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Abstract.  We introduce Jacobi forms on Hermitian symmetric domains
using automorphy factors associated to torus bundles over ableian schemes.
We discuss families of modular forms determined by such Jacobi forms and
prove that these Jacobi forms reduce to the usual Jacobi forms of several
variables when the Hermitian symmetric domain is a Siegel upper half space.

1. Introduction

Jacobi forms on the Poincaré upper half plane, which were developed systemat-
ically by Eichler and Zagier [5], occur naturally in various contexts in number
theory, and they have been studied extensively in recent years (see e.g. [3], [6]).
Jacobi forms of several variables have been considered mainly on Siegel upper
half spaces (cf. [15], [16]) and a few other special types of Hermitian symmetric
domains (see [4], [7]). The goal of this paper is to introduce Jacobi forms on Her-
mitian symmetric domains which allow equivariant holomorphic maps into Siegel
upper half spaces.

Torus bundles over abelian schemes occur naturally in the study of compact-
ifications of locally symmetric spaces. Let D be a Hermitian symmetric domain,
and let ' C Aut(D) be a discrete subgroup of arithmetic type. Then the locally
symmetric space I'\D can be compactified by the method of Baily and Borel (cf.
[2]). Thus ['\D can be canonically embedded as a Zariski open subset in a projec-
tive variety ['\D. Unfortunately, the Baily-Borel compactification I'\D may have
complicated singularities along the boundary, which prevents us from using it to
obtain information on automorphic forms on D, for example. On the other hand
the method of toroidal compactification provides smooth compactifications of lo-
cally symmetric spaces (see [1], [11], [12]). Toroidal compactifications are defined
using torus embeddings, and there are in general different toroidal compactifica-
tions associated to different systems of cone decompositions involved. The toroidal
compactification of I'\D dominates the Baily-Borel compactification T'\D, and it
possesses a natural stratification compatible with that of the Baily-Borel compact-
ification. The strata of toroidal compactifications are torus bundles over abelian
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schemes. Abelian schemes here are families of abelian varieties parametrized by
the locally symmetric space I'\D, which play an important role in number theory
and algebraic geometry.

In [14] Satake constructed explicitly abelian schemes over a locally symmet-
ric space of the form I'\D and torus bundles over such abelian schemes, and he
obtained results on the Chern classes and the projectivity of those torus bundles.
His construction involves certain automorphy factors on the product D x V, of
D and a complex vector space V. In fact, such automorphy factors also play a
crucial role for the proof of the algebracity of abelian schemes over which torus
bundles reside (see [13, Chapter 4]). In this paper we define Jacobi forms using
such automorphy factors and discuss families of modular forms on Hermitian sym-
metric domains associated to such Jacobi forms. We also prove that these Jacobi
forms reduce to the usual Jacobi forms of several variables investigated by Ziegler
[16] when the Hermitian symmetric domain is a Siegel upper half space.

2. Torus bundles over abelian schemes

In this section we describe the construction of a torus bundle over an abelian
scheme following Satake [14]. Let V' be a real vector space of dimension 2m > 0
defined over QQ, and let Alt(V') denote the space of all alternating bilinear forms
on V.

Definition 2.1. A Hermitian structure on V is a pair (a, I) consisting of all
elements o € Alt(V) and I € GL(V) with I? = —1y such that the bilinear map

VxV-oR  (v,v)— alv,Iv)

is symmetric and positive definite. We shall denote by Herm(V') the space of all
Hermitian structures on V.

Given « € Alt(V), we denote by Sp(V, «) the symplectic group associated
to «, that is,

Sp(V,a) ={g € GL(V) | a(gv, gv') = a(v,v') for all v,v" € V}.

We fix a Hermitian structure (o, ly) € Herm (V') on V' with «y € Alt(V) defined
over Q. Then the Hermitian symmetric domain associated to the symplectic group
Sp(V,ap) can be identified with the space

H=H(V,a0) ={I € GL(V) | (g, I) € Herm(V)} (1)

on which Sp(V, ap) acts by
1

(9,1) = glg™

for all g € Sp(V, ) and I € H(V, o).
Let G be a semisimple Lie group of Hermitian type defined over Q. Thus
G = G(R) for some semisimple linear algebraic group G defined over Q, and, if
K is a maximal compact subgroup of G, the associated Riemannian symmetric
space D = G/K is a Hermitian symmetric domain. We assume that there are a
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homomorphism p : G — Sp(V, o) of Lie groups defined over Q and a holomorphic
map 7 : D — H such that Iy € 7(D) and

7(92) = p(9)7(2)
for all g € G and z € D. We set
U* ={a e Alt(V) | p(G) C Sp(V,a)}.

Then U* is a subspace of Alt(V) defined over Q, and we have ay € U*. Let
U = (U*)* be the dual space of U*. Then we obtain an alternating bilinear map
A:V xV — U defined over Q by

A(v,v") (@) = a(v, ") (2)

for all « € U* and v,v' € V.

Following Satake (cf. [13, §II1.5], [14]), we consider the generalized Heisen-
berg group H associated to A consisting of all elements of V' x U together with
a multiplication operation given by

(v,u) - (v, ) = (v + 0 u+ v’ = Av,0)/2) (3)

for all (v,u),(v',u') € V x U. Then the group G operates on H by

g- (Uau) = (p(g)vau) (4)

for all ¢ € G and (v,u) € H, and we can form the semidirect product G x H
with respect to this operation. Thus G x H consists of the elements (g, v,u) of
G x V x U whose multiplication operation is given by

(ga v, u) ) (gla Ula ul) = (ggln (U’ U’) : (p(g)vli ul)) (5)
= (99, v+ p(g)v', u+u' = A(v, p(g)v')/2).

Let I € GL(V) be an element of H = H(V, ). We extend the complex
structure I on V linearly to the complexification Ve =V ®g C of V', and set

Vi) ={v eV | Iv=riv}, Vo(I)={veV|Iv=—iv}.

When [ is equal to Iy considered above, we shall write V, =V, ([y) and V_ =
V_(1y).

Lemma 2.2. To each complex structure I on V there corresponds a unique
complez linear map &; : V_ — Vo satisfying

Vo(I)=(1+¢&)V_. (6)

Furthermore, the map I — &; determines a bijection between H = H(V,ap) and

the set of C-linear maps € : V_ — V, such that 1 — &€ is positive definite and

t = &, where the transpose is taken with respect to the bilinear map o .
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Proof.  This follows from [13, Lemma I1.7.2]. n

If ¢ is an element of Home(V_,V,) in Lemma 2.2 corresponding to an
element I € H, then we shall write I = I;.

Lemma 2.3.  For each £ € Homc(V_, V) with I € H the map
Ee:(ViIg) =V, v v —E&u

determines an isomorphism of vector spaces over C, where v=v,+v_ €V C V¢
with vy € V4.

Proof. Given ¢ € Home(V_,V,;) with I, € H, the map =, is linear. Since
dim¢ V' = dim¢ V., it suffices to show that Ker=, = {0}. Suppose that v € V
satisfies

Ee(v) =vy —&v_ =0. (7)
By (6) there exists v' € V_(I¢) such that
v =wv_ +&v_. (8)

JFrom (7) and (8) we see that v' = vy +v_ =v € V. Since VNV_(I¢) = {0}, we
have v' = v = 0; hence it follows that Ker =, = {0} u

By Lemma 2.2 we may identify the symmetric domain # in (1) with the set
of elements z € Home¢(V_, V) with 2 = z and 1 — 2z > 0. Then the symplectic
group Sp(V, ag) operates on H in (1) by

9(2) = (az + b)(cz +d) "
for all z € H and

a b
g= (c d> € Sp(V, ap);

here we wrote g € Sp(V,ap) as a 2 x 2 block matrix with respect to the decom-
position Ve = V; + V_. The canonical automorphy factor J of Sp(V, ag) is the
map on Sp(V,ap) x H with values in GL(V¢) given by

se.9= ("9, 0) (o

(9,2)

~—

for all g € Sp(V,aq) and z € H, where
Ji(9,2) =a—g(z)e, J (9,2) =cz+d. (10)

If 7: D — H is the holomorphic map equivariant with respect to the homomor-
phism p: G — Sp(V,aq) as before and if A is as in (2), then we set

J((g,7,8), (2,v)) = s — A(p(g)r, T+ (p(g), 7(2))r2) /2 (11)
—A(p(g)v,J+(p 9),7(2))v)/2
Alp(g)r, J4(p(g), T(2))v)

/\\/
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for g € G, (r,s) € H and (z,v) € D x V., where
r,=ry—2r_ €V, (12)

for r = (ry,r-) € V.C Ve =V, @®V_. Then it is known (see [13, §IIL.5]) that the
group G X H operates on D x V., x Uc by

(9:7.5) - (z,v,u) = (92, J+(p(9), 7(2) (v + 1), u + T (9.7, 5), (2,0))).  (13)

By restricting this action to D x V, we obtain the action of G x H on D x V,
given by

(g’ T, 5) : (Za U) = (gz, J+(p(g), T(Z))(U + TZ))
for g€ G, (r,s) € H and (z,v) € D x V.

Proposition 2.4. The map J : (G x H) x (D x V,) — Uc given by (11)
satisfies

j((glarlasl) ) (g,r, 8)’ (Z,U)) = J((gla’r,a Sl)a (g,r, 8) : (Z,U)) + j((ga T, S)a (Z,U))

for all (¢',7",5"),(g,7r,8) € G X H and (2,v) € D x V.
Proof. Given (¢',7',¢"),(g,7,8) € G x H and (z,v,u) € D x V; x Ugc, we set

(z1,v1,u1) = (g,7,8) - (2,0, u)
(227’027 Uz) = (glvrlv S,) ) (Zla Ulvul)

(23,’03, U3) = ((glarla 8,) : (9,7', 8)) : (Z: U, u)

Then by (13) we see that

U1 =u+j((g,T= S),(Z,U))
Ug = U1 + J((glarla SI)’ (g,T, 8) : (Z’U))
us=u+J((g,7", ) (g,7,5),(2,v)).

Since G x H acts on D x V, x Uc, we have uy = ug; hence the proposition follows.
[ |

Let Ly be an arithmetic subgroup of H, and set
L=py(Lu), Ly =py(Lu), (14)

where py : H — V and py : H — U are the natural projection maps. Then L
and Ly are lattices in V' and U, respectively, and we have L = Ly/Ly. Given
elements [,!' € L, we have (1,0), (I',0) € Lg; hence by (3) we see that

(1,0)- (I',0) = (1 +U',—A(l,1')/2) € Lg.
Since (I +1',0)~' = (=1 —1',0) € Ly, we have

(41 —AQLY/2) - (=L —1',0) = (0,— AL, I')/2) € L.
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Thus it follows that A(L,L) C Ly. Let v be a torsion-free arithmetic subgroup
of G'. Using the isomorphism

FD(LH/LUgFD(L,

we see that the action of G X H on D x V, x Uc induces actions of the discrete
groups ' Ly, '’ L and I' on the spaces DxV, xUc, DxV, and D, respectively.
We denote the associated quotient spaces by

W=TxLg\DxV,xUs, Y=IxI\DxV,, X=I\D.

Then each of the spaces W, Y and X has a natural structure of a complex
manifold, and there are natural projections

wIhy BB X,

The complex manifold Y is an abelian scheme over the arithmetic variety X,
called a Kuga fiber variety, whose fiber V, /L has the structure of a polarized
abelian variety (see e.g. [8], [9], [10], [13]), and W is a torus bundle over the Kuga
fiber variety Y whose fiber is isomorphic to the complex torus Uc/Ly -

3. Modular forms and Jacobi forms

Let 7 : D — H be the holomorphic map that is equivariant with respect to the

homomorphism p : G — Sp(V, ) considered in Section 2.. In this section we

define Jacobi forms and modular forms on Hermitian symmetric domains using

the map J in (11) and construct modular forms on D associated to Jacobi forms.
Let K_P be the subgroup of GL(V¢) given by

w2 ={(5 ) earme o=} (19

where the matrix is written with respect to the decomposition Vg = V, +V_. Then
it is known that Kgp is the complexification of a maximal compact subgroup K°P
of Sp(V, ). Let J, J; and J_ be asin (9), and let g = (2%) € Sp(V, o) and
¢ € H. Since the matrix g¢ = (al + b)(c{ + d)~! € H is symmetric, by (10) we
obtain
Ji(9,0) = a— (aC +b)(c¢ +d) e (16)

=a— (¢ +d") M (¢a" + b)e

= (¢ +d) ¢ (cta — afe) + d'a — be)

= (¢ ) = (.00
Hence it follows that J, (g,() € Kgp.

Let 0 : K& — GL(Z) be a representation of Kg° in a finite-dimensional
complex vector space Z. Given a holomorphic map f:D — Z, we set

(f o M) (2) = o (J(p(7), 7(2))) " f(v2) (17)
for v € G and z € D. Then it can be shown that

Flevled =117,
for 7,7 € I'. Let I' C G be a torsion-free arithmetic subgroup as before.
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Definition 3.1. A holomorphic map f : D — Z is a modular form for T’
associated to o if it satisfies

f‘a’Y:f
forall y € T'.

Let x : Uc — C* be a character of Ug with x(s) =1 for all s € Ly, where
Ly is asin (14). Then by Proposition 2.4 we see that xyoJ : (GxH)x(DxV,) — C
is an automorphy factor, that is, it satisfies

(xeJI)(99,2) = (x°I)9,9%) - (x° I)(J,2)

forall g,¢' € GXxH and z € D x V, . Given a holomorphicmap F': DxV, — Z,
we set

(£ o,

x (1,78)) (2, w) = x(=T (7, 7,9), (z,w))) - o (T (p(7), 7(2))) " (18)
X F(vz, Jy(p(7), 7(2)) (w + 7))

for all (z,w) € D x V, and (v,7,s) € G x H, where r, is as in (12). Using the
fact that x o J is an automorphy factor, we see that

Flox (0,1,8) lox (7,7, 8) = F oy ((v,1,8) - (/7. 6'))

for v,v' € G and (r,s),(r',s") € H.

Definition 3.2. A holomorphic map F : D x V, — Z is a Jacobi form for
I' X Ly associated to o and x if it satisfies

X (7’ T, 8) = F (19)

for all (y,7,s) € ' x Ly.

We can obtain a family of modular forms on D parametrized by the rational
points of H as is described in the next theorem.

Theorem 3.3. Let FF: D xV, — Z be a Jacobi form for I' X Ly associated to
o and x, and let (r,s) € Hy = Vg x Uy with r = (ry,r_) e VCc Vo=V, @ V_.
If A:V xV = U is the bilinear map in (2), we set

f(2) = x(=A(r,2r-)/2) - F(z,72) (20)

for all z € D. Then [ is a modular form for an arithmetic subgroup I'' C T of G
associated to o.

Proof. Let ¢ be the identity element of G, and let (7, s) € Hg. Then, for each
z € D, J(p(e),7(z)) and J.(p(¢),7(z)) are identity matrices, and in particular
o(J(p(e),7(z))) is the identity element in GL(Z). Thus, using (11) and (18), we
see that

J (e, 9),(2,0) =s—A(r,r,)/2 — A(v,v)/2 — A(r,0) = s — A(r,7,)/2,

(F |U,x (‘5’ T, S))(Z’ O) = X(_S + A(T‘, Tz)/Q)F(Z, 'rz)
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for all z € D. Hence by (20) we obtain
f(2) = x(s = A(r,ry = 2r) /2 = A(r, 2r_) [2)(F |ox (€, 7, 5))(2,0)
=x(s = A(r,r4)/2)(F 05X (€,7,5))(2,0).

Thus it suffices to show that the function Fi,, : D — Z given by

F(Tas)(z) = (F |0,X (&‘,7’, 5))(2’0)

is a modular form for an arithmetic subgroup I'" C T associated to o. Given an
element v € T', by (17) we have

(Fos) 1o 7)(2) = o(J(p(7), 7(2))) " Fir ) (72)
= o(J(p(7),7(2)) H(F loy (&,7,8))(72,0)
= ((F a,X (E’Ta 5)) a,X (’7a070))(27 0)

for all z € D. However, by (5) we see that

(85 T, S) . (’Ya Oa 0) = (’77 r, 8) = (’7: 07 0) : (65 p(’Y)ilT: 8)'
Using this and the fact that F' is a Jacobi form for I', we obtain
(Frs) le 1)(2) = ((F loyx (7,0,0)) [ox (&, p(7) 7, 8))(2,0)

= (F |0,x (5::0(7)_17" S)(Z’O)
= F’y—l-(r,s)(’z)a

where v~ - (r,5) = (p(y)~'r,s) by (4). Let I'(5) be the subgroup of I' consisting
of the elements v € I' satisfying

v (rs) = (0,51) - (r2,82) - (1, )

with s; € Ly and (ry,82) € Ly. Then T'(,,) is an arithmetic subgroup, and, if
v € ['(,5), we have

(Flrs) lo M(2) = Fy1.05)(2) = Flo,51)(r2,5)-(r,5) (2)
= (F |<T,X (6,0,81) a,X (5’T2a52) ‘U,X (E’T: 5))('2’0)
= (F |U,x (57 T, 5) (27 0) = F(r,s) (Z)

for all z € D. Hence F{, ) is a modular form for the arithmetic subgroup I',,s) C T’
associated to o, and therefore the proof of the theorem is complete. ]

4. Jacobi forms for symplectic groups

In this section we specialize the equivariant pair (p,7) considered in Section 2. to
the case where GG is a symplectic group and p and 7 are identity maps. We then
prove that the associated Jacobi forms in the sense of Definition 3.2 coincide with
the usual Jacobi forms of several variables (cf. [16]).

We first describe the definition of Jacobi forms of several variables intro-
duced by Ziegler (see [16] for details). If a and b are positive integers and R is a
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ring, we shall denote by R(®?) the set of a x b matrices over R. Let H’/ be the
Heisenberg group consisting of the elements

(A, p1, &) € RU™ x RUM x RE)

such that the matrix x + pA! is symmetric. The multiplication operation in Hﬂ'é’j
is given by

(/\7 122 K’) : (/\Ia Mla K:I) = ()‘ + /\I: Mty K K’ + )‘,u‘lt - M)‘It)v
and the symplectic group Sp(n,R) acts on Hﬁ’j on the right by
()‘aua K) M = (()"“) : M’K’)

for M € Sp(n,R) and (\, p, &) € H? . This action enables us to define the Jacobi

group _ .
G’ = Sp(n,R) x Hy’

whose multiplication is given by
(M, (A, ) - (M, (N, ' 67)) = (MM, (A, 5) - M) - (')
= (MM, (X + X, Ti+ i, 6+ &+ 2" — X)),
where (A, i) = (\, 1) - M’. Then G%? acts on H, x CI™) by
(M, (\ 1, K)) - (z,w) = ((az +b)(cz +d)7', (w+ Az + p)(cz +d)™)

for M = (25%) € Sp(n,R).

Let n : GL(n,C) — GL(Z) be a representation of GL(n,C) in a finite-
dimensional complex vector space Z, and let I = (myg) € RU4) be a positive
symmetric matrix with 2mgg, mee € Z for 1 < o, < j. Given M = (29) €
Sp(n,R), & = (\, k) € H{é’j and a holomorphic map ® : H,, x C¥" — Z we
set

(®

nom M) (z,w) = n(cz + d) " exp{—2mi Tr(Mw(cz + d) 'cw’)}

X ®((az +b)(cz+d) ' (w+ Az +p)(cz+d) ),
(@ |on &) (2, w) = exp{—27i Tr(M(A2 A" + 22w’ + pX' + ))}
X O(z,w+ Az + p),

for all (z,w) € H, x C¥™ | where Tr denotes the trace. Let H” be a discrete
subgroup of Hy” given by

By = (O pm) € B | € 207, € 209 @1
and let I' C Sp(n,Z) be a subgroup of finite index.

Definition 4.1.  Let n : GL(n,C) — GL(Z) and M € RU) be as above. A
holomorphic map ® : H,, x CU" — Z is a Jacobi form of index M with respect
to n for I' if it satisfies

Ol M=, ®yé=0
for all M €T and & € Hy7 .
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Thus, if ® is a Jacobi form of index 9 with respect to n for I' and if
M= (2%)eT and & = (\, u, k) € Hy? , we have

®((az + b)(cz+d) , (w+ Az + p)(cz +d) ) (22)
= exp{27i Tr(M((w + Az + p)(cz + d) " e(w + 2A" + uh)
— ' = (w+ Az + p)N))} ez + d) - (2, w)

for all (z,w) € H, x CI™).
Now we specialize the Jacobi forms described in Section 2. to the case of
real vector spaces V' and U given by

V = RUM x RGM [ = RU) (23)

for some positive integer j. We choose a complex structure I, on V in such a
way that, if v = (v1,v;) € RO™ x RU™ =V the V, and V_ components of v
are given by v, = vy and v_ = —wy, respectively, where Vo = V, @& V_ is the
decomposition determined by I, (see Section 2.). We define the bilinear maps
B,A:V xV —=U by

ﬁ((v+’ U*)a (UI+’ UL)) = vl+vtf - v'ivi, (24)

A((U-I-’ U—)’ (Ug—’ U,—)) = ﬂ((v—k’ U—)’ (Ug—’ UI—)) + 5((”-1-’ U—)’ (Ug—’ U,—))t (25)

for all vy,v. € V; and v_,v_ € V_. Then we have

6((,02—1 UI—)’ (U—H U—)) = _B((’U-I—’ U—)’ (/Ug—’ UI—))t;

hence we see that A is an alternating bilinear map on V.

If KEP is the compexification of a maximal compact subgroup of Sp(n,R)
as in (15) and if o : Kg” — GL(Z) is its representation in a finite-dimensional
complex vector space Z, then we define a representation 7, : GL(n,C) — GL(Z2)
of GL(n,C) by

Ne(q) =0 ((qtgl 0) (26)

for all ¢ € GL(n,C). Given 9t € RU) | let xgn : Uc — C* be the character on
Uc = CU4) given by
X (u) = exp(—27mi Tr(IMN - u))

for all u € CU9) .

Theorem 4.2.  Let U and V be as in (23), and let M = (mqp) € RUI be
a positive symmetric matriz with 2meg, Mg € Z for 1 < a,B8 < j. Let T’ be a
subgroup of Sp(n,Z) of finite index, and let H;” be as in (21). Then a Jacobi
form for T H7 associated to a representation o : Ko7 — GL(Z) and a character
Xsn in the sense of Definition 3.2 is a Jacobi form of index N with respect to the
representation ny : GL(n,C) — GL(Z) for T in the sense of Definition 4.1.
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Proof. Let r = (\ u) € RU™ x RU™ =V . Then as an element of V, @ V_ it
can be written as

r=(u,—-AeVidV. =V

Let F' be a Jacobi form for I' x Ly associated to o and xgy in the sense of
Definition 3.2, Since we are writing vectors as block row matrices instead of block
column matrices, the transformation formula in (19) can be written in the form

F(yz, (w+7r:) T (p(7), 7(2))") = xm(T (7,7, 9), (2, w)))o (T (v, 2)) F (2, w)

for all (z,w) € D x V; and (v,7,s) € ' X Ly with v = (2%), where

T((g,7,5), (z,w)) = s = A(rg", 1. T4 (9, 2)") /2 — A(wg', wi(g,2)") /2 (27)
— A(rg',wli(g,2)")
=s—[Alrg", (w+7.)J+(g,2)")
+A((w +7)g", wTi(g,2)))/2.
by (11). Given an element g = (¢ %) € Sp(n,R), we have

a C
ra = =) (§o ) = at = 2t = 2

For z € H,, we have
r,=ry—r_2z=pu+ Az €V,.

By (16) we have J,(g,2)" = J_(g,2)"" = (cz + d)~'. We also see that

t Ct

(w4+r)g' = (p+w,—N) <Zt dt> = (ua’ +wa’ — N\, uc' + wet — \d").

Thus by (24) we have

B(rg', (w+r,)J1(g,2)") = (w+ Az + p)(cz +d) (e’ — d\Y),

B((w+7)g', wi(g,2)")" = (w+ p)c(zc" + d") tw' — M (2" + d') 1w’
= (w+ Az + p)ct(zc + d)wt — Az + d') (2" + dY) T’
= (w+ Az + p)(cz + d) tew' — M,

where we used the fact that (cz + d)~!c is symmetric. Hence we obtain

Blrg', (w+7.)J1(g,2)") + B((w +1)g", wT (g, 2)")"
= (w+ Az + p)(cz + d) " He(w' + 2A" + ) — (cz + d)A') — A’
= (w+ Az + p)(cz+d)e(w' + 20+ pt) — M — (w+ Az + p) A
Using this, (27) and (25), we have
=27 ((9,7,8), (2,w)) = =25 + B(rg’, (w +72)J+ (9, 2)") + B((w +1)g", w4 (g, 2)")’
+B(rg', (w+7:)J1(g,2)") + B((w +1)g", wTi(g,2)")

= 25+ 2(w + Az + p)(cz + d) te(w' + 2A" + uh)
— 22w’ — 2w\ — 222\ — pAt — At
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Since (X, , s) € HiY ¢ H? and

HY = {(\, 1, 5) € RO x RI™ x RUD | (54 pA) = 5+ pA'},

we see that pA' + Ap! = 2u)! + s — s*. Since Tr(9M(—2s — s+ s')) € Z, we obtain

xom (T (7,7, 5), (z,w))) = exp(27i Tr(IM - ((w + Az + p)(cz + d) re(w® + 2A" + uh)

— M’ = (w+ Az + p)A)).

On the other hand, by (9), (16) and (26) we have

a(J (7, 2) = no(J-(7, 2)) = no(cz + d).

Hence the transformation formula (19) reduces to (22) with n = 7, , and therefore
the proof of the theorem is complete. [ |
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