A Classification of Reductive Linear Groups with Spherical Orbits

Ivan Arzhantsev*

Communicated by E. B. Vinberg

Abstract. We classify finite dimensional G-modules V of an algebraic reductive group G such that any G-orbit in V is spherical. It is shown that any module with this property can be realized as a spherical module after an extension of the group by a central torus.

Key words: reductive groups, spherical modules, algebras of invariants. AMS 2000 Subject Classification: primary 20G05, 17B10; secondary 14M17, 14R20.

1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field K of zero characteristic, and G^s be the maximal connected semisimple subgroup of G. Let us recall that an irreducible G-variety Y is called spherical if the induced action B:Y of a Borel subgroup $B\subseteq G$ has an open orbit. By Rosenlicht's theorem, an action G:Y is spherical iff $K(Y)^B=K$, where $K(Y)^B$ is the field of rational B-invariants. An algebraic subgroup $H\subset G$ is said to be spherical if the homogeneous space G/H is a spherical G-variety.

Definition 1.1. Let X be an irreducible algebraic variety. We shall say that an action G: X is an action with spherical orbits if there exists an open subset $X_0 \subset X$ such that for any $x \in X_0$ the orbit Gx is spherical.

Below we list some basic facts about actions with spherical orbits.

- (1) Any trivial G-action is an action with spherical orbits.
- (2) Suppose that for an action G: X a generic isotropy subgroup exists, see [9, sec. 7.3]. (This is always the case for linear actions.) Denote this subgroup by H. The action G: X is an action with spherical orbits iff H is a spherical subgroup of G.

 $^{^{\}ast}$ The work was supported by INTAS-OPEN-97-1570, CRDF RM1-2088 and RFBR-98-01-00598.

- (3) Rosenlicht's theorem implies that an action G: X is an action with spherical orbits iff $K(X)^G = K(X)^B$.
- (4) It is shown in [1, Corollary 1] that for an action with spherical orbits any G-orbit is spherical.
- (5) Let $G_1: X_1$ and $G_2: X_2$ be actions with spherical orbits. Then the action $(G_1 \times G_2): (X_1 \times X_2)$ is an action with spherical orbits.

In this paper we classify G-modules with spherical orbits. Let V be a finite dimensional G-module and $V = V_1 \oplus \ldots \oplus V_k$ be a decomposition into simple G-submodules. Denote by T the k-dimensional algebraic torus acting by dilatations on any V_i . Then $\overline{G} = TG$ is a linear group acting on V. It is shown (Proposition 3.3) that the \overline{G} -module V is spherical. This result and a classification of spherical modules from [8] allow us to list all "minimal" indecomposable linear actions with spherical orbits (Tables 1-3). In Theorem 6.2 a characterization of arbitrary G-modules with spherical orbits is obtained. It is proved that for any G-module with spherical orbits the algebras of U- and G^s -invariants are free. (Here U is a maximal unipotent subgroup of G.) Finally we get a classification of G-actions with spherical orbits on projective spaces $\mathbb{P}(V)$.

The author is grateful to E. B. Vinberg, A. G. Khovanskii and K. Kaveh for stimulating questions and discussions.

2. Indecomposable modules

- **Definition 2.1.** A G-module V is said to be a module with spherical orbits if the linear action G:V is an action with spherical orbits.
- **Definition 2.2.** A G-module V is indecomposable if there exist no proper decompositions $G^s = G_1^s \times G_2^s$ and $V = V_1 \oplus V_2$ such that $(g_1, g_2)(v_1, v_2) = (g_1v_1, g_2v_2)$ for any $g = (g_1, g_2) \in G^s$ and any $v = (v_1, v_2) \in V$.
- **Definition 2.3.** We say that a G'-module V is obtained from a G-module V by a torus extension if there exists a torus T acting on V such that T- and G-actions commute and G' = TG.

It is clear that any G-module V is obtained by a torus extension from the G^s -module V.

- **Lemma 2.4.** Suppose that V is a G-module with spherical orbits and a G'-module V is obtained from this module by a torus extension. Then V is a G'-module with spherical orbits.
- **Proof.** Let H be the generic isotropy subgroup for the action G:V. By assumption, H is spherical in G. Then any subgroup of G' containing H is spherical in G'. Hence a generic isotropy subgroup for the G'-module V is spherical.
- **Theorem 2.5.** All indecomposable G-modules with spherical orbits are either indicated in Tables 1-3 or are obtained from the indicated modules by a torus extension.

Table 1

	G	weights	$\dim V$	\mathcal{H}	codim
		0			
0	$\{e\}$	0	1	0	1
1	SL(n)	ϕ_1	n	$A_{n-2} + R_{n-1}$	0
2	$\Lambda^2 SL(2n)$	ϕ_2	$2n^2-n$	C_n	1
3	$\Lambda^2 SL(2n+1)$	ϕ_2	$2n^2 + n$	$C_n + R_{2n}$	0
4	$S^2SL(2n)$	$2\phi_1$	$2n^2 + n$	D_n	1
5	$S^2SL(2n+1)$	$2\phi_1$	$2n^2 + 3n + 1$	B_n	1
6	SO(2n)	ϕ_1	2n	B_{n-1}	1
7	SO(2n+1)	ϕ_1	2n + 1	D_n	1
8	Spin(7)	ϕ_3	8	G_2	1
9	Spin(9)	ϕ_4	16	B_3	1
10	Spin(10)	ϕ_4	16	$B_3 + R_8$	0
11	Sp(2n)	ϕ_1	2n	$C_{n-1} + R_{2n-1}$	0
12	G_2	ϕ_1	7	A_2	1
13	E_6	ϕ_1	27	F_4	1

Comments to the Tables. The column "G" contains a reductive group G. In Table 1 the linear group $\Lambda^2 SL(n)$ is the image of SL(n) under the action in the second exterior power of the tautological representation, and $S^2 SL(n)$ is the same thing with respect to the second symmetric power.

In the column "weights" the highest weights of the G-module are indicated.

Table 2

	G	weights	$\dim V$	Н	codim
14	$SL(2) imes K^*$	$\phi_1 \otimes \epsilon + \phi_1 \otimes \epsilon^{-1}$	4	t_1	1
15	$SL(n) \times K^*, \ n > 2$	$\phi_1 \otimes \epsilon^a + \phi_1 \otimes \epsilon^b, \ a \neq b$	2n	$A_{n-3} + t_1 + R_{2(n-2)}$	0
16	$SL(n), \ n>2$	$\phi_1 + \phi_{n-1}$	2n	A_{n-2}	1
17	SL(2n+1)	$\phi_1+\phi_2$	(2n+1)(n+1)	C_n	1
18	$SL(2n+1) imes K^*$	$\phi_1 \otimes \epsilon^a + \phi_{2n-1} \otimes \epsilon^b, a \neq nb$	(2n+1)(n+1)	$C_{n-1} + t_1 + R_{2(2n-1)}$	0
19	SL(2n)	$\phi_1 + \phi_2$ $\phi_1 + \phi_{2n-2}$	n(2n+1)	$C_{n-1} + R_{2n-1}$	1
20	SO(8)	$\phi_1+\phi_3$	16	G_2	2
21	$Sp(2n) \times K^*$	$\phi_1 \otimes \epsilon + \phi_1 \otimes \epsilon^{-1}$	4n	$C_{n-1} + t_1$	1
22	$SL(n) imes SL(m), \ n > m$	$\phi_1\otimes\phi_1$	nm	$A_{n-m-1} + A_{m-1} + R_{nm-m^2}$	0
23	SL(n) imes SL(n)	$\phi_1\otimes\phi_1$	n^2	A_{n-1}	1
24	SL(2) imes Sp(2n)	$\phi_1\otimes\phi_1$	4n	$C_{n-1} + A_1$	1
25	$SL(3) \times Sp(2n) \times K^*, \ n > 1$	$\phi_1\otimes\phi_1\otimes\epsilon$	6n	$C_{n-2} + A_1 + t_1 + R_{2n-1}$	0
26	SL(4) imes Sp(4)	$\phi_1\otimes\phi_1$	16	C_2	1
27	$SL(n) \times Sp(4), \ n > 4$	$\phi_1\otimes\phi_1$	4n	$A_{n-5} + C_2 + R_{4(n-4)}$	0

For the group $G_1 \times G_2$ the weight $\phi \otimes \psi$ corresponds to the tensor product of simple G_1 - and G_2 -modules with highest weights ϕ and ψ respectively. The symbol + denotes a direct sum of modules. If G^s is the product of several simple groups, then their fundamental weights are denoted successively by letters ϕ_i , ψ_i and τ_i . The fundamental weight of the central torus is denoted by ϵ (for a two-dimensional torus – by ϵ_1 and ϵ_2).

In the column " $\dim V$ " the dimension of the module is shown.

In Tables 1 and 2 the column " \mathcal{H} " contains the type of the tangent algebra \mathcal{H} of the generic isotropy subgroup H for our module. Here t_1 is the tangent algebra of the one-dimensional central torus in H, and R_k is the tangent algebra of the k-dimensional unipotent radical of H. The information of this column is taken from Elashvili's tables [4], [5].

Table 3

	G	${ m weights}$	$\dim V$	codim
28	$SL(n) \times SL(n) \times K^*$	$\phi_1 \otimes \epsilon + \phi_1 \otimes \psi_1$ $\phi_1 \otimes \epsilon + \phi_{n-1} \otimes \psi_{n-1}$	n(n+1)	1
29	$SL(n+1) \times SL(n) \times K^*$	$\phi_1 \otimes \epsilon^n + \phi_1 \otimes \psi_1 \otimes \epsilon^{-1}$	$(n+1)^2$	1
30	$SL(n+1) \times SL(n) \times K^* \times K^*, \ n > 1$	$\phi_1\otimes\epsilon_1+\phi_n\otimes\psi_{n-1}\otimes\epsilon_2$	$(n+1)^2$	0
31	$SL(n) \times SL(m) \times K^*, \ n > m+1$	$\phi_1 \otimes \epsilon^a + \phi_1 \otimes \psi_1 \otimes \epsilon^b, \ a \neq b$	n(m+1)	0
32	$SL(n) \times SL(m) \times K^*, \ n > m+1 > 2$	$\phi_1 \otimes \epsilon^a + \phi_{n-1} \otimes \psi_{m-1} \otimes \epsilon^b, \ a \neq -b$	n(m+1)	0
33	$SL(n) \times SL(m) \times K^*, \ n < m$	$\phi_1 \otimes \epsilon^a + \phi_1 \otimes \psi_1 \otimes \epsilon^b, \ a \neq 0$ $\phi_1 \otimes \epsilon^a + \phi_{n-1} \otimes \psi_{m-1} \otimes \epsilon^b, \ a \neq 0$	n(m+1)	0
34	$SL(n) \times SL(2) \times SL(m), \ n > 2, \ m > 2$	$\phi_1 \otimes \psi_1 + \psi_1 \otimes au_1$	2(n+m)	0
35	$SL(n) \times SL(2) \times Sp(2m), \ n > 2, \ m \ge 1$	$\phi_1 \otimes \psi_1 + \psi_1 \otimes \tau_1$	2(n+2m)	1
36	$Sp(2n) \times SL(2) \times Sp(2m), \ n, m \ge 1$	$\phi_1 \otimes \psi_1 + \psi_1 \otimes au_1$	4(m+n)	2
37	$SL(2) \times Sp(2n) \times K^*$	$\phi_1 \otimes \epsilon + \phi_1 \otimes \psi_1$	2(2n+1)	1

In the last column the codimension of a generic G-orbit in V is shown.

3. Spherical modules

It is natural to say that a G-module V is spherical if V is a spherical G-variety. (In particular, G acts on V with an open orbit.) Such modules are also known as multiplicity free modules. The motivation for this term is the following characterization of spherical G-modules: any simple G-module appears in the decomposition of the G-module K[V] of polynomial functions on V with multiplicity ≤ 1 [7]. A classification of spherical modules was obtained in [6] (simple modules), and in [2], [3], [8] (non-simple modules).

Let $V=V_1\oplus\ldots\oplus V_k$ be a decomposition of a G-module as a sum of simple submodules, and $T=T_1\times\ldots\times T_k$ be a torus acting on V, where T_i is a one-dimensional torus acting on V_i by dilatations and trivially on the other components. We shall say that T is the *saturating* torus for the G-module V, and set $\overline{G}=GT$.

Definition 3.1. A G-module V is said to be saturated if $G = \overline{G}$.

We need the following well-known lemma.

Lemma 3.2. ([6, Lemma 3.11]) If V is a simple G-module and H is a spherical subgroup of G, then for the subspace V^H of H-fixed points one has $\dim V^H \leq 1$.

Proposition 3.3. If V is a G-module with spherical orbits, then V is a spherical \overline{G} -module.

Proof. Let H be the generic isotropy subgroup for V. By assumption, H is a spherical subgroup of G. Hence $\dim V_i^H \leq 1$ and $\dim V^H \leq k$. This implies that the torus T acts on V^H with an open orbit, and the \overline{G} -orbit of a point of the open T-orbit in V^H is open in V. On the other hand, this orbit is spherical by Lemma 2.4.

4. The algebra of U-invariants

Let U be a maximal unipotent subgroup of G. For any G-module V the algebra $K[V]^U$ of polynomial U-invariants is the linear span of the highest weight vectors of the G-module K[V]. The following proposition can be found, for example, in [8, Theorem 1.2].

Proposition 4.1. A G-module V is spherical iff $K[V]^U = K[g_1, \ldots, g_m]$, where the $g_i's$ are algebraically independent and the weights of g_i are linearly independent.

In particular, the algebra $K[V]^U$ is free for any spherical G-module V.

Proposition 4.2. For any G-module V with spherical orbits the algebras $K[V]^U$ and $K[V]^{G^s}$ are free.

Proof. The subgroup U is a maximal unipotent subgroup of the saturated linear group \overline{G} . Thus the first statement follows from Proposition 3.3 and Proposition 4.1. For a semisimple group the semigroup of dominant weights generates (over \mathbb{Q}) a strictly convex cone. Hence the algebra $K[V]^{G^s}$ is generated by G^s -invariant free generators g_i of the algebra $K[V]^U$.

Finally we get an analog of Proposition 4.1 for modules with spherical orbits.

Proposition 4.3. Let G be a connected semisimple group. The following conditions are equivalent:

- (1) V is a G-module with spherical orbits;
- (2) $K[V]^U = K[f_1, \ldots, f_h, g_1, \ldots, g_m]$, where the $f_i's$ are generators of $K[V]^G$, the $g_i's$ are algebraically independent and their weights are linearly independent.

Proof. (1) \Rightarrow (2) We may suppose that f_i, g_j are free generators of $K[V]^U$. Denote by ω_i the weight of g_i . If ω_i are linearly dependent, then (after reindexing) one has $b_1\omega_1 + \ldots + b_p\omega_p = c_{p+1}\omega_{p+1} + \ldots + c_m\omega_m$, where b_i, c_j are non-negative integers. Hence

$$\frac{g_1^{b_1} \dots g_p^{b_p}}{g_{p+1}^{c_{p+1}} \dots g_m^{c_m}} \in K(V)^B = K(V)^G.$$

But for a semisimple group any rational G-invariant is the ratio of two polynomial G-invariants [9, sec. 3.2]. Therefore

$$g_1^{b_1} \dots g_p^{b_p} F_1(f_1, \dots, f_h) = g_{p+1}^{c_{p+1}} \dots g_m^{c_m} F_2(f_1, \dots, f_h).$$

This contradiction concludes the proof.

 $(2) \Rightarrow (1)$ Any rational *B*-invariant is the ratio of two polynomial *B*-semi-invariants of the same weight [9, sec. 3.2]. Thus any element of $K(V)^B$ is the ratio of $g_1^{d_1} \dots g_m^{d_m} F_1(f_1, \dots, f_h)$ and $g_1^{d_1} \dots g_m^{d_m} F_2(f_1, \dots, f_h)$. This shows that $K(V)^B = K(V)^G$.

5. A technical lemma

Let T be an algebraic torus and X(T) be the character group of T. Consider a field $K_1 = K(a_1, \ldots, a_n)$ with a T-action (by automorphisms) such that $t*a_i = \lambda_i(t)a_i$ for some $\lambda_i \in X(T)$. The subfield of T-fixed elements of K_1 is denoted by K_1^T . By tr.deg F we denote the transcendency degree of a field F over K. Consider the subfield $K_2 = K(a_1, \ldots, a_q), \ q \leq n$. Denote by $S_1 = <\lambda_1, \ldots, \lambda_n >$ and $S_2 = <\lambda_1, \ldots, \lambda_q >$ the corresponding sublattices in X(T). For any sublattice $L \subset X(T)$ define $L_{\mathbb{O}}$ as the vector space $L \otimes_{\mathbb{Z}} \mathbb{Q}$.

A sublattice L determines the subgroup

$$T_L = \{ t \in T \mid \lambda(t) = 1 \ \forall \lambda \in L \}.$$

Lemma 5.1. Suppose that $K_1^T = K$. Then the following conditions are equivalent:

- (1) tr.deg $K_1^{T_L} = \text{tr.deg } K_2^{T_L}$;
- (2) $L \cap S_1 \subset (S_2)_{\mathbb{Q}}$.

Proof. Set $A_1 = K[a_1, \ldots, a_n]$ and $A_2 = K[a_1, \ldots, a_q]$. Denote by Spec A_i the affine variety corresponding to the algebra A_i , i = 1, 2. For the natural T-action one has tr.deg $K_i^{T_L} = \dim \operatorname{Spec} A_i - h_i$, where h_i is the dimension of generic T-orbits in Spec A_i . The condition $K_1^T = K$ implies $\dim \operatorname{Spec} A_1 = \operatorname{rk} S_1$ and $\dim \operatorname{Spec} A_2 = \operatorname{rk} S_2$. Moreover, $h_i = \dim T_L - \dim T_{S_i + L}$. Thus condition (1) is equivalent to $\operatorname{rk}(S_1 \cap L) = \operatorname{rk}(S_2 \cap L)$. This is a reformulation of (2).

6. Modules with spherical orbits

Let V be a saturated spherical G-module. Any character of the saturating torus T can be considered as a character of G with trivial restriction to G^s . For any sublattice $L \subset X(T)$ define

$$G_L = \{ g \in G \mid \lambda(g) = 1 \ \forall \lambda \in L \}.$$

Let B^s be a Borel subgroup of G^s . Then $B = TB^s$ and $B_L = T_L^0 B^s$ are Borel subgroups of G and G_L respectively. Set

$$S(V) = \{ \lambda \in X(T) \mid \exists f \in K(V)^{B^s} : t * f = \lambda(t)f \ \forall t \in T \}$$

and

$$M(V) = \{ \lambda \in X(T) \mid \exists f \in K(V)^{G^s} : t * f = \lambda(t)f \ \forall t \in T \}.$$

Proposition 6.1. (cf. [8, Theorem 2.6]) The G_L -module V is spherical iff $L \cap S(V) = \{0\}$.

Proof. Lemma 5.1 with $K_1 = K(V)^{B^s}$ and $K_2 = K$ shows that the condition $L \cap S(V) = \{0\}$ is equivalent to tr.deg $K(V)^{B_L} = 0$, or $K(V)^{B_L} = K$.

Theorem 6.2. A G-module V is a module with spherical orbits iff the \overline{G} -module V is spherical and $G = G_L$ with $L \cap S(V) \subset M(V)_{\mathbb{O}}$.

Proof. Appling Lemma 5.1 with $K_1 = K(V)^{B^s}$ and $K_2 = K(V)^{G^s}$ one shows that the second condition is equivalent to

$$\operatorname{tr.deg}(K(V)^{B^s})^{T_L} = \operatorname{tr.deg}(K(V)^{G_s})^{T_L},$$

or
$$K(V)^{B_L} = K(V)^{G_L}$$
.

In Table 4 we indicate bases of the subspaces $S(V)_{\mathbb{Q}}$ and $M(V)_{\mathbb{Q}}$ for all indecomposable saturated spherical G-modules. There is a natural bijection between such modules and items of Tables 1-3, see [8, Theorem 2.5]. Our calculations are based on [8, Table 2].

7. Proof of Theorem 2.5

Suppose that V is a spherical indecomposable saturated \overline{G} -module. By Proposition 3.3 and Lemma 2.4, we need to find all minimal (with respect to inclusion) subgroups G, $G^s \subseteq G \subseteq \overline{G}$, such that V is a G-module with spherical orbits. By Theorem 6.2, these subgroups coincide with G_L for a maximal sublattice $L \subset X(T)$ satisfying $L \cap S(V) \subset M(V)_{\mathbb{O}}$.

Case 1. S(V) = M(V) = 0. Here V is a spherical G^s -module, $G = G^s$, and we obtain items 1, 3, 10, 11, 22, 27, 34.

Table 4

items	$S(V)_{\mathbb{Q}}$	$M(V)_{\mathbb{Q}}$
1, 3, 10, 11, 22, 27, 34	0	0
0, 2, 4 – 9, 12, 13, 23, 24, 26	$<\epsilon_1>$	$<\epsilon_1>$
19, 35	$<\epsilon_2>$	$<\epsilon_2>$
25, 33	$<\epsilon_1>$	0
20, 36	$<\epsilon_1,\epsilon_2>$	$<\epsilon_1,\epsilon_2>$
15, 31	$<\epsilon_1-\epsilon_2>$	0
18	$<\epsilon_1-n\epsilon_2>$	0
30	$<\epsilon_1,\epsilon_2>$	0
32	$<\epsilon_1+\epsilon_2>$	0
16	$<\epsilon_1+\epsilon_2>$	$<\epsilon_1+\epsilon_2>$
14, 21	$<\epsilon_1,\epsilon_2>$	$<\epsilon_1+\epsilon_2>$
17	$<\epsilon_1+n\epsilon_2>$	$<\epsilon_1+n\epsilon_2>$
28, 37	$<\epsilon_1,\epsilon_2>$	$<\epsilon_2>$
29	$<\epsilon_1,\epsilon_2>$	$<\epsilon_1+n\epsilon_2>$

Case 2. rk $S(V) = \text{rk } M(V) \neq 0$. Here V is a G^s -module with spherical orbits. One gets items 0, 2, 4 – 9, 12, 13, 16, 17, 19, 20, 23, 24, 26, 35, 36.

Case 3. rk S(V) = 1 and M(V) = 0. In this case G can be obtained as an extension of G^s by any one-dimensional subtorus of T_L with the restriction $L \cap S(V) = \{0\}$. We get items 15, 18, 25, 31, 32, 33.

Case 4. rk S(V) = 2 and M(V) = 0. In this case the \overline{G} -module V is the only module with spherical orbits – item 30.

Case 5. rk S(V) = 2 and rk M(V) = 1. In this case G is obtained as an extension of G^s by a one-dimensional subtorus of T_L with $L_{\mathbb{Q}} = M(V)_{\mathbb{Q}}$ (this is the torus fixing generic G^s -orbits in V). One gets items 14, 21, 28, 29, 37.

This completes the proof of Theorem 2.5.

Remark 7.1. Suppose that there is a decomposable G-module V. We are going to check that all orbits in V are spherical. First we verify that for all indecomposable components V_i the G-module V_i is a module with spherical orbits (Theorem 2.5). If this is the case we apply Theorem 6.2 and use Table 4.

8. Actions with spherical orbits on projective spaces

Any linear action G: V determines an action $G: \mathbb{P}(V)$ on the projective space $\mathbb{P}(V)$. Let T' be a one-dimensional torus acting on V by dilatations and G' = T'G be the torus extension. It is clear that the action $G: \mathbb{P}(V)$ is an action with spherical orbits iff the action G': V has this property. Let us recall that T is the saturating torus for the G-module V. Denote by F the sublattice in X(T) corresponding to T'. (In standart coordinates F is given as $x_1 + \ldots + x_k = 0$.) The following results are immediate consequences of Theorem 6.2 and Theorem 2.5.

Proposition 8.1. An action $G : \mathbb{P}(V)$ is an action with spherical orbits iff the \overline{G} -module V is spherical and $G = G_L$ with $(L \cap F \cap S(V)) \subset M(V)_{\mathbb{O}}$.

Proposition 8.2. Suppose that G is semisimple and a G-module V is indecomposable. The action $G: \mathbb{P}(V)$ is an action with spherical orbits iff either the G-module V is a module with spherical orbits or V is one of the modules indicated in Table 5.

Table 5

	G	${ m weights}$	$\dim V$
1	$SL(3) \times Sp(2n), n > 1$	$\phi_1 \otimes \psi_1$	6n
2	SL(2n+1), n > 1	$\phi_1 + \phi_{2n-1}$	(2n+1)(n+1)
3	$SL(n) \times SL(m), \ n > m+1 > 2$	$\phi_1 + \phi_{n-1} \otimes \psi_{m-1}$	n(m+1)
4	$SL(n) \times SL(m), \ n < m$	$\phi_1 + \phi_1 \otimes \psi_1$	n(m+1)
		$\phi_1 + \phi_{n-1} \otimes \psi_{m-1}$	

References

- [1] Arzhantsev, I. V., On SL_2 -actions of complexity one, Izvestiya RAN, Ser. Mat.**61(4)** (1997), 3–18 (in Russian); English transl.: Izvestiya Mathematics **61(4)** (1997), 685–698.
- [2] Brion, M., Représentations exceptionnelles des groupes semi-simples, Ann. Sci. École Norm. Sup. (4), 18 (1985), 345–387.
- [3] Benson, C., and G. Ratcliff, A classification of multiplicity free actions, Journal of Algebra, **181** (1996), 152–186.
- [4] Elashvili, A. G., Canonical forms and stationary subalgebras of points of general position for simple linear Lie groups, Funkts. Analiz i ego Prilog. **6(1)** (1972), 51–62 (in Russian); English transl.: Func. Anal. and its Appl. **6(1)** (1972), 44–53.
- [5] —, Stationary subalgebras of points of the common state for irreducible linear Lie groups, Funkts. Analiz i ego Prilog. **6(2)** (1972), 65–78 (in Russian); English transl.: Func. Anal. and its Appl. **6(2)** (1972), 139–148.
- [6] Kac, V. G., Some remarks on nilpotent orbits, Journal of Algebra, **64** (1980), 190–213.
- [7] Kimel'feld, B. N., and E. B. Vinberg, Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups, Funkts. Analiz i ego Prilog. **12(3)** (1978), 12–19 (in Russian); English transl.: Func. Anal. and its Appl. **12(3)** (1978), 168–174.
- [8] Leahy, A. S., A classification of multiplicity free representations, Journal of Lie Theory, 8 (1998), 367–391.
- [9] Popov, V. L., and E. B. Vinberg, *Invariant theory*, Itogi Nauki i Tekhniki, Sovr. Probl. Mat. Fund. Napravl., vol. 55, VINITI, Moscow 1989, pp. 137–309 (in Russian); English transl.: Algebraic Geometry IV, Encyclopaedia of Math. Sciences, vol. 55, Springer-Verlag, Berlin 1994, pp. 123–278.

Ivan Arzhantsev Chair of Algebra Moscow State University Vorobievy Gory, Moscow, 119899, Russia arjantse@mccme.ru

Received March 2, 2001 and in final form April 1, 2001