M(c, hi.e) ® M(c, b)) = M(c, ho..) = Le(c, ho.e) — 0,
Case 2.2
oo — My(c, hk:e)®2 e
o = Mo(c, hi.e)®? — M{(c, ho.c) = Lo(c, ho.e) @ I Lo(c, ho.c) — O,

where I denotes the parity shift.

2. Fusion algebras

In this section, we define fusion algebras through coinvariants.

We denote by C[[t]] and C((¢)) the completions of C[t] and C[t, ¢ !] by the
positive powers of t.
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To compute fusion rules explicitly, the following loop module is important.
Let 6 be the Grassmann variablei.e. §2 =0. For e = 3,0, 0 =0,1 and A, p € C,

let
Fr=( cr)e( @ CFro)

1€Z+oe€ 1€Z+(1—0o)e

be a Vir.-module with basis F; and F;f, on which Vir, acts via

C.F,0" =0,
Ly F0" = {—i+p+ (n— 1)A+ gny(=1)*}Fipat?, (3)
G R — Oy1Fiym + 0y 0{—i+ p+ (2m — 1)A\}Fiy0 if e=3,

met 57,0E+m0 + (5%1{—i +m+u+ (2m — 1))\}E+m if e= 0,

for y=0,1, n € Z and m € Z + €. Remark that F,) = F}'".

Next, we introduce Verma modules and loop modules attached to a point
on CP'. For w € CP!, let

{z—w if w e C,
2 =

z if w = o0,

be a local coordinate arround w. For f(z,), 9(zw) € C((2y)), let

F(z0)0s, and g(zu)zd 02,

be tensor fields over the formal neighborhood of w which satisfy the following
commutation relations:

— 1/ (2)(20)} 0
— W/ (z)a()} 05

df P(2w). We define the Zj-gradation of these fields by

deg(f(zw)azw) =0, deg(g(zw)z%%a?w) =L

Here let us introduce L, as the Lie superalgebra of the tensor fields over the
formal neighborhood of w spanned by the above tensor fields.

Moreover, we consider a central extension of the Lie superalgebras L.
Let us define the cocycle (, )y, of Ly b

where p'(zy,) =

<p(zw)azwaq(zw)a >we = 112

<p(zw)azwaQ(zw)aZ2w>w =0,

1
<p(zw)azwaQ(Zw)az2w>w;e = g Reszw:0(pl(zw)ql(zw))dzw’

Res,, o (0" (2w)q(2w))d2w,

and let ﬁw;g = Ly;e ® CC be the 1-dimensional central extension defined by the
cocycle (,)y.. Remark that for n € Z and m € Z + ¢,

1 1
C C, Lyp— =210, Gpn— V—lzy 202, (4)
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give an isomorphism Vir, ~ ﬁw;f. In the sequel, for w € CP', we denote

1 1
LW = 19, GW) = V12?02, (5)

n

Now we define the Verma module M, (c, h)(w) attached to w € CP'. Set

1

L3, = Cllzuleuds,  Cllzul)zd ™02, & CC.

1 Ly ) . .
For (c,h) € C*, let V2 (w) = C1Z," be the 1-dimensional ,Ci -module defined

by

.1
"2

1
5 W
Zyt10,, 12, =0 for n € Z,,
m+i 1 Liw
Zw 207,12, =0 for m € Zvy — %,

1 1
5271} _ 5271}
_Zwazw.].c,h —_— h]'c,h, 9
1 1
521[} _ E:w
C1z, =cl2,,

and let V2 (w) = @,_o, C1%%, be the 2-dimensional L7 -module defined by

c,h:a
n+1 Ow _
Zyy' Oy 1o =0 for n € Z,,
WH—l 1 0:
2w 202,104 =10 for m € Z,,

— 20y, 108 = 10w

u 1c,h:a c,h:a?
/ 292 Ow _ 10w
_1zw8zw'lc,h:0 - lc,h:l’
C.].O:w — clO:w

c,h:a c,h:a”

We define the Verma module M,(c, h)(w) attached to w € CP' by

U(Lwie) 7€
M, (e, h)(w) = Tnd, (7 V5, (w).
We denote the irreducible quotient of M,(c, h)(w) by L(c, h)(w).
We similarly define the induced module M(c, h)(w) attached to w € CP.
For (c,h) € C*, let W2, (w) = P,y C12%,, be the following 2-dimensional

c,h:a

. p>
representation of L7 :

n+1 10w __
Zoy' 0z, 1030 =0 for n € Z,,
mt3 a5 T 0w
Zw 20z, 1 =0 for m € Z,,
10w  _ 1,70:w
_Zwazaf'llc,h:a - hlc,h:a’
5935 30: 1z0.
\% _1Z7121832w1(c),hwa = (h - ic)21(c),.;f:lfa’
10 _ 10w

C'lc,h,:a - C]'c,h,:oz'

We define the induced module M}(c, h)(w) attached to w € CP' by

Mj(c, h)(w) = Ind!/ ; W, (w).

(L_;o

g

Half Verma lzlodules~attached to w € CP! are defined as follows: If we set
(Cfi,h (w) = C{1%%, £ 1%}, then C, (w) is a submodule of W2, (w). We define
Mg (c, h)(w) by

Y T U ‘éw; ‘T
M (e, h)(w) = Ind, 7] €T (w),
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and call it the half Verma module with highest weight (¢, h : 7) attached to w.
For each Verma module M(c, h)(w) attached to w and j € (1 — €)Z, we denote
by M(c,h)(w), the subspace of level j i.e.

M (¢, h)(w); = {v € M(c,h)(w)| (—2w0,,).v = (h+ j)v}. (6)

For the induced modules Mj(c, h)(w) and M (c, h)(w), we sometimes use similar
notation.

Now we define a loop module attached to w € CP'. To introduce it, we
set Fy7(w) = (Diczt0c CFi) © (Dicz+(1-0) CFif) and define the Ly -module
structure on this space by using the isomorphism (4) and the action (3). If we set

£5. = Cll25 )., © Cllzz )2y 202,

and

150 (w) = (D CF) & (D CF9),

1<0 1<0

then #3 (w) is a Ly..-submodule of Fyo(w). We regard the quotient space

Gan(w) = Fo(w) [H5, (w) (7)

as a ﬁ;;€—module.

Now, we construct fusion algebras for the N = 1 super Virasoro algebras by
using coinvariants of a Lie superalgebra of tensor fields on CP', following [7]. For
a finite subset E = {(w1,€1), -+, (W, €m)} of CP' x {1, 0} such that wy,-- - , wp,

are distinct, let Lr be the direct sum @ Loy, and Ly = L ® CC be the
(w,e)eE
central extension of Lg by the cocycle (,)p = Z (, )we- Let L(E) be the Lie
(w,e)€E
superalgebra consists of the multi-valued meromorphic tensor fields F(z) which
satisfy the following conditions:

(i) F(z) is holomorphic outside {w;|(w;,€;) € E}.

(ii) For any w such that (w,e€) € E, F(z) has the following Laurent expansion:

F(Z) = f(zw)azw + g(zw)zé)ieaz%w;
where f(zw), 9(2w) € C((2w))-

Remark that, by the Riemann-Hurwitz formula, £(E) is trivial if #{ile; = 0} Z 0
(mod 2). By the Laurent expansion, we have the Lie superalgebra homomorphism
L(E) — Lg. Tt is easy to see that this lifts to a homomorphism

L(E) — L. (8)

Let We(w) be a highest weight representation of ﬁw;e. We regard the

tensor product ® W.(w) as a Lg-module via the homomorphism (8). We
(w,e)€E
define fusion algebras using the following coinvariants

Ho(L(E), Q) W(w)= Q) Wc(w) /E(E)( Q) We(w)).

(w,e)EE (w,e)€E (w,e)EE
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Let us fix a positive number ¢ € R,y and set ¢ = ¢(t). Let S, be a subset (at most
countable) of C x {3, 0}, and A, the Z-free module with a basis {I}|(h,€) € S.}.
Set A2 = Q ®z A.. First we introduce symmetric forms on A2. For a set of
distinct points {wy,---,w,,} of CP', we define a Q-multilinear symmetric form

D, ™A — Q by

1 Hile=0} m
B (151, -+ 15 ) = (%) dim Hy(L(E), ) L, (¢, hi) (w:)),
=1

where E = {(w1,€1),- -+, (Wm, )} and

, Lo(c, h)(w) @ ILy(c, h)(w) if e=0and h = 5,
Lele, ) (w) = { L(c,h)(w) otherwise .

Note that ®@,, is well-defined as a form on AQ, since £(E) = {0} if #{ile; =0} £ 0
(mod 2).

Remark 2.1. (i) Roughly speaking, the symbol If corresponds to a primary
field as follows:

(eh) if € = 3,

I < ﬁﬁo(c,h) if e=0and h # e,

V2 (d’Lo(c,h) + ¢nLo(c,h)) ife=0, and h = ﬁc,

where ¢r,(.,n) denotes the primary field attached to the irreducible represen-
tation Le(c, h).

(ii) In the R sector, the fields which have physical meaning correspond to Lj(c, h)
rather than Lg(c, h). Mathematically, Lj(c, h) naturally appears in the (Z,-
graded) BGG type resolution (see Theorem 1.4).

For the form ®,, we have the following lemma.

Lemma 2.2.  Let wy, wy be distinct points in CP'. Suppose that e, € €
{3,0} and E = {(w1,€1), (wa,€2)}. For ¢ = ¢(t) such that t € Ryg and hq,
hy € C, we have

1\ Hilei=0}
(ﬁ) dim Ho(L(E), L, (¢, h1)(w1) ® L, (¢, ha)(ws))

1 if &1 =3,
= Ohuhadc.cr X { 9%mdre  if e = 0.
Remark that the form ®, is non-degenerate, but unlike the Virasoro algebra case,
the basis {l[(h,€) € S.} is not self-dual with respect to the form ®,. Hence we
define a fusion algebra on A, as follows: We first introduce an algebraic structure
on AQ by using the form ®; : (A%)®* — Q and the isomorphism AQ ~ (A2)*
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(restricted dual) defined by ®,. More precisely, the multiplication in A9 is given

by
€ € (h3,€3) €
holin=" 2. Nl
(hs,e3)€Se
where €1 J€2 J€3
(h3,e€3) _ @3 (lh1 ’ lh2’ lh3)
(e ) = (15 )

1 if €3 = L
_ €1 j€2 €3 3
N @3(lh1,lh2’ lh3) % { 2_6h3’2%40 if €3 = 0.

A priori, we do not see whether N((flzi’:f)),(hméz) € Zso or not. As a consequence

of Theorem 3.4, Theorem 3.5, Remark 6.4 and Proposition 6.5, we see that

N((,?fff)) (hases) € Z>o. Therefore, the multiplication o restricts to an operation

on the Z-module A, and we call it fusion algebra. Here we set

1
AVS= P zi; and AF= P zI)
(h,1)es, (h,0)€Se
and call them the NS and R sectors respectively. By the definition, AY° is a
subalgebra of the fusion algebra A, and AZ becomes an AYS-module.

3. Main results

In this section, we will calculate fusion rules explicitly for two classes, a minimal
case and a generic case.

Case 1 Generic central charge ie. ¢ =c(t) and t € Ry \ Q5. Recall that
the Verma module M, (c, h) is reducible if and only if A € A¢, where the set
A¢ is given by

AS = {h,(t)|(a,b) € (Zs0)*, a—b=(1—2¢) (mod2)}.

Case 2 Minimal central charge i.e. ¢ =c(t) and t = g € Q. for p,q € Z+
such that p,¢ > 2, p—q € 2Z, p # q and (%5%,q) = 1. In this case, we
define the set A¢ by

A= {hi,(t)|(a,b) €Z°1<a<q, 1<b<p a—b=(1—2¢) (mod?2)}.

Remark 3.1. By the definition 1.2, L.(c, h) is a minimal series representation
if and only if ¢ = ¢(%) satisfies the condition in Case 2 and h € A¢.

For each case, the following theorem characterize the set S.. We first state for
Case 1. Set E = {(wy, €1), (wy, €2), (w3, €3)} with distinct points wy, wy, ws € CP?
and €y, €2, €5 € {0, 3} such that #{il; =0} =0 (mod 2).

Theorem 3.2.  Suppose that ¢ = c(t) satisfies the condition in Case 1. For
fized hy, hy € C,
(i) 8{hs|@s(l3}, 132, 152) # 0} < oo if and only if h; € A, (i=1,2).
(i3) If there exists i € {1,2} such that h; ¢ AZ,, then §{hs|®s(l}},1;2,1;2) # 0}
s uncountable.

Next for Case 2, set E. = {(w1, 3), (w2, €), (w3,€)} (¢ = 3,0). Then the
following theorem holds
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Theorem 3.3.  Suppose that ¢ = c(%) satisfies the condition in Case 2. If
Hy(L(E), L%(c, 0)(w1) ® Le(c, ha)(we) ® Le(c, hz)(ws)) # 0,
then hy = hs and hy € A.

Case 1 (The fusion algebra at a generic central charge) First we fix the
central charge ¢ = ¢(t), where t € Rog \ Qso. We take

1
{(h,€)|h € A¢ for e =0, 5}

as the index set S, of the fusion algebra A.. For j € Z>¢, let V; be the irre-
ducible (j + 1)-dimensional representation of sly. If h = h{ ,(t) € AZ, then
we assign the symbol (V,_1,V,_1) to [§ € A.. Further we extend this nota-
tion by Z-bilinearlity. Note that this is a one-to-one correspondence between
the set {lj|(h,€) € S;} and the set of the symbols {(Vi, V)i, € Z>o}. Re-
mark that if : = j (mod 2) (resp. ¢ #Z j (mod 2)) then (V;,V}) corresponds
to an element of the NS sector (resp. R sector). The multiplication rule of
the NS sector AYS can be explicitly described as follows:

Theorem 3.4.  For the NS sector (i.e. in the case of i, = j, (mod 2)
for a = 0,1) the structure of the fusion algebra at a generic central charge
c = c(t) can be written as follows:

(V;o’ Vjo) © (‘/;17 ‘/31) = (V;'o ® Vil’vjo ® le)

Case 2 (The fusion algebra of minimal models) We fix a central charge

c= c(zi), where p, ¢ € Z-o such that p,q > 2, p—q € 2Z, p # ¢q and
(25%,9) = 1. In this case, we take {(h,€)|h € A¢ for e = 0,5} as the index
set S.. Define an equivalence relation & on the set of (V;,V;) as follows (cf.

[FM2)):
(Vi, Vi) = (Voigq2,Vojipo) for 0<i<g—2,0<j<p-2.

Let us denote the equivalence class of (V;,V;) by [(V;,V;)]. We assign
[(Va-1,V5-1)] such that @ — b = (1 — 2¢) (mod 2) to [j with h = h{,(2).
This is a one-to-one correspondence between the set {l5|(h, €) € S.} and the
set of the equivalence classes {(V;,V;)|[0<i<¢—2, 0<j<p-—2}/=. By
using the following Kazhdan-Lusztig fusion functor:

ViorV; = Viij| @ Vijls2 ® Vi 44 © - - - © Vimin(ak—ij, i+}» (9)

we can state one of the main theorems of this paper in the following way:

Theorem 3.5.  For the NS sector (i.e. in the case of i, = j, (mod 2)
for a = 0,1) the structure of the fusion algebra of the minimal model with
central charge ¢ = c(%) can be written as follows:

[(Vim V}o)] © [(V;'l’ V]l)] = [(Vi0®Q—2V;'1’ V}O®P—2V}1)]'

Conjecture 3.6.  Theorem 3.4 and 3.5 are valid for any sectors (i.e. without
restriction of the parity of iy, — j,)
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4. Verlinde algebras

In this section we list up the characters of minimal series for Vir. and calculate
their modular transformations. As an application, we calculate Verlinde’s algebra
[21]. Consequently we see that the Verlinde’s algebra coincides with the fusion
algebra defined by coinvariants in the previous section.

To write down the characters of the minimal series for Vir., we recall some
holomorphic modular forms of weight . Let 7(r) be the Dedekind 7-function

n(r)=q= [ A=),

n€Z>o

and ©,,,(7) be the classical theta function defined for m € $Z+, and n € Z/2mZ

by
Oun(r)= Y e
kez+5-
where g = 27,
Through this section, let us fix ¢ = ¢(%) as in Case 2 (minimal central

charge) and set h = h,, = hr,s(g). Since by definition
hq—r,p—s = hr,Sa

it is reasonable to define the sets AYS and AF | which parameterize the minimal
series, as follows. For € = %, 0, we set

KTy, ={(r,s) €Z’|1<r<q,1<s<p, r—s=1-2¢ (mod?2)},
and define the equivalence relation ~ on KT} by

(r,s) ~ (r',s') if and only if r +7' =q and s+ s' = p.

1
We sometimes denote KT,\° (resp. KT ) for KT} (resp. KT, ). Let us define
ANS and AZE as the set of the equivalence classes with respect to ~ i.e.

X X
A =KT), [ ~, for * € {NS, R},

Pq pq

and let m be the canonical projection

m: KT T KT, — AT AF

q P4 p,q°

For (r,s) € KT

p,qr We set
)

[r, 8] :== 7{(r,s)}
Let
Xe(c, h)(T) = tTL (ch) qLO_ﬁc = q_ﬁcch L.(c,h),

Xe(c; h)(7) =

21-¢)

1
BT g Stiketem 470 3¢ = g 3% sch Le(e, h),

be the normalized (super-)character of the irreducible representation L.(c,h).
For simplicity, we set xV%(7) = X%(c, hes)(T), )Zfrvg](T) = )2%(0, h.s)(T) and

[rs]

Xf:,s](T) = (1 + dn,2)xo(c, hrs) (7). The following character formulae are imme-

diate consequences of Theorem 1.4.
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Lemma 4.1.

1. Characters for the NS algebra

mrT
Xf:,f](T) — # {@L;M]’%(T) - GW,%(T)} :

2. Characters for the R algebra

R _ n(27) _
X[r,s](T) = n(7)? {@@,%(7’) GW,%(T)} .

3. Super-characters for the NS algebra

_ n(37)
Xf:,f] (1) = n(7)? {(Orp—s4,2p4(T) = Orp—sq+2pg,2pa(7))

—(=1)r (Grp+sq,2pq(7) - ®Tp+sq72pq,2pq(7—))} )

ifp=q=1 (mod 2), and

N | —

1
~NS _ 77(57—)
X['I‘,s](T) = ’[”(7’)2 {@rpgsq’

ifp=q=0 (mod 2).

(1) = (=1)*Orogan 1 (7) },

2

SIS

Next, we will show how the characters of the minimal series transform under the
action of SL(2,Z). By using the following modular transformation laws

i 1 T
n(r +1) = efin(r), o-2) = /),
1 T _ minn!
=) =\ 5 2owezomz € ™ Onm(T),

for m € Zsy, n € Z/2mZ,

nin?

i
Onm(T+1) =e2m O 1,(7), Opml

we obtain the following generalization of a result in [17].

Proposition 4.2.  Modular transformations of the (super)characters of the
minimal series are given as follows:

1. For t— 7+ 1, we have

NS mife2pee® 1y g ~NS pi{Ceos0’ 1y g
X (T+1)=e " X (T)y Xpag(T+1) =€ v 8y (7),
mi{rp—s4)
X g(T+1) =" x[ (1)
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2. For 7 — —%, we have

1 _ NS,NS NS
Xfxg](_;) - Z S[r,s],[r',sl]x['l",sl](7-)7
[TI,SI]GANS
_ RNS  ~NS
\/ﬁx[lj,s](_%) - Z Srs [7" 3’]X[’I"’,S’] (T)7
[ ]EANS
. NSR
WD) = D Spai Vet (),
[r',s'|e AR,
where
4 arr! mss'
NS,NS _ . _ : _
S[r s)y[r,s'] T \/— 2q (p Q)s 2p (p Q)a
by 4 mrr! mss'
SRNS, o= _1 7(7 73) . _ . _
sl = (—1)? NTAT (p—q)si % (»—q),
2 mrr! mss'
—1)2(%) "_gin — ¢)sin — if [r', 8] =1[2,2
o (-1) N 2ql(p q) I(p q) if[r',s'=1%,3%
[rys],[r!ys'] — 1 4 Trr TSS
—1)2("=%) —gin p — q)sin p—q) otherwise.
() —sin T (p - g)sin (0 )

/!

We remark that by the definition of the matrices (S, 3

riipms) (k¥ € {NS,R}),
the following formulae hold:

Unitarity Z Srs [r,s'1°[r, ’ :u s = 5[7",5],[7‘”,5”]- (10)
[r! s]EA*:
Now we define the Verlinde’s algebra of N = 1 super minimal series

as follows. Let V,, be the Z-free module generated by {q5 }”eANs and
{¢ff,s]}[r,s]eagq- We introduce the multiplication o on V, , by

¢[T1*=151] © ¢[7“2*,2;2] = Z N[Tl,z?j:[sfjﬁz]qﬁ[?‘;is] for 1,2, %3 € {NS’ R}’

[7'3,53] EA;‘?q

where x; (i =1,2,3) are so chosen that #{i|x;, = R} =0 mod 2 and

*1, NS S *2, NS S NS *3
[r3,83]  _ Z [risalilr',s' 7 r2ssal[rss' (8" [rs,s8]
[r1,81],[r2,82] — g NS, NS
[T",SI]EAJIOV’&S [171]1[7"75,]

These formulae have already been discussed in [5] and [19], and their explicit
values are computed in a few examples. We call the above formulae modified
Verlinde’s formulae and the algebra V), , equipped with the multiplication o Ver-

linde’s algebra. In the sequel, we compute the concrete value of N[TI,Z?:[S;]!@]. For
(ri;si) € KTyt (1=1,2), set
|11 — ro| < r < min{r; +r9,2q — (r1 +19)},
. s r#|ri—ry] mod 2
I(TI’SI)’(M’SZ) o (T S) © KTp’q |S1 — S2| <s< min{81 + 89,2p — (31 + 82)}>
s# [s1— s3] mod 2

We have the following expression.
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Lemma 4.3. The following formulae hold:
N[rl 87;3,8;32 s3] = ﬁ{ﬂ— ([T3’ 83]) N I(Tl,sl),(T2,82)}'

«

Proof. Note that from the explicit formulae of the matrices (S[r :] i s,]) (x,* €
{NS, R}), one can prove
*1, NS x2, NS
S[rl }91] [r,s'] Srz §2] [r',s'] S x3, NS
NS, NS - Z [rys],[r'ss] ©
[151]1[7":3’] ("'55)61(7‘1,81)7(7%32)
Now the results follow from the unitarity of the matrices (S[r,:]”[;,ls,]) (cf. see
equations (10)). u

Let V,'7 be the Z-submodule of V,, generated by {¢y5[(r,s) € A7}
By Lemma 4.3 and Theorem 3.5, it is easy to see that the following theorem holds.

Theorem 4.4.  The correspondence ¢, %+ [(Vr—1, Vs_1)] gives rise to the iso-

morphism
VNS g ANS.

Conjecture 4.5.  One can extend the above isomorphism to an isomorphism

Vg = A

5. Proof of Theorem 3.4 and 3.5

In this section, we give a sketch of a proof of Theorem 3.4 and 3.5, since the proof
is similar to the case of 05p(1]2) [13]. Namely, we will calculate the dimension of
the coinvariant

Hy(L(E), L (c,hi)(w1) ® L, (¢, ho)(w2) ® L, (¢, hs)(ws)),

where E = {(w1, €1), (we, €2), (w3, €3)}. From now on, let us fix w3 =0, wy =1
and w3 = oo for simplicity, since the dimension of this coinvariant does not depend
on the choice of points on CP'. For € = 1,0, we set E. = {(0,¢),(1,1), (c0,€)}.
Note that it suffices to consider the Lie superalgebras £(E,) in our proof.

To prove our main results, we need explicit 1forms of the action of singular
vectors on the loop modules. If ¢ = ¢(t) and h = h; ,(t) for some a, b € Z such
that a — b € 2Z, then there exists S, € U(Vir’) \ {0} (unique up to scalar) such

that Syplc, h) 1 is a singular vector of level ab Set

5@ 1 ifi=j (mod?2),
W =10 ifizj (mod?2).

1
Sap acts on the element Fyf7 € .7-—/\2,;7 as follows:
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Lemma 5.1. N
Sa,b.F()e’y = P(Zb()\, K, t)%F_%abedab’l_77

where

[P0 t);}2 - JI  @®ovm

1
2

and
Qup(A s )1
= [(u —2)) — %(kt% — i) {(a - k)t — (b— l)t;}}
X [(M—Q)\) - %{(k+1)t% U+ 1)t 3 (e — k= 1)t5 — (b= 1 — 1)t~ 5)
+%{(a—1—2k)t% —(b—1-20)t _g} \
(11)

Proof. = We can show this lemma in the same way as in [7] by using embedding
diagrams of Verma modules (see Proposition 1.3). |

From now on, we will prove Theorem 3.5. We reduce our calculation of
coinvariants to computation of cohomology of a nilpotent subalgebra. Let a1 be

the following nilpotent subalgebra of L(E):

a

={f(2) € L(Ey)f(2) € [£7,, L3,] forw=0,1}.

1 1
2 2

It is easy to see that

a1 = 2%(z — 1)°C[2]0, ® 2(z — I)C[z]a:i.

1
2

We set
E((]O) = —Z(Z — 1)28.2 and Zgl) = _ZZ(Z - 1)&2

First we show a preliminary lemma, since the idea of the proof is useful in
the remainder of this paper.

Lemma 5.2.  Suppose that ¢ = c¢(t) satisfies the condition in Case 1 or Case
2. For any hgy, hi, he € C, we have

dim Hy(L(E: ), M (¢, ho)(0) ® M (¢, hi)(1) ® M (¢, hoo) (50))s = 1,

where the subscript o = 0,1 specifies the even i.e. 0 =0 (resp. odd i.e. 0 =1)
subspaces.

Proof. Shapiro’s lemma and Poincaré duality imply that

dim Ho(L(E1), My (c, ho)( ) ® M1 (c, h1)(1) ® My(c, hoo)(00))
= dim H'(a ai, M%( s0) (00)*) (hosha).
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Here V* stands for the full dual of V' and the superscripts (hg, hi) signify the

simultaneous eigenspace of the operators 13((,0) and Egl) with the eigenvalues hy and
h, respectively. Let us calculate the dimension of the space

HO(ay, My (e, hoo) (00)") "o

in the following way: For & € M% (¢, hoo)(00)* and j € %Zzo, we denote by ®;
the restriction @[, (,ho0)(c0), - Then we have
2

Fact 5.1.  For ® € My(c, hoo)(00)", ® € H'(a
only if

M (c; hoo) (00)*) ™) if and

1 1
27773

G_m.(pj = G_% '(Dj*m+%

for any n € Z~ andm€Z>0—%.

Using this fact, we can show
Lemma 5.3. Set V = @j:o,% M, (¢, hoo)(00)j. Then the map

HOay, M (c, heo) (00)) o) — p*

12
gives an isomorphism of a Ziy-graded vector space.
Lemma 5.2 is an immediate consequence of the last lemma. [ ]

Till the end of the proof of Theorem 3.5, we assume that ¢ = c(2) satisfies
the condition in Case 2.

Theorem 5.4.  Suppose that ¢ = c(%) satisfies the condition in Case 2 and hyg,
hi, heo € AS. Then we have

(¢, ho)(0) ® Li(c, h1)(1) ® L1(c, hoo)(00))

1 1
2 2

(€, hoo) (00)) (o=,

where Ho(a%,Ll(C, heoo)(00))(ho:=h1) s the simultaneous eigenspace of E(()O) and

5

From now on, let us examine

Halay. Ly () (02) 2,

For hy, h1, hoeo € AS, let [(Vig, Vio)l, [(Vir, V)] and [(Vi, V.. )] be the equivalence

1 1 1
classes corresponding to [ , Iz and [7  respectively.
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Theorem 5.5.  Suppose that ¢ = c(%) satisfies the condition in Case 2.
(i) dim Hy(az1, Li(c, ho)(00)) < 00, if and only if he € AS.
2 2 3

(ii) If hoo € AS, then we have
2

dim Ho(a%, L% (¢, hoo ) (00))(hos—h1)
2 if ho, hy € AS and both C° and C* hold,
2
=< 1 if hy,hs € AS and only one of C° and C' holds,
2

0 otherwise,

where the conditions C° and C' are defined as follows:

|10—21\SZSmln(20+21,2q—20—21—4),
P =< (i,5) € (Z)*| |jo — 1] <j < min(jo + j1,2p — jo — 1 — 4),
w+i+1=0,50+51+7=0 (mod2),
and
C? & [(io, joo) € P], C' & (i +q—2,—joo +p—2) € P).

Proof.  Since the proof of Theorem 5.5 is very similar to that of Theorem 4.4 in
[13], here we only give an outline of the proof. To prove the theorem, we identify
the invariant

H (a1, My (¢, hoo) (00)7) o) (13)

1
with the quotient module gf:(oo) and further, by using the formulae of the
action of singular vectors on the loop modules given in Lemma 5.7, we determine
when a form ® € H(ay, Mi(c, heo)(00)*)(0:h1) induces a non-trivial element of

H'(ay, Li(c, hoo)(00)*)(ho:m1) - First we state how one can identify the invariant
(13) with the quotient modules. It follows from Lemma 5.2 that

dim Ho(a%’ M% (C, hoo)(oo)*)gh'oahl) = ]_’

for each 0 =0, 1. Let 7 € Ho(a%,M%(c, hoo) (00)*) ™) such that ° # 0. For
JE %Z>0, we denote by (IJ;T the restriction <I>"|M1(c7hoo)(oo)j. If we set
- 2

3 o7 if j € 30+ 7,
T 6N, ifjeli-o0)+z,
2

1
2

then from the formula (12) we obtain the following lemma.

Lemma 5.6. Let y = —he + ho+ hy —% and \ = hy — % For each 0 =0,1,

oo %,1—0
@ QDJ’ _g/\,u (o)
VIS VAN

as a LS | -module, via

. 52 1
©F = Fj0%  forj € 5220-

)

For the action of the singular vector Sg‘,;)|c, hoo)™, we have the following

lemma that is an analog of Lemma 5.1:
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1 g
Lemma 5.7.  For F1,0" € 7}, (w), we have

1
CL(S(SU;)).F%GIJH’Y = H Qi:é(/\a m— Ea'ba )1 Fﬂe ab = 7,

where a denotes the antipode and the polynomial Q (/\ I, ); is defined as (11).
Using the isomorphism in Lemma 5.6 and the formulae in Lemma 5.7, we obtain
the condition that the form ®7 vanishes on the singular vectors of My (c, heo)(00).
Therefore, we have proved Theorem 5.5. u

To complete the proof of Theorem 3.5, we need to show Theorem 5.4. The
following lemma implies Theorem 5.4.

Lemma 5.8. Let ¢ = c(%’) satisfy the condition in Case 2, and hy, hy, he €
AS . Then we have
2

(i)
My (e, h)(1) @ Li(¢; hoo)(00))

), Ly (e, h0)(0) © L (6 hn) (1) & Ly (6, heo)(00)),

(ii)
(¢ h0)(0) © My (¢, hn)(1) ® L(c, hoo)(o0))

(€, hoo) (00)){=eo=h0).

L
2

Proof. = We can prove this lemma in the same way as in [13] (Lemma 4.5). =

From now on, we will consider Case 1 i.e. Theorem 3.4. Here we assume
that ¢ = ¢(t) for t € Ryg \ Q5. Similarly to Case 2, we introduce a nilpotent
subalgebra, which plays the same role as a1 in this case.

= {f(2) € L(BYIf() € [£2,,£2,] atw = oo}

— CY,(1- 28, @ ClzY, (1 — 2)~1]az.

D=

We set
E(()oo) = 20,.

Theorem 5.9.  Suppose that ¢ = c(t) satisfies the condition in Case 1 and hy,
hi, heo € AS, then we have
2

dim Ho(L(E3 ), L (¢, ho)(0) ® Ly (¢, h1)(1) ® Ly (¢, hoo) (o))

= dim HO(C%, L%(C, ho)(O) ® L%(C’ hl)(l))(*hco)’

1 1
2 2

where Ho (¢, L1(c, ho)(0) ® Li(c, h1)(1))(“h=) denotes the eigenspace of the oper-

ator E(()oo) with the eigenvalue —h, .
To prove Theorem 3.4, we calculate the right hand side of Theorem 5.9.
For hg, hi, heo € AS, let (Viy,Vio), (Viy, Vi) and (Vi,V;.) be the pairs of two

1o ?

1
irreducible representations of sl, which correspond to 12 l,ﬁl and [p respectively.
We say that a triple (ho, h1, hoo) is proper if (V;_, V}oo) is a component of (V;, ®
‘/il’ ‘/}0 ® le) *
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Theorem 5.10.  We assume that ¢ = c(t) satisfies the condition in Case 1 and
ho, h1 € A, then we have
2

dim Hy(e1, L1 (¢, ho)(0) ® L1 (c, hn) (1)) ")

1
2

{ 1 if hoo € AS and (ho, hy, hoo):proper,
= 2

0 otherwise.

Proof. Here we only identify (co-)invariants with the loop modules. It follows
from Lemma 5.2 that

dim HO(c; , (M3 (c, ho)(0) ® M (c, ha) (1))")¢) = 1,
for any 0 = 0, 1. For a non-zero element

U7 € HO(ey, (Mi(e, ho) (0) ® My(e, hn)(1)))5=),

1
2

we introduce functionals ¥%* (w =0,1) on M; (¢, hy)(w) by

T (1) = U7 (1o ® |c, hl)g)) and U7 (u;) = T9(|c, h())(;) ®u),

where u,, € M1(c, hy)(w). Let U3 be the restriction W[y, (ch,)w); - We set
2 2

o \I!;-"w if j € %0 + Z,
vt = G‘_’”%).q;;’f% if jel(1-0)+2,

then we have the following lemma.

Lemma 5.11.

i) Let p=he —ho+h—% and N\=h, — L. Foreach 0 =0, 1,
2

2
o %,1—0
P i’ ~gz,7°(0)

J€3Z>0
. 2)
as a E(f;% -module, via 1/);’0 — Fjg%?,a (€32 )
(ii) Let pp=he — h1 +hy— % and Azho—%. For each 0 =0, 1,

2
o1 110
D Cuf' =g ")
J€2 T3>0

as a LS, -module, via 7" F.6% (j€L75 )

1,17 ’ J J ’ J € 34>0 /-
Since the other parts of the proof of Theorem 5.10 are the very analogous
to those of Theorem 4.4 in [13], we omit them. u

From the following lemma, we obtain Theorem 5.9 and thus we complete
the proof of Theorem 3.4.
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Lemma 5.12.  Assume that ¢ = c(t) satisfies the condition in Case 1 and hy,
hi, hoo € AS. Then we have
2

(i)
Ho(L(E1), L1(c, ho)(0) ® Ly (¢, h1)(1) ® My (c, hoo)(00))
= Ho(L(E}), Ly (e, ho)(0) ® Ly (¢, 1) (1) ® Ly (¢, hoo) (00)),
(ii)
Hy(L(E:), Ly (c, ho)(0) ® Li (¢, ha)(1) ® My (¢, hoo) (0))
= Hy(cy, L1(c, ho)(0) ® Ly (e, hi)(1))heo),

6. On Conjecture 3.6

Here we state two propositions, which support Conjecture 3.6. To prove the first
proposition, we identify coinvariants with the quotient module gﬁ;g and calculate
the action of singular vectors. We need a formulae of the action of singular vectors

on the loop module .7-‘22 For 7 = 4, let |¢c,h: 7)o be a highest weight vector

of the half Verma module M (c,h). Suppose that ¢ = ¢(t) for t € Ryo and
h = h),(t) for a,b € Zq such that a —b=1 (mod 2). Then there exists an even
element SO, (resp. odd element S, ;) of U(Viry)\ {0} such that a singular vector
of the half Verma module M{(c, h) can be written as

—~——

(527,, + TSi,b)‘C, h: 7).
For o, 8 € {0,1}, let P2y7(X, 11, 1) be polynomials of ¢ defined by

Sg,b'FO = P(S,,I?()\’ 22 t)OF,%ab,
S8, Fob = Py (X, p, t)oF_ 140,

SawFo = Py (A 1, 1)0F_1 40,
Sé,b-FOH = P(?:bl()\, My t)()F 1

—gdb’

where F;, F} € )"0 . Set

— a,b
I O N i )

Lemma 6.1.

where
Q,a,c:é()‘, H, t)O
1 1 1 1 1 1
= [(u —2)\) + 5ab — §(kt5 +1t72){(a—k)t2 + (b— l)t‘i}}

M

+(l+Dt 2 a—k—1)tz+(b—1—1)t 2}

}2)\.

« [(M ~2) + Jab— S{(k+ 1)

(NI

1 1
+5 {(a— 1—2k)t2 + (b—1—20t
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Remark 6.2. At present, only the determinant of the matrix P, (), p,t)o can
be calculated and explicit forms of the matrix elements Paojgg (A, ,t)o are not
obtained except for some special cases.

From now on, we give two supporting evidences of Conjecture 3.6. First
one is a necessary condition that the coinvariants

Hy(L(Ey), Lo(c, ho)(0) ® L%(c, h1)(1) ® Lo(c, hoo)(00)) (15)

do not vanish. In the sequel we suppose that ¢ = ¢(t) satisfies the condition in
Case 1 or Case 2 and hg, hoo € A§, by € AS . In Case 1, let (Viy, Vjy), (Viy, Vj,) and

07 " Jo
(Vi , Vi) be the pairs of two irreducible representations of sly which correspond to
1

ioo’ Joo

In,> 17, and [} respectively. In Case 2, let [(Vi,, V},)], [(Viy, V;)] and [(Viy,, Vi)

be the equivalence classes which correspond to 120, l,fl and 1200 respectively. We
say that a triple (ho,h1,hoo) is proper if (Vi_,V,.) (resp. [(Vi.,Vj.)]) is a
component of (V;'o ® Vil’ Vjo ® ‘/31) (resp. [(Vi0®q—2‘/;'17 V]'0®P—2Vj1)])'

Proposition 6.3.  Suppose that ¢ = c(t) satisfies one of the conditions in Case
1 and Case 2. If at least two of (hg,0), (h1, %) and (he,0) are elements of S,
and

dim Hy(L(Ey), Lo(c, ho)(0) ® L%(c, h1)(1) ® Lo(c, hoo)(0)) # 0, (16)
then (ho,0), (h1, %), (hoo,0) € Sc and the triple (ho, hi, hoo) is proper.

Proof. Similarly to NS x NS — NS case, by using Shapiro’s lemma and
Poincaré duality, we can reduce calculation of coinvariants (16) to computation of
coinvariants of nilpotent subalgebras. Furthermore in the case of hg, hs # 21—40,
these coinvariants of nilpotent subalgebras can be identified with the quotient
module Qg:g. By using Lemma 6.1 and its variants, we can show this proposition
by an argument similar to the proof of Theorem 5.4 and 5.5. In particular, we will
calculate the coinvariants (16) explicitly for hg = ic or Moo = ﬁc in Proposition
6.7. |

Remark 6.4. The above coinvariant
Ho(L(Eq), Lo(c, ho)(0) ® Li(c, h1)(1) ® Lo(c, hoo)(0))
has even dimension. In fact, we see that

Hy(L(Ey), Lo(¢; ho)(0) © L1 (e, h1)(1) ® Lo(¢; hoo)(00))
= Ho(ao, L()(C, ho)(O) X L()(C, hoo)(OO))(_hl),

where

a = {f(z) € L(EY)|f(2) € [Ei%,ﬁi%]}
= (z,27 (2 —1)%0, ® Clz, 27 ](z — 1)220?

and Hy(do, Lo(c, ho)(0)®Lo(c, hoo ) (00))(*"1) denotes the eigenspace of the operator
—(z — 1)0, with the eigenvalue —h;. The parity shift I acts on the coinvariant

H()(E((), L()(C, ho)(O) X LO(C, hoo)(oo))(—hl)



K. IoHARA AND Y. KoGA 327

as an isomorphism, since
II(Lo(c, ho)(0) ® Lo(c, hoo)(00)) = Lo(c, ho)(0) @ Lo(c, hoo)(00).

This implies the desired result.

Next we give the second supporting evidence (Proposition 6.5). Consider
the following subcase of Case 2.

Case 2’ c= c( ) for p,q € 27+, p#q and (3(p —q),¢) = 1.
We prove

Proposition 6.5.  If ¢ = ¢(£) satisfies the condition in Case 2’ and ho = o
or hoo = 21—40, then Conjecture 3.6 holds.
For the proof, we have to calculate

dim Hy(£(Ey), Lo(c, ho)(0) ® Ly (¢, h) (1) ® Lo(e, hoo) (00)) (17)

for hy € A and hg, hoo € A§ such that hy = 240 or he = 240 To examine the
above comvarlants we introduce the following nilpotent subalgebra ay:

ao = {f(2) € L(E) | () € 13,0 £3.] for (w,€) = (0,0, (00,0) }

1 (18)
=22(z—-1)7%C[(z - 1)7']0, ® zz(z —1)72C[(z — 1)7']02.
We set
ap = @ @ w) ® Cgy” )a (19)
w=0,00
where
e(" —2(z = 1)"20,, 08 = 22(2 = 1)719,,

1 1
—\/—lzi(z —1)7192, g(()oo) = z%(z —1)7'92.

To reduce our calculation by using Sapiro’s lemma, we need the following repre-

sentations of ag: For w = 0,00, let W2, =, o, C1y),, ., be the 2-dimensional

representation of @, defined by

E( w) 11c“h o = 0w wh 118”h o for w' =0, 00, (20)
g(() A, = (b — 5071, for w =0, 00,
deg 17, ., = .

Now we have

Proposition 6.6.  Suppose that c=c(t ) satisﬁes the condition in Case 2’ and
ho, hoo € A§, hleA If hy = c or hs c then

dim Hy (L(Ey), Lo(c, ho)(0) ® L%(c, h1)(1) ® Lo(c, heo ) (00))
= dim H()(a(), Woho ® L%(C, hl)(l) ® chﬁf’/oo)'

C,

Proof.  Using Shapiro’s lemma, the resolution for L(c, h,)(w) and Theorem
6.6, we can prove this theorem by the same argument as in the proof of Lemma
4.5 in [13]. n
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To show Conjecture 3.6 in Case 2’, we calculate
dimHo(ao,W(?’hO ®L%(C, hl)(l) X co,?loo)'

For the sake of the commutativity of the tensor products in the coinvariant (17),
we can assume that hy = %c without loss of generality. We show the following
proposition.

Proposition 6.7.  Suppose that ¢ = c(%) satisfies the condition in Case 2° and
1
hi = hi 5, (8) € AC If hoo = 5;¢ then

(ao,W°h0®L1(C hl)( )@ Weh.,)

_ 4 Zf hO 7,8 (q) fO’I" some (’f‘, 8) € Emin(rl,qfrl),min(sl,pfsl);
0 otherwise,

where, for a,b € Z~q such that a =b (mod 2), the set E,; is defined by

. r<a—1A|s|<b-1
EM_{w@nuzwxmuaszw>TEQ_LSEb_l(mMQ)a

(21)
and
_JE,,u{(0,00)} ifa=b=1 (mod2),
Eap = { E,, fa=b=0 (mod 2). (22)
Proof. By Poincaré duality we have
dimHO(aO’Woho ®L1(C h’l)( ) ® Choo) (23)

= dim H°(ay, (Wgho ® L%(C h)(1) @ Wg5_)*).

In the sequel, we calculate the invariant in the right hand side of (23). By using
the following part of BGG type resolution:

Ni (e, ha)(1) = My (e, h)(1) = Li (e, ha)(1) =0,

we obtain
HO (o, (W0, ® Ni(c,h)(1) @ W3 )") &
H(Go, (WSy, ® M (c,hn) (1) @ WS,_)")
HO(dg, (W2, ® L1 (c,hl)(l) QWS ) «

¢,hoo

0.

Therefore, we see that
H®(ao, (Wep, ® Li(c,hi)(1) @ W5, )*) = ker €.

To calculate dim ker £, we first determine how the nilpotent subalgebra ﬁfl acts
2

on the invariant:

H® (G0, (Wep, ® My(c, ha)(1) @ We3.)"). (24)
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Let us consider the following functionals on the Verma module M%(c, hi)(1).
For W € H°(ao, (W), ® Mi(c,hi)(1) @ W5 )*) and o, 8 € {0,1}, we define
el e Mi(c, hi)(1)* by

\I;a,/j(vl) = \Ij(l(c),ho:a Qv X lz,ohoo:ﬂ) for M € M% (C, h1)(1), (25)
and set

wJO_t,ﬂ — goB

o1
M (e,h1)(1); for j € §Z20- (26)

By direct calculation, we can show that the subalgebra L'fl @ (CLgl) @ CC' acts on
)

the functionals w;-””B as follows:

Lemma 6.8. For j € %Zzo and m,n € Zsq,

(i) C.p}’ = —cp?
(i) L9627 = (“1) = (nlho — 1)+ by — oo + )63,
LY o0 — (s + ) 1
1) ap  _ ( I\N" [ 2m—2
(741) G_m+%.<pm_%+j = (—4) ( 1 )
x { (12 (2m = 1) Ko™ + Koo'~}

IN" [ 2m bd : m
- T2 | P () aB
(Rt

k=0

where Ky = (hg — ic)% , Koo =V —1(hoo — ic)% and [*] stands for the Gaussian
symbol.

Using this lemma, we can obtain the dimension of the invariant (24). Indeed, if
we set

Vo = Wop, ® Mi(c,h)(1)o @ W5, (27)

then we have

Lemma 6.9. The map

HO(ao, (Wep, ® Mi(c, )(1) @ W5 _)*) — (Vo)*
—

v Yy,

gives an tsomorphism of a vector space.

In particular, we have

dim H®(ao, (Wep, ® My(c, a)(1) @ W5 )*) = dim Vg = 4.
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Remark 6.10. In the above case, it follows that
dim Hy(L(Ey), My(c, ho)(0) ® M%(c, h1)(1) ® My(c, hoo)(00)) = 4,

since Shapiro’s lemma implies

Ho(L(Eo), Mo(c, ho)(0) ® M1 (c, h1)(1) @ Mo(c, hoo)(c0))
~ Ho(a0, W2y, ® Ms (e, h)(1) ® WE3,).

¢,hoo

Next we calculate the action of singular vectors on functionals {1/1}1’/3 }.
Suppose that ¢ = ¢(t) for ¢t € Ryg (not necessarily rational) and h; = h? s, (¢).
Let Sﬁ}?sl|c, hl)(f) be a singular vector of level N; = %7‘151, and A (hg, heo;t) be

2
the 4 x 4 matrix defined by
( rl,sl) {¢N1 ’ w]l\hl’ lea ]1\}?} = {¢8,07 w(%’l’ 8717 é’O}A(hOa h’oo; t),
By Lemma 6.8, A (hg, heo;t) become the direct sum of the following 2 x 2 matrices
a( ﬁ,sl) {on v} = {wg’f,wé 11’3}A'(h0, i ),
(57"1,81) {lea 1} = {¢o ﬂﬂ/Jo B}A”(hOa OOa ):

where ( is given by
B = 0 if Vi ez,
11 ifNeZ+3.

Lemma 6.11.  Suppose that ¢ = c(g) satisfies the condition in Case 2’ and
hi = h,, 51( ) € AC If hoo = ic then

A'(hgy, hoo;t) = A"(hg, heoj t)

0 X ifri=s1=1 (mod 2),
_ 71,51 0
Yisi 0 e
0 Y. ) ifri=s =0 (mod 2),

where

Xryor = (=1)Fre (ho — h§o(t))> H (ho — ha (1)),

}/;1,51 = H (ho - h’g,b(t))ﬂ

Remark 6.12.  For ¢ = ¢(f) which satisfies the condition in Case 2’, and

1
11,81 € Zxo such that h?, 5, (2) € A,
2

{B8.4(2)1(r,5) € Bumingrs q-ru)mintor—so) }

4 —r|+1<r<min{3¥—r,¢+r}-1
= hS’S(g) 2—s|+1<s<min{—s,L+s5}-1
r=2—-rm+1, s=5—-s5+1 (mod?2)
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Using this lemma, we can show Proposition 6.7. The maximal proper submodule
Ny (¢, h1)(1) of the Verma module M, (¢, h1)(1) is generated by the singular vectors

S,q,)sl|c, h1>(11) and S,gl_)n,p_sl\c, hl)(ll) of level %rlsl and %(q —711)(p — s1). We set
2 2
S, = ST(HSI, Sy = S,gl_)n,p_sl, N, = %7’131 and Ny = %(q—rl)(p— s1). For i =1,2,

let Al and A be the above 2 x 2 matrices A'(hg, hoo;t) and A" (hg, hoo;t) defined
by the singular vector S;lc, h1>(f). Set
2

¢,hoo

Notice that for ¥ € H®(ao, (W), ® M1(c,h1)(1) @ Wg3 )",

Uekere & ¥ (Sile,h)V) =0 forany a,f€{0,1} andi=1,2,
& {YdP gy TPYAL =0 and {7 P IAY =0 for i=1,2.

Therefore, from Lemma 6.9, 6.11 and Remark 6.12, we obtain Proposition 6.7.

Remark 6.13. Combining Theorem 6.6 and 6.7, we have proved Conjecture
3.6 in Case 2’, since we have

1
®3 (lgo’ lﬁl 7 l?loo )

= % dim Ho(L(Eo), Lo(c, ho)(0) ® L1 (e, i) (1) ® Lo(c, hoo)(20))
and ®o(lp_,1) ) =2.

Remark 6.14. From the proof of Proposition 6.7, it seems that we have to
determine the matrix elements of the matrix (14) to prove Conjecture 3.6 along
this line. At the moment, we can do it only in the following two cases:

1. hy = 21—40 or heo = 21—40,

2. hg = hy (See Lemma 7.4).

7. Rationality of SVOA L%(c, 0)

In this section, we prove Theorems 3.2 and 3.3, which are relevant to the rationality
of the SVOA Ly (c,0).

It follows from Theorem 5.4 and 5.9 that the sufficiency in Theorem 3.2
(i) and Theorem 3.3 for € = £ is a corollary of Theorem 5.5 and 5.10. Similarly,
the sufficiency in Theorem 3.2 (i) and Theorem 3.3 are immediate consequences
of Proposition 6.3, that is stated only with a sketch of a proof. The necessity
in Theorem 3.2 (i) follows from Theorem 3.2 (ii). So we indicate how one can
prove Theorem 3.2 (ii) for both € = 7,0. Since Theorem 3.3 is important for its
relation with the rationality of the minimal models, we give an alternative proof
of Theorem 3.3.
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First we comment on the proof of Theorem 3.2 (ii) briefly. Notice that for
a generic central charge c, if h ¢ A¢ then M(c, h)(w) is irreducible. In the case
of hy ¢ A¢ and hy & A? ),

dim Hy(L(E), M., (c, h1)(w1) ® M, (c, hy)(w2) ® Me,(c, hs)(ws)) # 0,

for any hs ¢ A¢, (See Remark 6.10). On the other hand, in the case of h; € A,
and hy € AS | the Verma module M%(c, h)(0) (e = 3) or the half Verma module

€2
M (¢, h)(0) (¢ = 0) has unique (up to scalar) singular vector. As in Theorem 5.5,
Theorem 5.10 and Proposition 6.3, this singular vector defines lines where (rs, s3)
such that hs = h2 . (t) should lie. Combining these equations with Theorem 5.5,

73,8

Theorem 5.10 and Proposition 6.3, we obtain the result. To prove Theorem 3.3,
we first show the following proposition.

Proposition 7.1.  Suppose that ¢ = c(t) for t € Ryo. If
Hy(L(Ep), Lo(c, ho)(0) ® L1 (¢, 0)(1) ® Ly(c, hoo)(00)) # 0,
then ho = hy .
Proof.  Notice that M (¢,0)(1) has the singular vector G(_l)l\c, 0)&1). We set

Ni(e,0)(1) = U(£5,)G" e, 008 and Vi(c,0)(1) = M1 (c,0)(1)/N'(c,0)(1). To

prove Proposition 7.1, it is enough to show that

dim Ho(L(Ey), My (e, ho) (0) ® Vi (¢, 0)(1) ® My (¢, hoo) (00)) = 25pq 5,2 071,

(29)
Indeed, if we can prove (29), then by using the exact sequences
V% (¢,0)(1) — L%(c, 0)(1) =0
and
M (¢, hy)(w) = Ly(c, hy)(w) = 0 (w =0, 00),
we obtain Proposition 7.1 by an argument similar to Lemma 4.5 in [13].
By Shapiro’s lemma and Poincaré duality, we have
dim Hy(L(Ey), M{(c, ho)(0) @ Vi(e, 0)(1) @ M{(e, hoo)(00)) (30)

2
= dim H°(dg, (W2, ® V%(c, 0)(1) @Wes5_)")-
Then we need to calculate the right hand side of (30). Using the exact sequence

N} (e, 0)(1) = My (c,0)(1) = Va(c,0)(1) =0,

we have
HO(dg, (W0, ® N4 (c,0)(1) @ W _)") &
HO(do, (Wep, ® M1(c,0)(1) @ Wg3 )*) <
HO(aOa (Wco,ho ® V% (C, 0)(]‘) ® chﬁzoo)*) — 07
and then

Cc

HO (8o, (W, ® Vi(c,0)(1) @ WS, )") ~ ker €.
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Note that for ¥ € HO(ay, (W?

¢ho

® M1(c,0)(1) @ WS_)"),

¢hoo

U e keré & G(_l)l.w‘f’ﬂ =0 for any a,p € {0,1},
2

2

where w;“’ﬂ is defined as (26). By Lemma 6.8, we have

(6} 037 6o 7) = (6w )((—1)&1(0 Ko )

and

Koo (_1)a+1K0 B
det < (1K, Ko = hy — heo

0 if hy # heo,
dim{ Uy, | U €keré} =4 2 if by = hoo # 50,
4 if by = hoo = 30,

~u

Therefore,

where V} is given in (27). Combining isomorphism (28), we obtain
dimker & = 26, 5,2 70 %1,
and we have proved Proposition 7.1. [ ]

From now on, we will prove Theorem 3.3. First we remark that, in the
minimal central charge case, Theorem 3.3 holds in the following strong form:

Theorem 7.2. Let € = %,O. Suppose that c satisfies the condition in Case 2.
Then we have

Hy(L(Ey), Le(c, ho)(0) ® L%(c, 0)(1) ® Le(¢, hoo)(00)) # 0
if and only if hg = hoo and hy € AS.

Proof. For e= %, this theorem is a corollary of Theorem 5.5. Now let us prove
for e = 0. To do so, it is enough to show that

Ho(L(Eo), Mo(c, ho)(0) ® Ly (e, 0)(1) ® My(c; hoo)(00)) # 0
= h() = hoo and ho € A(c)

(31)
Indeed, by an argument similar to Lemma 4.5 in [13], we see that (31) implies
Ho(£(Ey), Lo(c, ho) (0) @ Ly (¢, 0)(1) ® Lo(c, hoo) (00)) # 0.
For the proof, we use Shapiro’s lemma in the following way: Set
) =ap @ ClY & ™ @ Cgl™.

Let W' S,ho = C12,, be the 1-dimensional representation of & given by

l(()w ).lg,ho = bur 0ho1y,, for w' = 0,00,
g(gOO)'lg,ho = O’
deg1?, =0
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and let W25~ be the 2-dimensional representation of a; defined in (20). For
o=+, we set igf’hoom = {135, .0 T 013,41} By Shapiro’s lemma and Poincaré
duality, we have
dim Hy(£(Eo), Mo (¢, ho)(0) ® L1 (c,0)(1) ® My(c, heo)(c0))
= dim H'(aj, (W’C o ® L1( 0)(1) @ W2 )%)-

From the following part of the BGG type resolution for L, (¢,0)(1):

N1 (c,0)(1) = My (e, 0)(1) = Ly (e, 0)(1) = 0,

(NI

we obtain

7

H%%mam®@@mm®wmr>é
HO (&, (W25, ® My (c,0)(1) @ WSS )") «
<_

HO (&, (W'ep, @ Li(c,0)(1) @ Wg5,.)")

¢hoo

0.

Then we have
H° (ag (W/c 1o © L%(c, 0)(1) ® 005100)*) ~ ker¢'.

Next we determine when ® € H°(aj, (W’Oh ® M, (c,0)(1) @ W;,_,)") vanishes on
the singular vectors of M (¢,0)(1). For 0 =+ we set

7 (v1) = (10, @11 ® igj’hoo:(,) for v, € M (¢,0)(1)

and .
SD? = ¢U|M%(c,0)(1)j for j € §Z20-
Since the maximal proper submodule Ni(c,0)(1) of My (c,0)(1) is generated by
the singular vectors
1 1
q lp 1|C O)%) and G(,)%|ca O)é):

we see that

®7 e kerf’ & a(S( )1p 1)- ‘P%(q—n(p—n = 0 and a(G(j)l).ap% =0.

q
2

Therefore, we have to know how the above singular vectors act on the functionals

¢7. We need the following two lemmata: The first one is

Lemma 7.3. For j € %Zzo, m € Lo and n € Zq,

(7’) Cf] = _CQO?:
(@) LY = (1™ (m(ho — 1) + hi — hoo + 1) 05 s
1 N g
L( ) p; = —(M +])90j

1 - 1\" 2n
(14i) G(_i_é Prijes = Z) (2n+1) ( )
li+3]
, 2n-+3 3 n
X Koo 3 > ( k ) nt ko k3 ¥i-ked (0
k—

where Koo = /=1 (hoo — )7 .
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To state the second lemma that is a key of our proof, we assume that ¢ = c(¢)
1

for ¢t € Ryg (not necessarily rational) and hy; = h; 's(t) for some r,s € Zsq such
that 7 — s € 2Z. For a singular vector S\¥|c, hl) of level N = Irs, we define a
2 x 2-matrix M (ho, hoo;t) by

a(Sg,ls)) : {SOUZ;“ (1)1 QON_FI} = {9007 )% %} (hOa Ooat)a

where a denotes the antipode of ﬁf 1
P

Lemma 7.4. If h = hy = hy, then we have

b &) —2r XY\ [ (—1)3097 o
M (h, h;t) = lo‘K_l(X(l)},/(O)’— X(O)Y(l)) X(l—Tiy(T) ( 0 ) ’
D) ) r,s Lr,s r,s Lrs r,8 r,8

where T = T, 5 such that r = s = 7,5 (mod 2) and Xr(zg), YT(,Z) are given by

xXW= T[] 270 —-1-2kt7 — (s — 12072},

b}
(k,1)EED

v =TI {0 sampom(® - 5pe) - (= g}

(k,D)EE] ¢

0<k<r—-1nA0<]<s-1
El,=<(kl)ez’| r—1-2k>0V (r—1-2k=0As—1-21>0)
k+1l=~ (mod 2)

Proof. To show this lemma, we notice the following fact:

Fact 7.1. For any x € U(E ), .92 can be written as follows:

.1
2

= Z czfyﬂ,m),(w,n) {y (G—%)a}-ﬂo(rfm

Y,a,m

whereyEU(E 1), a€{0,1}, me 1Zsy and <, om) € C.

y,0,m),(
Using thls fact and the embedding diagrams of Verma modules, we can
prove this lemma by the same argument as in the proof of Lemma 5.1. [ ]

Remark 7.5.  For the number ¢ = ¢(2) which satisfies the condition in Case
2, X(OMJ 1‘t—— # 0 and Y lp 1|t_z= =0 if and only if h € A§.

We return to the proof of Theorem 7.2. Combining Proposition 7.1, Lemma
7.4 and Remark 7.5, we obtain (31). Thus we complete the proof of Theorem 7.2.
|

At the end of this paper, we comment on the following proposition related
with the rationality of the minimal models for the NV =1 super Virasoro algebras.
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Proposition 7.6. Let ¢ = %,O. Suppose that ¢ = c(%) for some p,q € Z~y
such that p,q > 2, p—q € 27 and (%(p —4q),q) =1. For h,h' € A¢ we have

C ifj=0 and h="H,
(Le(e,h), Le(e, ) =< € if j € 2Z~o and h=1H,
0 otherwise .

J
Ext (Vire,Vir0)

In particular, Ext%Vire,Wrg)(Lﬁ(c, h), Le(e,h')) =0 for any h,h' € A°.

Proof. Combining Theorem 4.5 in [4] and Theorem 2 in [20], we obtain this
theorem by a standard argument, since we already have BGG type resolutions for
the minimal series representations over the N = 1 super Virasoro algebras. |

Finally, let us remark on a relation between our fusion algebras and the
super vertex operator algebra associated with L1 (c(%),0).

Remark 7.7. 1. By [16], L%(c(g),O) becomes a vertex operator superalge-
bra and the set of the irreducible representations of the SVOA Ly (c(%), 0)
is given by

{L%(C(g),h) ‘h e AW }

The fusion rule of this SVOA was computed in [1], and it gives the same
result as in Theorem 3.5.

2. The rationality of the SVOA L (c(2),0) was conjectured in [16] and proved

in [1]. From Theorem 3.3 and Proposition 7.6 for € = 1, we obtain another
proof of the rationality of the SVOA L (c(%), 0).
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