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Abstract. We show that the maximal orbit dimension of a simultaneous Lie
group action on mn copies of a manifold does not pseudo-stabilize when n in-
creases. We also show that if a Lie group action is (locally) effective on subsets
of a manifold, then the induced Cartesian action is locally free on an open and
dense subset of a sufficiently big (but finite) number of copies of the mani-
fold. The latter is the analogue for the Cartesian action to Olver-Ovsiannikov’s
theorem on jet bundles and is an important fact relative to the moving frame
method and the computation of joint invariants. Some interesting corollaries are
presented.

1. Introduction

The moving frame method [10, 11] provides an algorithmic way to compute invari-
ants of Lie group actions on manifolds. A necessary and sufficient condition for the
existence of a (local) moving frame is that the action be (locally) free. If this is not
the case, one can consider the induced action on the k* order jet bundle, for some
k € N, and try to compute a moving frame on this bigger space. A theorem by
Ovsiannikov [12] (later corrected by Olver [9]) states that if a group acts (locally)
effectively on subsets, then there exists an integer k¢ such that the prolonged ac-
tion of the given group is locally free on an open and dense subset of the k" order
jet bundle. Such a prolongation leads to the computation of differential invariants.

Another way to prolong the action is to let the group act on many copies
of the manifold (Cartesian action). In many cases, it has been observed that
considering the action on two, three, four, ... copies of the manifold eventually
leads to an action that is locally free on an open subset of the manifold. The
main goal of this paper is to guarantee that for group actions which are (locally)
effective on subsets this will always be the case, so a local moving frame always
exists. Such a prolongation leads to the computation of joint invariants.

Besides direct implications concerning joint invariants [6], joint differential
invariants [3, 7] and numerically invariant numerical algorithms [8], this result
is important in computer vision, in particular for solving the problem of curve
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recognition modulo Lie group action [1, 2].

2. About Stabilization of the Cartesian action

Let G be a Lie group acting on a m-dimensional manifold M. Let M*®) .= M x
M x...xM (k times) be the Cartesian product of k£ copies of M. The action of G
on M induces an action of G on M*®) namely g-(zy,...,2) = (¢-T1,... ,9-Tx)
for g € G and x4,... ,2, € M.

Definition 2.1.  We say that a Lie group action on a manifold M is semi-
reqular if all the orbits have the same dimension. If in addition we have that for
every point x € M there exists an arbitrarily small neighborhood U such that
the intersection of U with the orbit through x is connected, then we say that the
action is regular.

Definition 2.2. We say that a real valued function I : U C M — R is an
invariant if I(g-x) = I(x), for all g € G and all x € U. We say that a real valued
function I : U C M — R is a local invariant if there exists a neighborhood N of
the identity e € G such that I(g-x) = I(z), for all g € N and all x € U.

The results we will derive are based on the following important theorem.
See [4] for a proof.

Theorem 2.3. If G acts on an open set O C M semi-reqularly with s di-
mensional orbits, then Yxo € O there exist m — s functionally independent local
mvariants I, ..., I,_s defined on a neighborhood U of xy such that any other
local invariant I defined near xy is a function I = f(Iy,... I, ). If the ac-
tion of G 1is reqular, then the local invariants can be taken to be invariants in a
netghborhood of xy, and two points x1,xo € U are in the same orbit if and only if
Li(xy) = Li(zs), Vi=1,... ,m—s.

The set of invariants Iy,...,I,_s is often called a complete fundamental
set of invariants.

Denote by s, the maximal orbit dimension of the Cartesian action of G on
M*®) and by 9t the set of points z € M*®) for which the orbit through z has
maximal dimension s;. Observe that the action of G on 9M* is semi-regular, for
any k. Observe also that 90t* is open, for any k € N.

Definition 2.4.  The minimal integer ny such that s, = s,,, for all n > ny is
called the stabilization order. We call s, the stabilization dimension.

Example 2.5. Let the special Euclidean group SE(2) act on the plane by
rotating and translating the points in the standard way. More precisely, for
g € SE(2) and x € R?, let

cosf sinf

T=¢g-x=Rx+b, with R= ( _¢inf cosd

) and b € R?.

The group SE(2) has dimension three while the plane is a two dimensional
manifold. In fact, the Euclidean action on one copy of the plane is transitive
so the dimension of the orbit through any point is equal to two.
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If we consider the Cartesian action of SE(2) on two copies of the plane,
namely

g (z1,22) = (Rzy, Rzo) + (b, b)

for R and b as defined above, then the dimension of the space acted on is
four while the dimension of the orbits is two for the points on the diagonal
Dy := {(x,7)|zr € R?} and three everywhere else. Since the maximal orbit
dimension s, is equal to the dimension of the group, then for all n > 2, s, is
also equal to the dimension of the group. Therefore two is the stabilization order
and three is the stabilization dimension.

Example 2.6.  Consider the projective group PSL(3) acting on the plane as

Ax+b . A b
e o (40 cou

for ¢ € PSL(3) and z € R?. We have dim PSL(3) = 9 while dimR? = 2 is
equal to the dimension of the orbits. In fact, this action is transitive. Also for
n = 2,3 and 4, the Cartesian action of PSL(3) is transitive on {(z1,...,x,) €
M®|zy, ...z, are distinct }. However, the dimension of the orbits is bounded by
eight because PSL(3) contains a one-dimensional subgroup that acts trivially on
the plane. Therefore the stabilization order is four and the stabilization dimension
is eight.

Definition 2.7.  If there exists an integer n such that s, = s,11 < s;42, then
we say that the Cartesian group action pseudo-stabilizes at order n.

The next lemma states that Cartesian group actions do not pseudo-stabilize.
Note that the analogue for the action on the jet bundle is not true.

Lemma 2.8. If s,_1 < 8, = Sp41 then n s the stabilization order.

Proof. Let p € M. By Theorem (2.3), there exists {I1,...,Iyn s,} a
complete fundamental set of invariants in a neighborhood U, N 9M" of p. Of
course, nm — s, might be zero but that is not relevant to our proof. Let

Li(z, ... ,ZP_H) = {i(zl, ceeyzn),fori=1,... nm—s,. Since s, = s,11 and the
invariants Iy, ... , I, ,, arefunctionally independent on an open set U, ;NIR"+!
there exist m invariants Ji, ..., Jp, : Upyr € M*™F) 5 R such that
{jl(zla .- azn—l—l): s ajnm—sn(zla s az’n—l—l)a
Jl(zla T azn—l-l), Tt Jm(zla Tt ,Zn—|—1)}

is a complete fundamental set of invariants on an open set Un+1 N IM"+L. Define

Ji : M2 5 R by

Ji(zl,... ,Zn+2) = Ji(zl,...zn,zn+2), (].)
for i = 1,...,m. Since I,... , Iym s.,J1,-..,Jm are functionally independent
and Ii,...,Iyn—s, only depend on the first n points z1,...,2, € M, then the

invariants
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11(21,... azn—H)a aI_nmfsn(Zln--- azn—}—l)
Jl(Zl,... ,Zn+1), ,Jm(Zl,... 7Zn+1)
Jl(zla--- azn—|—2)a tee m(zla--- azn—|—2)

are functionally independent on an open set U, o N 9" +2.
By Theorem (2.3) the number of functionally independent (n + 2)-point
joint invariants in a neighborhood of p is equal to (n + 2)m — s, 2. Therefore

(n+2)m— sy > nm— s, +2m & Snt2 < Sp.

But s,9 > s,, so we conclude that s, 9 = s,. We can repeat the same argument,
infinitely many times to show that s, = s, for all £ > n, and therefore n is the
order of stabilization. [

The key of our proof lies in the use of (n + 1)-point joint invariants in
order to define exactly m new (n + 2)-point joint invariants (Equation 1.) In the
case of the jet bundle, the situation is slightly more complicated but in a sense
very similar. Given a differential invariant D, : J"(M,p) — R, one can obtain a
differential invariant of higher order D, : J"™' (M, p) — R by differentiating D,
with respect to some invariant arc-length. In order to obtain enough new invariants
by differentiation so to guarantee stabilization at order n, it is enough to assume
that 0,1 < 0p = 0ps1 < dim J"(M,p), where o; denotes the maximal orbit
dimension of the prolonged action of G on the jet bundle J*(M,p). In fact, under
these more restrictive hypothesis, the previous result also holds for prolongations
on the jet bundle. (See [5] Theorem 5.36.) It is not true in general, as illustrated
by the case of the elementary similarity group acting on {(z,y) € R? x R?} as

(Z,9) = (M +a, y+b), forae R, beR!, IeR,

which pseudo-stabilizes at n = 0. However, one can show that pseudo-stabilization
cannot happen more than once. (See [5] Theorem 5.37.)
Let r be the dimension of G.

Corollary 2.9.  If ng is the stabilization order of the Cartesian action, then
ng<r—s1+1<r+1.

Proof. By Lemma (2.8), we have
S9 Z 81+1, 83231+2, Sn0281+n0—1.

But s,, < 7, therefore ng < r —s; + 1. In addition, since s; > 0, we have
r—s1+1<r+1. [ |

3. About local freeness and effectiveness of the Cartesian action

Let S be a subset of M.
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Definition 3.1.  The isotropy subgroup of S is the set
Gs = {g € G such that g- S = S}
The global isotropy subgroup of S is the set
< ={g € Gsuch that g-z =z, forall z € S}

Definition 3.2.  We say that G acts on M effectively if G%, = {e}. We say
that G acts on M locally effectively if G%, is a discrete subgroup of G'.

The action of the special Euclidean group described in Example 2.5 is an
example of effective action, while the action of the projective group described in
Example 2.6 is not effective.

Definition 3.3. We say that G acts on M effectively on subsets if, for any
open subset U C M, G%; = {e}. We say that G acts on M locally effectively on
subsets if, for any open subset U C M, G7; is a discrete subgroup of G.

Observe that (local) effectiveness on subsets implies (local) effectiveness.

However, the converse is not true as illustrated by the following example (kindly
provided by Professor P. J. Olver.)

Example 3.4. Let h:R — R be the function defined by
0 ifx<0
h(x)—{ er ifz>0 "
Consider the action of the plane on itself given by

for u,v € R. This action is effective since the only trivial transformation is
(u,v) = (0,0). However, it is not effective on subsets since it is not effective on
{(z,y) € R*|z > 0} for example.

The previous example corresponds to a smooth action that is not analytic.
For analytic actions, (local) effectiveness implies (local) effectiveness on subsets.

Lemma 3.5. A Lie group G acts on a subset S C M (locally) effectively if
and only if the Cartesian action of G on S*™ s (locally) effective.

Proof. Since

g-z = z forallze S
&g (21,20) = (21,29), forall 21, 29 € S,

then G5 = G- Therefore
s ={e} & Goum = {e}
and also
s is a discrete subgroup < G is a discrete subgroup ,
which completes the proof. [ ]

Recall that r is the dimension of the Lie group G. We now give a necessary
and sufficient condition for the maximal orbit dimension of a prolonged Lie group
action to reach r.
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Theorem 3.6. A Lie group G acts (locally) effectively on subsets of M if and
only if for any open subset S C M, the stabilization dimension of the action of G
on S s equal to the dimension of G.

Proof.  The necessity of the (local) effectiveness on subsets is a direct corollary
of Lemma 3.5.

To prove sufficiency, suppose that G acts (locally) effectively on subsets of
M and suppose there exists an open subset S C M*™ such that the stabilization
order n of the action of G on S is s, < r. Let &" be the set of points 2™ € S
such that the orbit through z(™ has maximal dimension s,. The set G is open,
so for all 2(®) € G there exists a neighborhood N(z() C &".

Let vy,...,v, be a basis for the Lie algebra of G and let UY), e ,v,@ be
the corresponding vector fields on M*® . Assume that v§"), . ,vgz) are linearly
independent on N (z(™).

If s, <r, we can write

_ZAZ (n)

Zl: 7zn

(n)

Usn—l—k

yforall k=1,...,r — sp, (2)

(21400 y2n)

where A% = Ai(zy,...,z,). Since the same relationships hold on M*"+1)  we
can also write

yforallk=1,... ,r—s, (3

(215 y2n+1)

v

_ ZAZ (n—|—1

with the same coefficients A%. Indeed, both sides of Equation 3 project down to
their counterpart in Equation 2 and therefore the coefficients must be the same.

Sn —|—k:
251 9 ,Zn+1

We have
(n+1) (1) (1) :
V5 = (v; - U5 forj=1,...,r
J (215000120 41) ( (1) (zn+1))
In particular, for k =1,... ,r — s,
D _ (1) NS
= (v e ,
K LS Uont 1)
Sn
but also "V = AW i
T ) ; % (1) Z (znm)
If we fix 21 = 29,... ,2, = 2% in M, then all A%’s are constants. Therefore

e
sn+k

_ZA

with constant coefficients A%’s, which contradicts the effectiveness of the action of
G on open subsets of M. Therefore s, =1r. [ ]

: (4)

(2n+1) (zn+1
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Examples 2.5 and 2.6 illustrate this result. Observe that the last argument
of the proof would not hold in the case of a merely effective action: Equation 4
contradicts effectiveness on subsets, not effectiveness, which is a weaker condition.
In fact, a similar observation led to the correction by P. J. Olver in [9] of a similar
theorem by Ovsiannikov [12]. This theorem, which in fact does hold for analytic
actions, states that a Lie group acts effectively if and only if there exists n € N such
that the maximal orbit dimension of the prolonged group action on the n** order
jet bundle J"(M,p) is equal to the dimension of G. In the corrected theorem, the
word effective is replaced by effective on subsets.

Definition 3.7.  We say that G acts freely on M if for all z € M, G, = {e}.
If for all z € M the set G, is a discrete subgroup of GG, then we say that G' acts
locally freely on M.

Corollary 3.8.  Ifa Lie group G acts (locally) effectively on subsets of M, then
there exists n € N such that G acts on the open set IM™ locally freely and IN™ is
dense.

The exact analogue holds for the case of a group action prolongation on the
jet bundle.

One may ask whether it is possible to replace local freeness by freeness in
the previous statement. The answer is unfortunately negative, as illustrated by
the following counterexample (kindly provided by Professor P. J. Olver.)

Example 3.9.  Consider the action of the real line on the plane given in polar
coordinates by

(7,0) = (r,0 +rt),

for ¢ € R. This action is locally free and effective. But for all n € N, the Cartesian
action is not free on the dense subset

{(r1, 01, 72,00, .. ;70 0,) € (RE)*™| L e Qori=2,...,n}
1

4. Some interesting corollaries

Let v1,...,v, be a basis for the Lie algebra of G and let vy), e ,w@ be the
corresponding vector fields on M*® . Let z = (x1,...,2,) be local coordinates
for M and write v\’ = Y™ Ei(z) 52 = Y & (x)0; for k=1,...,r. Consider
the matrix

&(2), -0 L E(2)

V(z) = : :

&), o 60 (2)

defined by the coefficients of the v,(cl) ’s. We define the analogue of the Lie matrix
of order n for the jet bundle as

Lo(z1,-..,20) = (V(21),V(22),...,V(2n))
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Example 4.1.  Consider the action of SE(2) as described in Example 2.5. For
simplicity, we use coordinates z = (z,y) € R?. The infinitesimal generators of the
action of this three dimensional Lie group are

v = — 3—1—30—
0

Vo = 8_:1:7
0

V3 = a_y

We have
B AR
Ll(z): 1 0
0 1

which is a rank two matrix. Writing z; = (z1,¥1) and 2y = (22,¥2), we also have

. Y1 T1 —Y2 T2
Lo(21, 22) = 1 0 1 0|,
0o 1 0 1

which is a rank three matrix whenever z; # z5, and a rank two matrix otherwise.
Observe that, for any n € N, the dimension of the orbit through (z1,...,z,) is
equal to the rank of the matrix En(zl, ey Zn)-

This last observation holds in general: the number of functionally indepen-
dent infinitesimal generators of the group action at a certain point is equal to the
dimension of the orbit through this point.

Lemma 4.2. The orbit through (21, ,2n) € M*™ has dimension equal to
the rank of the matriz L, (z1,. .., 2y)-

Therefore if a group action stabilizes at order ny, then

=  max { rank Ly, (21,... %)}

Sn
0
2] yenn ,znOEM

Corollary 4.3. The action of G on M is locally effective on subsets if and
only if for all open subsets S C M, there exists n € N such that the rank of the
matric Ly(z1,...,2,) s equal to r for some zy,... ,2, € S.

Combining Lemma 4.2 with Corollary (2.9) we get the following:

Corollary 4.4. The action of G on M is locally effective on subsets if and
only if for all open subsets S C M, the rank of the matriz L, 1(z1,... ,24+1) 1S
equal to r for some zy,...,2..1 € S.

Example 4.5.  As an illustration of Corollary 4.4, consider the action of R? on
R? defined in Example 3.4. The infinitesimal generators of this action are

v, = h(r)=—,

v = h(—z)=—.
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Writing z; = (2, ¥;), for i =1,2,3, we have

Lr+1(21,--- ,Zr+1) = IN/3(21,Z2,Z3)

_ (0 h(zy) 0 h(z) O h(xs)>
0 A(—z1) 0 h(—z2) 0 h(—z3) )~

The rank of L (21, 22, 23) is equal to one whenever z;, x5 and z3 have the same
sign. In particular, it is equal to one on the open set {(x1, z2,z3)| 1,2, 23 > 0},
thus corroborating the fact that this action is not effective on subsets.

Combining Lemma 4.2 with Lemma 2.8, we have the following:

Lemma 4.6. A group action stabilizes at order ng if and only if

max  {rank L, (21, ,20)} = max  {rank L, 1(21, -, Znot1)}
21,...,Zn0€M 21,...,Zn0+1€M

For n € N, define the projection
7(M") = {z1 € M|32o,... ,2, € M with (z1,...,2,) € M}

In the case of an action prolonged on the jet bundle, one studies the notion
of singular points [9], which are nothing but points whose jet of arbitrarily large
order does not belong to an orbit of maximal dimension. The following facts tells
us that the analogue of singular points for Cartesian group actions does not exist.

Lemma 4.7. Let ng be the order of stabilization of a group action. Then
M = m(9Mrott).

Proof. If z; € 7(9MM™), then 2z € 7(M™TL). Now if z; ¢ 7(9M™), then
consider (zg, ..., 2n,r1) € M. We have (z1,...,25041) € M™T and therefore
21 € (Mot m

Considering det L,, we obtain the analogue to an important result [9]
concerning the Lie determinant.

Proposition 4.8. If zn(zl, ..., 2Zn) 18 a square matriz, then the equation
det in(zl, ceeyzn) =0

18 invariant under G.

Proof. A point (z1,...,2,) &€ 9" if and only if det L, (21 ... ,2,) = 0 . But if
(21y-- ,2n) € O™ then g- (21 ... ,2,) is also not in IM™, for all g € G. Therefore

det L,(g-21,...,92z,) =0forall g € G,

which completes the proof. [ ]
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Example 4.9. Consider the group generated by rotations, translations and
scaling in the plane. Any such transformation can be written as

T = Maxcosh —ysinf + a) (5)
= A(xsinf +ycosf +b), (6)

<

with A, a,b,0 € R. We call this transformation group the similarity group Sim(2).
The analogue of the Lie matrix Ly is the square matrix given by

—Y1 T1 —Y2 X2
~ 1 0 1 0
L2(Z1, 22) = 0 1 0 1 )

Ty Y T2 Y2
whose determinant is
det Ly(21, 20) = — (22 — 21)% — (y2 — 11)2

Therefore the equation

flar,y1,2,02) = —(22 —21)* = (12 — 1) = 0
must be invariant. We can check that

F(@1, 0,70, 02) = —(T2—71)° — (G2 — )’
N (@2 — 21)* + (52 — 91)?)
= —)\Qf(ﬂchyl,xm Y2),

so if f(x1,y1,%2,y2) = 0 then f(Z1,71,Z2,%2) = 0 as well, thus proving the
invariance of the equation f(zi,y1,x2,y2) = 0.

More generally, we have

Proposition 4.10. The set of points
{(z1,... ,zn)rank Ly (21, ..., 2,) =k}

18 tnvariant under G .

Let X be a p-dimensional manifold.

Definition 4.11.  Given a set of r vector-valued functions fi,...,f,: X = R?
we say that they are linearly dependent on a subset W C X if there exists a
non-trivial relationship of the form Y, _ ¢ fe(z) =0, with ¢1,... ¢, € R, which

holds for all x € W. In the negative, we say that they are linearly independent on
W.

Definition 4.12.  We say that a set of r vector-valued functions fi,..., f, :
X — R? are linearly independent on subsets of X if they are linearly independent
on any open subset of X.
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Consider the matrix

(@), ... fi(@)

@), .. )

defined by the functions f;’s. We now define the analogue of the n'® order
Wronskian matrix at z{,...,x, € X as

Wiz, ..., x,) = (F(x1), F(22), ..., F(x,))

Theorem 4.13. A set of of r vector-valued functions fi,...,fr : X — R? is
linearly independent on subsets of X if and only if their (r+1)% order Wronskian
W,H(xl, <o Zyy1) has mazimal rank v in a dense subset of X*(t1).

Proof. Let M = X x R? and write z € M as z = (z,v), with z € X and
v € R?. Consider the following action of G = R" on the m dimensional manifold
M:

Z (x,v—i—Ztkfk(x)) , fort = (t1,... ,t,) € R".
k=1

The vector fields

m

0
vy = Zf,é(x)w, fork=1,...,r
I=1
are the infinitesimal generators of this group action.
The functions fi,..., f, are linearly independent on subsets if and only
if the vectors vy,...,v, are linearly independent on subsets. The latter is true

if and only if G' acts locally effectively on subsets of M. By Corollary 4.4, this
happens if and only if for any open subset S C M, the maximal orbit dimension
of G action on S*("*t1) is equal to r, which is true if and only if

max  rank L,y1(21,...,241) =T,
Z1yeeey2r+1E€S

for any open S C M. But

I/ Zla
fl(xl)a 07 7O: fl(xZ)v 7f1(xn)
0, flm), 0, 0, fulw)s oo fo(w)
filzn), fi(ze), - filzn)
Wn(l'l, ’xn): . . .

fr@)s fo(@a)s oo s folon)
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Therefore the rank of the matrix IN/TH(zl, ..., Zr+1) is equal to the rank of
VNVTH(acl, ey Zpy1). SO fi1,..., fr are linearly independent on subsets if and only
if

max  rank W, i(zq,... ,2,.41) =1,

L1y, 1 €U

for any open S C U, which is equivalent to saying that
rank W1 (1, .. ,Trp) =7,

on a dense subset of X . n
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