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Abstract. We classify finite dimensional G-modules V of an algebraic
reductive group G such that any G-orbit in V is spherical. It is shown that
any module with this property can be realized as a spherical module after an
extension of the group by a central torus.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field
K of zero characteristic, and G® be the maximal connected semisimple subgroup of
G'. Let us recall that an irreducible G-variety Y is called spherical if the induced
action B : Y of a Borel subgroup B C G has an open orbit. By Rosenlicht’s
theorem, an action G : Y is spherical iff K(Y)? = K, where K(Y)? is the field
of rational B-invariants. An algebraic subgroup H C G is said to be spherical if
the homogeneous space G/H is a spherical G-variety.

Definition 1.1.  Let X be an irreducible algebraic variety. We shall say that
an action G : X is an action with spherical orbits if there exists an open subset
Xy C X such that for any z € X, the orbit Gz is spherical.

Below we list some basic facts about actions with spherical orbits.

(1) Any trivial G-action is an action with spherical orbits.

(2) Suppose that for an action G : X a generic isotropy subgroup exists,
see [9, sec. 7.3]. (This is always the case for linear actions.) Denote this subgroup
by H. The action G : X is an action with spherical orbits iff H is a spherical
subgroup of G'.
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(3) Rosenlicht’s theorem implies that an action G : X is an action with
spherical orbits iff K(X)% = K(X)?.

(4) Tt is shown in [1, Corollary 1] that for an action with spherical orbits
any (G-orbit is spherical.

(5) Let G; : X; and Gy : X, be actions with spherical orbits. Then the
action (G; X G) : (X1 x X5) is an action with spherical orbits.

In this paper we classify G-modules with spherical orbits. Let V be a
finite dimensional G-module and V = V; & ... ® V; be a decomposition into
simple G-submodules. Denote by 7" the k-dimensional algebraic torus acting by
dilatations on any V;. Then G = TG is a linear group acting on V. It is shown
(Proposition 3.3) that the G-module V is spherical. This result and a classification
of spherical modules from [8] allow us to list all ”minimal” indecomposable linear
actions with spherical orbits (Tables 1-3). In Theorem 6.2 a characterization of
arbitrary G-modules with spherical orbits is obtained. It is proved that for any
G-module with spherical orbits the algebras of U- and G?-invariants are free.
(Here U is a maximal unipotent subgroup of G.) Finally we get a classification
of G-actions with spherical orbits on projective spaces P(V).

The author is grateful to E. B. Vinberg, A. G. Khovanskii and K. Kaveh
for stimulating questions and discussions.

2. Indecomposable modules

Definition 2.1. A G-module V is said to be a module with spherical orbits if
the linear action G : V' is an action with spherical orbits.

Definition 2.2. A G-module V is indecomposable if there exist no proper
decompositions G* = G x G5 and V = V; @ V;, such that (g1, ¢92)(v1,v2) =
(g1v1, g2v2) for any g = (g1,92) € G° and any v = (vi,v2) € V.

Definition 2.3. We say that a G'-module V is obtained from a G-module
V' by a torus extension if there exists a torus 7 acting on V such that 7T- and
G-actions commute and G' = TG.

It is clear that any G-module V' is obtained by a torus extension from the
G*-module V.

Lemma 2.4.  Suppose that V is a G-module with spherical orbits and a G'-
module V is obtained from this module by a torus extension. Then V is a G'-
module with spherical orbits.

Proof. Let H be the generic isotropy subgroup for the action G : V. By
assumption, H is spherical in G. Then any subgroup of G’ containing H is
spherical in G'. Hence a generic isotropy subgroup for the G’-module V is
spherical. [ ]

Theorem 2.5.  All indecomposable G -modules with spherical orbits are either
indicated in Tables 1-3 or are obtained from the indicated modules by a torus
extension.
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Table 1
G weights dimV H codim
0 {e} 0 1 0 1
1 SL(n) o n Ap_ o+ Rpy 0
2 A2SL(2n) oo 2n? —n Chn 1
3 A2SL(2n +1) b 2n2 +n Cy + Ry 0
4 S2SL(2n) 21 22 +n D, 1
5 S2SL(2n +1) 2¢1 2n% +3n+1 B, 1
6 SO(2n) b1 2 Ban: 1
7 SO(2n +1) o 2n+1 D, 1
8 Spin(7) o3 8 G, 1
9 Spin(9) on 16 Bs 1
10 Spin(10) on 16 Bs + Rg 0
11 Sp(2n) o1 2n Cn1+ Rop 1 0
12 G- b1 7 Ay 1
13 Es o 27 F, 1

Comments to the Tables. The column ”G” contains a reductive group
G. In Table 1 the linear group A?SL(n) is the image of SL(n) under the action
in the second exterior power of the tautological representation, and S?SL(n) is
the same thing with respect to the second symmetric power.

In the column ”"weights” the highest weights of the G-module are indicated.
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Table 2
G weights dimV H codim
14 SL(2) x K* P1®@e+d1 Qe 4 t1 1
15 SL(n) x K*, n> 2 PR +p1 e, a#b n An_3 +t1+ Rogn_2) 0
16 SL(n), n > 2 &1+ Pn_1 on Apn_o 1
17 SL(2n + 1) o1+ d2 @2n+1)(n+1) Chp 1
18 SL(2n +1) x K* 1 @€+ pan—1 @€ a#£nb | 2n+1)(n+1) Cn-1+t1 + Roan_1) 0
19 SL(2n) ¢ + @2 n(2n + 1) Cn-1+ Ran—1 1
¢1 + pan—2
20 S0(8) $1+ ¢3 16 Gs 2
21 Sp(2n) x K* P1@e+¢r e ! 4n Cp_1+t1 1
22 SL(n) x SL(m), n >m P11 Q P1 nm An—m-1+Am-1+ R, 2 0
23 SL(n) x SL(n) & ® 1 n? Ap_1 1
24 SL(2) x Sp(2n) & @ 1 4n Cn—1 + A1 1
25 | SL(3) x Sp(2n) x K*, n > 1 P1R®P1®¢€ 6n Cp—2+ A1 +t1+ Rap—1 0
26 SL(4) x Sp(4) & @ 1 16 Co 1
27 SL(n) x Sp(4), n >4 ¢1 ® 1 4in Ap—5+ C2 + Ry(r ) 0

For the group G; x G5 the weight ¢®1) corresponds to the tensor product of simple
GG1- and Gy-modules with highest weights ¢ and 1 respectively. The symbol +
denotes a direct sum of modules. If G* is the product of several simple groups,
then their fundamental weights are denoted successively by letters ¢;, 1; and 7;.
The fundamental weight of the central torus is denoted by € (for a two-dimensional
torus — by €; and €).

In the column ” dim V” the dimension of the module is shown.

In Tables 1 and 2 the column ”H” contains the type of the tangent algebra
‘H of the generic isotropy subgroup H for our module. Here t; is the tangent
algebra of the one-dimensional central torus in H, and Ry is the tangent algebra
of the k-dimensional unipotent radical of H. The information of this column is
taken from Elashvili’s tables [4], [5].
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Table 3
G weights dim V codim
28 SL(n) x SL(n) x K* 1 ®e+ 1 QY1 n(n + 1) 1
P1 Q@€+ Pn1 @ Yn1
29 SL(n+1) x SL(n) x K* MR+ QY @e ! (n+1)? 1
30| SL(n+1)xSL(n)x K*x K*, n>1 DL€+ ®@Yn_1 Q€ (n+1)2 0
31 SL(n) x SL(m) x K*, n>m +1 P1 @+ @Y1 R, a£b n(m+1) 0
32| SL(n)xSLm)xK*, n>m+1>2 | ¢1 R+ ¢y 1 Q% 1R®€, a# —b| n(m+1) 0
33 SL(n) x SL(m) x K*, n<m PR+ @Y1 Ve, a#£0 n(m+1) 0
P1RE + Pp1 QY1 @€, a#0
34 | SL(n) x SL(2) x SL(m), n > 2, m > 2 D1 QY1+ Y1 ®T 2(n+m) 0
35| SL(n) x SL(2) x Sp(2m), n>2, m >1 @Y+ OM 2(n + 2m) 1
36 | Sp(2n) x SL(2) x Sp(2m), n,m > 1 MY+ ®T 4(m +n) 2
37 SL(2) x Sp(2n) x K* b1 @€+ 1 1y 2(2n+1) 1

In the last column the codimension of a generic G-orbit in V' is shown.

3. Spherical modules

It is natural to say that a G-module V is spherical if V is a spherical G-

variety.
also known as multiplicity free modules.

(In particular, G acts on V with an open orbit.) Such modules are

The motivation for this term is the
following characterization of spherical G-modules: any simple G-module appears
in the decomposition of the G-module K[V] of polynomial functions on V' with
multiplicity < 1 [7]. A classification of spherical modules was obtained in [6]
(simple modules), and in [2], [3], [8] (non-simple modules).
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Let V = Vi & ... 8V, be a decomposition of a G-module as a sum of
simple submodules, and 7" = T} x ... X T}, be a torus acting on V', where T;
is a one-dimensional torus acting on V; by dilatations and trivially on the other
components. We shall say that T is the saturating torus for the G-module V', and
set G =GT.

Definition 3.1. A G-module V is said to be saturated if G = G.

We need the following well-known lemma.

Lemma 3.2. ( [6, Lemma 3.11]) If V is a simple G-module and H is a
spherical subgroup of G, then for the subspace V¥ of H-fizred points one has
dimV¥# < 1.

Proposition 3.3.  IfV is a G-module with spherical orbits, then V is a spher-
ical G -module.

Proof. Let H be the generic isotropy subgroup for V. By assumption, H is
a spherical subgroup of G. Hence dim VY < 1 and dimV*# < k. This implies
that the torus 7 acts on V' with an open orbit, and the G-orbit of a point of
the open T'-orbit in V¥ is open in V. On the other hand, this orbit is spherical
by Lemma 2.4. [ ]

4. The algebra of U-invariants

Let U be a maximal unipotent subgroup of G. For any G-module V' the algebra
K[V]Y of polynomial U -invariants is the linear span of the highest weight vectors
of the G-module K[V]. The following proposition can be found, for example,
in [8, Theorem 1.2].

Proposition 4.1. A G-module V is spherical iff K[V]Y = Klgi,...,9m],
where the gis are algebraically independent and the weights of g; are linearly
independent.

In particular, the algebra K[V]V is free for any spherical G-module V.

Proposition 4.2.  For any G -module V with spherical orbits the algebras K[V ]V
and K[V|% are free.

Proof. The subgroup U is a maximal unipotent subgroup of the saturated
linear group G. Thus the first statement follows from Proposition 3.3 and Propo-
sition 4.1. For a semisimple group the semigroup of dominant weights generates
(over Q) a strictly convex cone. Hence the algebra K[V]% is generated by G*-
invariant free generators g; of the algebra K[V]V. u

Finally we get an analog of Proposition 4.1 for modules with spherical orbits.
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Proposition 4.3.  Let G be a connected semisimple group. The following con-
ditions are equivalent:

(1) V is a G-module with spherical orbits;

(2) KIVIY = K|[f1,---,fn91,--+9m), where the fls are generators of
K[V]9, the g\s are algebraically independent and their weights are linearly in-
dependent.

Proof. (1) = (2) We may suppose that f;, g; are free generators of K[V]V.
Denote by w; the weight of g;. If w; are linearly dependent, then (after reindexing)
one has bjwi + ...+ bywp = Cpr1wWpt1 + ... + Cpwp,, Where b;, ¢; are non-negative
integers. Hence

bl - s o bp
S e gv)E = K(V)©.
P

But for a semisimple group any rational G-invariant is the ratio of two polynomial
G-invariants [9, sec. 3.2]. Therefore

g g F(fr e ) = gt g B, )
This contradiction concludes the proof.

(2) = (1) Any rational B-invariant is the ratio of two polynomial B-
semi-invariants of the same weight [9, sec. 3.2]. Thus any element of K (V)% is
the ratio of g ... g% F\(fi,..., fn) and g% ... g% Ey(fy,..., fn). This shows that
K(V)B=K(V)%. ]

5. A technical lemma

Let T be an algebraic torus and X (T') be the character group of 7. Consider a field
K, = K(ay,-..,a,) with a T-action (by automorphisms) such that txa; = \;(t)a;
for some )\; € X(T). The subfield of T-fixed elements of K is denoted by KT .
By tr.deg F' we denote the transcendency degree of a field F' over K. Consider
the subfield Ky = K(a1,...,a4), ¢ < n. Denote by S; =< Ay,..., A\, > and
Sy =< Ai,...,A; > the corresponding sublattices in X (7"). For any sublattice
L C X(T) define Lgy as the vector space L ®z Q.
A sublattice L determines the subgroup

T,={teT|\t)=1 VA€ L}.

Lemma 5.1.  Suppose that K = K. Then the following conditions are equiv-
alent:

(1) tr.deg K" = tr.deg K3";
(2) LNnS; C (SQ)Q

Proof. Set A; = Klay,...,a,] and Ay = Kla,...,a4. Denote by Spec A,
the affine variety corresponding to the algebra A;, ¢ = 1,2. For the natural T'-
action one has tr.deg K;* = dim Spec A; —h,, where h; is the dimension of generic
T-orbits in Spec A;. The condition K7 = K implies dim Spec A; = rk S; and
dim Spec A, =1k Sy. Moreover, h; = dim7}, — dim Ts, ;. Thus condition (1) is
equivalent to rk (S; N L) =rk (Se N L). This is a reformulation of (2). n
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6. Modules with spherical orbits

Let V be a saturated spherical G-module. Any character of the saturating torus
T can be considered as a character of G with trivial restriction to G*. For any
sublattice L C X (T) define

Gr={9€G|)\g)=1 Ve L}

Let B® be a Borel subgroup of G°. Then B = TB*® and By, = T} B® are
Borel subgroups of G and G respectively. Set

8

SWVY={ e X(T)|3fe K(V)® : txf=At)f VteT}

and

8

M(WV)={\e X(T) |3f e K(V) : tx f=\t)f VteT}.

Proposition 6.1.  (¢f. [8, Theorem 2.6]) The Gpr-module V is spherical iff
LNnS(V)={0}.

Proof. Lemma 5.1 with K; = K(V)8" and K, = K shows that the condition
LN S(V)={0} is equivalent to tr.deg K(V)B2 =0, or K(V)Br = K. ]

Theorem 6.2. A G-module V is a module with spherical orbits iff the G -
module V' is spherical and G = Gr with LN S(V) C M(V)q-

Proof. Appling Lemma 5.1 with K; = K(V)?" and K, = K(V)% one shows
that the second condition is equivalent to

tr.deg (K (V)?")Tr = tr.deg (K(V)%)r,
or K(V)Br = K(V)%r, m

In Table 4 we indicate bases of the subspaces S(V)g and M(V)q for all
indecomposable saturated spherical G-modules. There is a natural bijection be-
tween such modules and items of Tables 1-3, see [8, Theorem 2.5]. Our calculations
are based on [8, Table 2].

7. Proof of Theorem 2.5

Suppose that V is a spherical indecomposable saturated G-module. By Proposi-
tion 3.3 and Lemma 2.4, we need to find all minimal (with respect to inclusion)
subgroups G, G° C G C G, such that V is a G-module with spherical or-
bits. By Theorem 6.2, these subgroups coincide with G, for a maximal sublattice
L C X(T) satisfying LNS(V) C M(V)q-

Case 1. S(V) = M(V) = 0. Here V is a spherical G*-module, G = G?,
and we obtain items 1, 3, 10, 11, 22, 27, 34.
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Table 4
items S(V)Q M(V)@
1, 3, 10, 11, 22, 27, 34 0 0
0,2, 4-9, 12, 13, 23, 24, 26 <€ > <€ >
19, 35 <€ > <€ >
25, 33 <€ > 0
20, 36 < €1,€9 > < €1,€3 >
15, 31 < € — €3 > 0
18 < €1 —nex > 0
30 < €1,€3 > 0
32 <€ +e> 0
16 <e€1+e> <€+ € >
14, 21 < €1,€62 > <€ +e>
17 < €1 +nex > < €1 +nex >
28, 37 < €1,€ > < € >
29 < €1,€3 > < €1 +nex >

Case 2. tk S(V) =tk M(V) # 0. Here V is a G*-module with spherical
orbits. One gets items 0, 2, 4 — 9, 12, 13, 16, 17, 19, 20, 23, 24, 26, 35, 36.

Case 3. tk S(V) =1 and M(V) = 0. In this case G can be obtained as
an extension of G° by any one-dimensional subtorus of 7T, with the restriction
LN S(V)=1{0}. We get items 15, 18, 25, 31, 32, 33.
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Case 4. tk S(V) =2 and M(V) = 0. In this case the G-module V is the
only module with spherical orbits — item 30.

Case 5. tk S(V) =2 and rk M (V) = 1. In this case G is obtained as an
extension of G° by a one-dimensional subtorus of Ty, with Lg = M(V)q (this is
the torus fixing generic G®-orbits in V'). One gets items 14, 21, 28, 29, 37.

This completes the proof of Theorem 2.5.

Remark 7.1.  Suppose that there is a decomposable G-module V. We are
going to check that all orbits in V' are spherical. First we verify that for all
indecomposable components V; the GG-module V; is a module with spherical orbits
(Theorem 2.5). If this is the case we apply Theorem 6.2 and use Table 4.

8. Actions with spherical orbits on projective spaces

Any linear action G : V' determines an action G : P(V') on the projective space
P(V). Let T" be a one-dimensional torus acting on V' by dilatations and G' = T'G
be the torus extension. It is clear that the action G : P(V) is an action with
spherical orbits iff the action G’ : V has this property. Let us recall that T is
the saturating torus for the G-module V. Denote by F the sublattice in X (T)
corresponding to 7”. (In standart coordinates F' is given as z1+...+z; = 0.) The
following results are immediate consequences of Theorem 6.2 and Theorem 2.5.

Proposition 8.1.  An action G : P(V) is an action with spherical orbits iff the
G -module V is spherical and G = G, with (LN FNS(V)) c M(V)q.

Proposition 8.2.  Suppose that G is semisimple and a G-module V is inde-
composable. The action G : P(V) is an action with spherical orbits iff either the
G -module V' is a module with spherical orbits or V' is one of the modules indicated
wn Table 5.

Table 5
G weights dim vV
1 SL(3) x Sp(2n), n>1 ¢ ® 1y 6n
2 SL(2n+1), n>1 $1 + Pan—1 2n+1)(n+1)
3| SL(n)xSL(m), n>m+1>2 | ¢+ dp1 ®@vbm_1 n(m+ 1)
4 SL(n) x SL(m), n <m b1+ 1 ® P n(m+1)
1+ Pn—1 @ hm—1
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