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Abstract.  'We study the class of two-generator subgroups of PSL(2, C) with
real parameters which was introduced recently by Gehring, Gilman, and Martin.
We give criteria for discreteness of non-elementary and non-Fuchsian groups
of this class that are generated by two hyperbolic elements. We construct
all hyperbolic orbifolds uniformized by the discrete groups of such type. The
orbifolds described are of infinite volume.

Introduction

Throughout this paper we will consider PSL(2, C) which acts as the full
group of orientation preserving isometries of hyperbolic space H2. In the last years
its 2-generator subgroups have been the subject of investigation from different
points of view, see [1], [3], [4], [8], [9], [12]-[20], [26], [27] (this list is not complete).
A series of papers is devoted to the following problem:

Problem. When is (f,g) < PSL(2,C) discrete?

By now, only necessary or only sufficient conditions for the discreteness
are presented in most of the papers. For the former we mention the remarkable
Jorgensen inequality, the inequality of Shimizu-Leutbecher and their analogs, see
eg. [15]-[16]. For the latter see [9] and references therein.

Given a discrete subgroup I' of PSL(2, C), one can consider the orbit space
H3 /T, which is a hyperbolic orbifold. Therefore, we can regard different examples
of 2-generator hyperbolic orbifolds as a kind of sufficient conditions for discreteness.
Such examples were constructed, for instance, in [12]-{14].

Still there are no criteria (that is, necessary and sufficient conditions) to
determine the discreteness of 2-generator groups. It is quite natural to solve this
problem first for particular classes of subgroups of PSL(2, C). What are the classes
completely described?
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The description of all elementary discrete groups is well known (see [2],
[7], or [25]). If both generators keep invariant a hyperbolic plane in H?, then
the problem was also completely solved: if the generators preserve orientation of
that plane, see [7], [10], [11], and [28]; if at least one of the generators reverses
orientation of the invariant plane, see [23]. From the geometric point of view,
almost all 2-generator discrete groups in this paragraph (except some elementary
groups) are, in a sense, 2-dimensional (all of them are isomorphic to discrete
subgroups of E?, S%, or H?, in the last case they are not necessarily orientation-
preserving).

In [8], Gehring, Gilman, and Martin suggest the investigation of the class
of two-generator groups with real parameters (3, 3',7), where 3 = tr>f — 4, ' =
tr2g — 4, and v = tr[f, g] — 2. In case when such a group is discrete they obtained
necessary conditions on the parameters. In [20], a geometric characterization of
real parameters is given, moreover, it is shown that the class contains many “truly
spatial” groups (non-elementary groups without invariant plane). We study those
spatial groups in series of papers [17]-[22].

The purpose of the present paper is to describe all non-Fuchsian groups
with real parameters generated by two hyperbolic elements. Namely, we find nec-
essary and sufficient conditions for their discreteness and construct the hyperbolic
orbifolds uniformized by the discrete groups of such type. The orbifolds described
are of infinite volume.

Acknowledgements. Part of this work was done while the author was staying at
the University of Bielefeld. I express my sincere gratitude to Prof. H. Helling,
Prof. A. Mednykh, and Prof. G. Rosenberger for very useful discussions. I would
like to thank N. Kopteva for the illustrations and Prof. B. Kunyavski for numerous
remarks.

1. Preliminaries

1.1. Hyperbolic geometry.

We recall some facts of hyperbolic geometry.

Two (hyperbolic) planes are either intersecting, or parallel, or disjoint. Two
(hyperbolic) lines either lie in a plane (and then they are intersecting, parallel, or
disjoint), or they are skew.

In the next section we will need the following three propositions.

Proposition 1.1.  Let € and p be mutually orthogonal planes, and let a be
the line by which they intersect. Let b be a straight line which lies in p and is
orthogonal to a. Then b is orthogonal to ¢.

Proposition 1.2.  If a plane € is orthogonal to a straight line b lying in another
hyperbolic plane o, then € and o are mutually orthogonal.

Propositions 1.1 and 1.2 are simple and occur not only in hyperbolic geom-
etry, but also in Euclidean and spherical ones.
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Proposition 1.3.  Let 0, and oy be disjoint planes in H?, and let € be a
plane which is orthogonal to both of them. Then ¢ passes through the common
perpendicular to o1 and oy.

Proof. Indeed, the lines of intersection of o; and o, with ¢ are disjoint and,
consequently, have their common perpendicular (lying in ¢). That perpendicular
is orthogonal to both o; and oy by Proposition 1.1. The proof is complete. ]

We recall also that the angle between two skew lines in H? is defined
to be the dihedral angle between two planes which pass through the common
perpendicular to these lines and each of them separately. Two lines are mutually
orthogonal if and only if there is a plane containing one of the lines and orthogonal
to the other.

1.2. PSL(2,C) as the isometry group of hyperbolic 3-space.
Consider 3-dimensional Lobachevsky space realized as the upper half-space

H)={ (21 ]|2z€C, t>0}
with the hyperbolic metric
ds? = (|dz|* + dt?) /12

As is known, PSL(2,C) acts as the full group of orientation preserving
isometries of hyperbolic space H?. A Kleinian group is any discrete subgroup of
PSL(2,C).

We need a classification of elements of PSL(2,C). For f € PSL(2,C),

let (ZL Z) € SL(2,C) be one of the two matrices which represent f. Then as

usual tr’f = (a + d)?. A non-trivial element f is elliptic (parabolic, hyperbolic,
or strictly lozodromic) if and only if tr?f € [0,4) (tr?f = 4, tr’f € (4,+00), or
tr’f ¢ [0,+00), respectively). Geometrically this is rotation (respectively, limit
rotation, translation or rotation followed by translation with the same axis).

An elliptic, parabolic or hyperbolic element, in contrast to a strictly loxo-
dromic one, can be presented as the composition of reflections in two hyperbolic
planes. Those planes are either intersecting (the line of the intersection is called
the axis of the elliptic element; this is the fixed point set under its action), or
parallel (the common point of the planes, which lies on C = GH?, is the unique
fixed point of the parabolic element), or disjoint, respectively (in the last case, the
common perpendicular to the planes is the unique invariant line under the action
of the hyperbolic element and is called the axis of this element).

An elliptic element is determined by its axis, the angle and the direction
of rotation about this axis. An elliptic element of finite order is called primitive
(or geometrically primitive), if it is conjugate, on C, to a rotation of the form
F(z) = exp(2mi/p)z, p € N, and non-primitive otherwise. A non-primitive elliptic
element of order p is conjugate to a rotation F'(z) = exp(2miq/p)z, where p, ¢ € N
are relatively prime, ¢ > 1 and ¢/p < 1/2.

Further information on Kleinian groups and hyperbolic geometry can be
found in [2], [5], [6], [25], and [29].
We remind only the following
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Proposition 1.4.  Let f and g be hyperbolic elements. Then tr[f,g] € R if
and only if the axes of f and g either lie in one hyperbolic plane or they are
mutually orthogonal skew lines.

This is a special case of Theorem 1 in [20].

2. Main result

Suppose that both elements f and g of PSL(2,C) are hyperbolic and
tr[f, g] = trfgf~'g™! is real.

By Proposition 1.4 the axes of f and g either lie in a hyperbolic plane (and
then this plane is invariant under the action of T" = (f, g); i.e., I is discrete if and
only if it is Fuchsian), or those axes are mutually orthogonal skew lines. In the
last case, necessary and sufficient conditions for I' to be discrete are given by the
following

Theorem 2.1.  Let f,g € PSL(2,C) be hyperbolic elements with mutually or-
thogonal skew axes. Then

(1) there exists a unique element h € PSL(2,C) such that h? = [f,g] and
(hg)? =1; and

(2) T'=(f,g) is discrete if and only if h is hyperbolic, parabolic, or a primitive
elliptic element.

Proof. To prove the theorem we will use the methods expounded in papers
[17]-[19].
1. The first step is to construct a group of reflections I'* so that I' is its subgroup
of finite index. In this case, the question about discreteness of I' is equivalent to
the same question for I'*. Simultaneously we prove conclusion (1) of the theorem.
We denote an element and its axis by the same letter. So, f and ¢
are mutually orthogonal skew lines. Let e be the half-turn about the common
perpendicular to f and g. There exist two other half-turns e; and e, such that

[ =eye, g = ege.

We have
£, 9] = (ere)(ege)(ees) (eeg) = (feg)*. (1)

It is clear that the axes ey and e lie in one hyperbolic plane, are disjoint,
and f is their common perpendicular. An analogous statement is true for the
three axes e4, e, and g.

Let A, p, o, 7 be hyperbolic planes defined as follows: A contains e; and
is orthogonal to f; p contains e, and is orthogonal to g; o contains ey, e, and f;
and finally 7 contains e4, e, and g. Note that the pairs of planes A and o, o and
7, 7 and p intersect at an angle of 7/2, A and 7 are disjoint ( f is their common
perpendicular), p and o are also disjoint (with g as their perpendicular). The
planes A and p are either disjoint, or parallel, or intersecting.
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Let Py denote the convex polyhedron (of infinite volume) bounded by A,
w, o and 7 with edges ef, e, ey, and possibly AN p, if this intersection is not
empty (see Figure 12). If we denote by Ry, R,, R,, R, the reflections in \, p,
o, T respectively, then f = R\R,, e, = R;R,, and from (1) it follows that

[f, 9] = (RAR,)".

Denote by h the composition of reflections R, and R),
h=R\R,,.

Then h is the very square root of [f,g] we need. Indeed, the product hg =
(R\R,)(R,R;) = R\R, = e; is a half-turn. (Note that the other orientation
preserving square root h' of non-parabolic commutator [f, g] does not satisfy the
condition that h'g is a half-turn. Namely, h'g is hyperbolic in case that [f,¢]
is elliptic, and h'g is m-loxodromic when |[f,g] is hyperbolic.) We have proved
conclusion (1) of the theorem.

Define

T'=(f,g,¢) and T*=(fg,e,R,) = (R, Ry Ry, R,).

Since efe~! = f~! and ege™! = ¢g~!, we have I = I' UTe. It is clear that either
I =T (if e € T'), or I is an index 2 subgroup of I'. Moreover, I is the orientation
preserving subgroup of I'* of index 2. Thus I', I' and I'* are either all discrete or
all non-discrete.

2. Assume that h = Ry R, is hyperbolic, parabolic, or a primitive elliptic element
of order p (that means that A and p are disjoint, parallel, or intersecting at an
angle of 7/p, respectively). Then Py, together with the reflections Ry, R,, R,,
R, in its faces, satisfies the hypotheses of Poincaré’s polyhedron theorem, and so
I'* = (Ry, Ry, Ry, R;) is discrete. We have proved the “if” part of (2).

3. Assume that h = R\R, is neither hyperbolic, nor parabolic, nor a primitive
elliptic element. We have two possibilities: either A is an elliptic element of infinite

2All figures are done irrespective of any model of Lobachevsky space.
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order; or h is a non-primitive elliptic element of finite order. In the first case, both
I'* and ' are not discrete. In the second case, we need further investigation. To
complete the proof of the theorem it suffices to prove the following

Lemma 2.2.  Let f,g € PSL(2,C) be hyperbolic elements with mutually or-
thogonal skew azes, and let h as above be a non-primitive elliptic element of finite
order. Then T' s not discrete.

Proof. We will prove it by contradiction. Assume that I' is discrete, and h is a
non-primitive elliptic element, that is, the planes A and p intersect at an angle of
q(m/p), where p is the order of h, (p,q) =1, 1 < g < p/2. Then I'* (which is also
discrete) contains reflections in ¢ — 1 planes which pass through h and decompose
the corresponding dihedral angle of Py into ¢ smaller angles of 7/p.

Now we need an additional construction.

The lines ef and h lying in A are disjoint since they lie in disjoint planes
o and p. Denote by ¢ the plane which passes through the common perpendicular
to ey and h and is orthogonal to A. Then ¢ is orthogonal to e; and h (Proposi-
tion 1.1), and consequently, to both p and o (Proposition 1.2). Therefore £ passes
through the common perpendicular to p and o, i.e., through ¢g (Proposition 1.3).
Analogous argument shows that there exists a plane n which is orthogonal to A,
i, and 7 and passes through f (Figure 2). Denote by P. the compact polyhedron
bounded by A, u, o, 7, €, and 7.

Figure 2:

Recall that I'* contains the reflections Ry, R,, R,, and R, (and does not
contain the reflections in € and 7); moreover, I'* contains reflections in ¢ — 1
planes (¢ — 1 > 1) passing through h and intersecting the interior of P.. We call
these ¢ — 1 planes the additional reflection planes (through h ).

Consider the planes ¢ and 7. Set I't = (Rx, Ry, Ry), Iy = (R, Ry, Rr).
It is easy to see that I'} keeps ¢ invariant, and I'; keeps 7 invariant (since A, p,
and o are orthogonal to ; and A, u, and 7 are orthogonal to n). The additional
reflection planes through h are orthogonal to both ¢ and n; and the reflections in
them belong to both I'; and T7.



KLIMENKO 497

- £
A=A
&

! C e
/ i R

| . II(d

| 3 =~

I

L

=107
Figure 3:

Both I'; and T are subgroups of I'* (which is discrete by assumption),
hence they are also discrete.

For convenience denote A\, = ANe, p. = puNe, oo =0Ne, Ay =ANn,
pn = pNmn, 7 =7Nn (see Figure 3, where n and ¢ are shown).

We concentrate on ¢, keeping in mind that analogous conclusions are valid
also for 7. Let ¢ be the nearest to A additional reflection plane through A. Then,
¢ and o are either disjoint, parallel, or intersecting. Denote by A, the triangle
(compact or non-compact of finite or even infinite area) formed by )., o., and
(. = ¢ Ne. Using discreteness of I'* and Knapp’s list [24], we have only those
possibilities for A\, that are presented in Figure 4 (in case when A, is compact).

P P
b "N P
Vp+l/r<1/2 pz7 (p2)=1
(a) )
Figure 4:

A priori, for every triangle A, with fixed angles there are as many different
decompositions of ¢ (by the reflection planes that belong to I'f) as there are
different ¢’s that are relatively prime to p and satisfy the inequality 1 < g < p/2.
(We remind that ¢m/p is the angle between A\ and u.)

We show below that in fact there is at most one decomposition for each
admissible triangle A..

First of all, for each A, we select exactly one decomposition D of ¢ that
satisfies the following condition:

(C1) Among all decompositions with the same A., D has the minimal number
of additional reflection planes through h.
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All possible types of decompositions satisfying (C1) are represented in Figure 5,
where we suppose that case (i) contains subcases of non-compact triangle A, and
of disjoint planes ( and o. Notice also that the minimal number of additional
reflection planes through A in case (ii) equals two, because otherwise p. intersects
O, .

We will denote the edges (and their lengths) and faces of the compact
polyhedron P, by §=¢gNP,, \a = A NP, 7. =7.NP,, .... It is easy to see
that for every decomposition shown in Figure 5 we have:

(C2) 7. meets at most one additional reflection plane.

Thus, (C2) follows from (C1). It is not difficult to see that (C2) holds even
if (C1) does not occur. Indeed, one can check it by adding (to the corresponding
decomposition in Figure 5) one or several lines passing through the vertex hNe.

p29, (p.2)=1

(iii) (1v)
Figure 5:
The similar condition is always realized for 7:

(C2') 7, meets at most one additional reflection plane.
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So, we have proved that the discreteness of I'* implies (C2) and (C2').
Finally, we show that decompositions of € (by the reflections of I'}) other than in
Figure 5 do not exist. Otherwise, at least two additional reflection planes intersect
g and, consequently, also intersect 7,, which contradicts condition (C2').

It is clear that Figure 5 presents not only all decompositions of €, but also
those of  (by the reflection planes of T ).

Figure 6:

Since the reflection planes passing through A are the same for ¢ and 7, a
priori there are the following three possibilities for the pair {e, n}:

(1) {(@), (i)} or {(ii), (4)};

(2) {(i1), (i) };

(3) { (i), (i2i) } -

Note that (iv) is impossible (it could be combined only with (4i7), but there
p="T).

To complete the proof of Lemma 2.2 it remains to show that the situations
(1) = (3) cannot occur.

In (3), the additional reflection plane intersects e at a point, say z (Fig-
ure 6). We have two axes of elliptic elements of order 7 passing through z, what
is impossible in a discrete group. (It is an easy corollary of the following fact. If
a subgroup of a discrete isometry group of H? keeps some sphere invariant, then
this subgroup is a discrete group of isometries of 2-dimensional sphere. For our
subgroup generated by the two elliptic elements of order 7 any sphere centered at
x is invariant.)

In hyperbolic geometry a triangle is determined by its angles, therefore, in
case (2), A. = f,. Hence 7, = A, (see Figure 7). However, on the one hand,
A > . (it is easy to see from Figure 5(ii) for the plane £). Moreover, ), is
the common perpendicular to h and ef, and, consequently, A < X,,. We have a
contradiction.

In case (1) we can restrict ourselves to handling the pair {(iii), ()}. Denote
by (, the line of intersection of the additional reflection plane with o. First of
all, {, cannot intersect e (otherwise, there are two intersecting axes, (, of order 7
and e of order 2, in the discrete group what is possible only if the angle of their
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Figure 7:

intersection is equal to 7/2, but then in o we have a triangle with two right
angles). The lines (, and e cannot be parallel, because none of the discrete
groups in Euclidean plane contains elliptic element of order 7. The last possibility
is that (, and e are disjoint. In this case, in the plane orthogonal to both {, and
e we have a triangle with angles of 7/2, /7, ¢. This triangle is an orthogonal
section of an infinite triangle prism formed by reflection planes for which (, and e
are lateral edges. Thus, this triangle have to be smaller than any other section of
the prism. On the other hand, from discreteness of I'*, we conclude that ¢ = 7/n
(n>3) or ¢ =21 /7. However, all such triangles are larger than the one hatched
on Figure 8 (the hatched triangle is a part of a triangle with angles /2, n/7,
7/3) and, hence, cannot be the orthogonal section of the prism. We arrived at a
contradiction. The proof of Lemma 2.2 (and Theorem 2.1) is complete. u

Figure 8:

Remark 2.3. It is easy to reformulate the above result in terms of parameters
(B,8',7), see [20], Table 2.
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Remark 2.4.  Surprisingly, there are no discrete groups with two hyperbolic
generators for which the above mentioned square root h of their commutator is
a non-primitive elliptic element (compare this, for example, with the case of two
elliptic generators).

3. Two-generator hyperbolic orbifolds of infinite volume

In this section we construct hyperbolic orbifolds that correspond to all the
discrete groups described in Theorem 2.1.

Note that if A is a primitive elliptic element of order p, where p is odd,
then there is an integer k such that [f, g]* = h. Hence the elements h, ef = hg,
and e = e f belong to I'. We have T = (f,g,e) =T. To construct a fundamental
polyhedron for I' = T' we double P, along its face o and denote by P; the doubled
polyhedron. It is easy to see that P; and the elements e, ey, and g satisfy the
hypotheses of Poincaré’s Polyhedron Theorem [5]. We obtain that I" has the
following presentation:

I'={e, e, g | e’ = e?“ = (erg9)’ = (96)2 =1). (a)

To obtain the orbifold with boundary (H>*UQ(T"))/T" (whose interior H3/T'
is a hyperbolic orbifold and Q(T') is the discontinuity set of I'), we identify the
equivalent faces of P;. Note that all our orbifolds are embedded into S*, and we
draw them so that oo is a regular inner point of the orbifold (see Figure 9 (a)).

In the remaining cases, when h is hyperbolic, parabolic or a primitive
elliptic element of even order p, for the construction of the fundamental polyhedron
for I' we double P; (the fundamental polyhedron for T') along 7 to obtain the
polyhedron P, which together with f and g satisfies the hypotheses of Poincaré’s
Theorem.

(a) (b)

(©) (d)

Figure 9:

We see that I' # I' and (as a Kleinian group) has one of the following
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presentations:
T=(f g | (fof ‘g P*=1), (b)
if [f,g] = h? is elliptic;

L=(f g | (fof g )>=1), (c)
if [f, g] = h? is parabolic; and

F={f91) (d)

if [f,g] = h? is hyperbolic. For the corresponding orbifolds see Figure 9 (b, c, d,
respectively).
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