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Abstract. This paper examines the approximative centre of a Lie algebra;
this is the set of elements which are not sent uniformly to infinity by the
adjoint action of the underlying Lie group.

The centre Z(g) of a Lie algebra g is the set of elements that are fixed by
the adjoint action of the underlying Lie group. A natural generalization would
be to consider the set of elements with bounded orbit under the adjoint action.
It turns out that another useful notion is the set of elements which are not sent
uniformly to infinity. More generally, one has:

Definition 1. If g is a finite dimensional real Lie algebra, and p € R, let
¢,(g), or simply €,, denote the complement of the set of elements X € g for
which there exists a neighbourhood U 3 X and an element Y € g such that the
map

(exptp.tr(adY))expad(t.Y)|y: U — g

tends uniformly to infinity as ¢ goes to positive infinity.

When g is unimodular, €, is independent of u and is called the approz-
imative centre of g; this notion is due to Etienne Ghys and was introduced in [4].
Some of the ideas presented below were developed in [3], but were not published.
A further application for g =1 is given in [5]. The present paper is devoted to
the following:

Theorem. Let g be a finite dimensional real Lie algebra. Then:
(a) €, =s5@n, where s is a compact semisimple direct summand of g, and
n s a nilpotent characteristic ideal of g. Moreover:
(i) n is metabelian,
(ii) Z(n)(= Z(€,)) is an ideal of g and n= Z(n) + [n,g|,
(i) €, C Z(g) +[g,9]-
(b) If g is unimodular or p =0, then s is the mazximal compact semisimple
direct summand of g, and Z(g) C n.
(¢) If g is not unimodular and p # 0, then s =0 and n is abelian.
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Corollary.  With the above notation, one has:
(a) €, is unimodular,
(b) If g is nilpotent, €, is abelian,
(c) If g is solvable, €, is metabelian,
(d) €, =g if and only if g is the Lie algebra of a compact Lie group.

Following the proofs of the theorem and its corollary, the paper concludes
with 3 examples.
Notation. In the following, if € is a subalgebra of g, then
(a) R(®) denotes the radical of ¢, and we write R(g) =,
(b) Z(¥) is the centre of €, and Z () is the centralizer of ¢ in g.

Proof of the theorem. For convenience, throughout this proof, we will
use the Iy norm |[(z1,...,2,)| = Y.i; |zi] on C*, rather than the Euclidean
norm. We begin by studying the automorphism exp(t.C) of C*, where C is the
following Jordan form:

A 0
1 A
C= :
1 A
0 1 A
First, note that
1 0
t 1
(*) expt.C = expt.\ t?/2! ¢ 1
"t/ (n—-1)! ... t2/20 t 1

Lemma 1. Let T € R.

(a) If the real part of A\+T is positive (or negative), then for all x € C*\{0},
there exists a neighbourhood U of x in C™ such that

(expt.T)expt.Cly: U - C"
tends uniformly to infinity as t — +oo (or t — —o0 ).
(b) If A+ T is imaginary, then for all x = (z1,...,2,) € C*, the following
conditions are equivalent:
(i) there exists a neighbourhood U of x in C* such that

(expt.T)expt.Cly: U — C"

tends uniformly to infinity when t tends to infinity,
(ii) there ewists 1 <1 < ™ such that z; # 0.
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Proof. (a) Suppose A+ T > 0. Setting A; = (expt.T)expt.C, one has from

(*):
1 0
—t 1
(A)7' = (exp—t. A+ T)) t2/2! —t 1
(—t)”‘l}(n -1 . t2).2! —t 1

Let z € C*\{0},and 0 < K < 1. Let U be a relatively compact neighbourhood
of z in C"® which doesn’t contain zero in its closure.
Let B > 0. Clearly, there exists m € N such that ||z||/K™ > B for all
z € U. One has
2]l = [[A7 " 0 Ae(2) || < |47 M1 A (2)]]

and so ||A¢(2)|| > ||z||/||A7"||. There exists o > 0 such that for all ¢ > ¢, the
operator norm ||A; || of the automorphism A; ' is less than K. Hence, for all
t >,

[ Ame ()] > 2ll/ I Amell = N2ll/1A™ 1 > /1A ™ > [lzll/K™ > B.

Thus, ||As(z)|| > B for all z € U and s > m.ty. The case where Re(A+T) < 0
is analogous.

(b) First suppose that x; = 0 for all 1 < I < (n+ 1)/2. We will
show that there does not exist any neighbourhood U of x for which the map
(expt.T)expt.Cly: U — C" tends uniformly to infinity when ¢ tends to infinity.
Let U be a relatively compact neighbourhood of z. It suffices to show that there
exists N > 0 such that, for all sufficiently large ¢ > 0, there exists z; € U such
that |[(expt.T)expt.C(z)| < N.

Let k£ be the smallest natural number such that z; # 0. By hypothesis,
2k > n + 1. For all sufficiently large ¢ > 0 we will construct an element z;
of U of the form z; = (e1(t),...,ex-1(t), Tk, Txt+1,--.,%,). First note that if
z2= (€1, .y €k—1,Tk,.-.,Ty) € C*, then, by (x), one has

k—1

=]
tk t2 n—1
+|61E tootaoy + ot + T oo+ ‘61(71— 1)!

|[(expt.T) exptC(2)|| = |e1]| + |ert + €| + -+ + |e1 + -+ eg—1t + T

*“"+‘$nh

We choose the (kK — 1) numbers €; such that the last (n — k) terms of
the preceding expression are zero. To do this, consider the following equation:

k 2
£ & e1(t) —Tgl — Tgy1

® | = .
n—1 nt+l—k i
ﬁ m 6k—l(t) _ﬂfkm — =Ty
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We have (k—1) variables (the €;(t)) and (n—k) equations. Because 2k > n+1,
one has n —k < k — 1. In order to solve equation (1), set ¢;(t) = 0 for all
n—k <j<k-—1, and solve the following equation:

%k! % €1 (t) —Zl — Tt
©) -
= ol enn())  \ iy =~
This equation possesses a unique solution (e1(t), ..., e,—(t)) since the coefficient

matrix is invertible for all 1 < 2k —n+1 <k <n and ¢t > 0. Let F denote
the coefficient matrix of the left hand side of (2), and let F; denote the matrix
obtained by replacing the j** column of F' by the right hand side of (2). By
Cramer’s method, €;(t) = det F;/det F', for all 1 < j < n — k. Notice that
det F = at*(»=F) for some non-zero real a, while det F; is a polynomial in ¢ of
degree k(n — k) — k + j which is divisible by t¥("=%)="+J  Hence the solution
(€1(t),...,€en—k(t)) of equation (2) has the following form; for all 1 < j <k —1

_ G451 a2 Gj(n—k+1)
(3) Ej(t) =k + gt + -+ i
where the coefficients aj; are constants depending only on zg,...,z,. Note that
as 2k >n+1,one has k— 7 > 1. Let
(4) ze = (€1(t), ..., €x—1(t), Ty ..., zp) € C".

By (3), it is clear that 2z, € U for all sufficiently large ¢. By construction, one
has

[(expt.T) exptC(2)|| = lex(t)] + [ter (t) + €2
k—1
TR |e1(t)h ]
But, by (3), each of the terms of the preceding expression is bounded as ¢ — oco.
In other words, there exists N > 0 such that ||(expt.T)exptC(z)|| < N for all
sufficiently large .

Conversely, we will show that if there exists 1 < I < (n + 1)/2 such
that x; # 0, then there exists a neighbourhood U of z such that the map
(expt.T)expt.Cly: U — C" tends uniformly to infinity as t — oo. Let k
again denote the smallest natural number such that zp # 0. By hypothesis,
2k <n+1. Let U be a relatively compact neighbourhood of z in C* such that
for all z=(z1,...,2,) € U one has z; # 0. One has, for all ¢ > 0,

t'n,—l
||(expt.T) expt.C’(z)H = ||Z1|| + ||Z1t + 22“ +---+ ||m21 +---+ Zn”.
Our strategy is consider only the £ last terms and to eliminate the terms z; for
1
Jj<k.Set Tj(z1,...,25) = ||(;J i1 + (J 2),z2 +---+ z;||. Note that

9t
(et ees5) + Ty 5n) = gy (o +all + Sl 401 )
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where

a =

G- B
g1 \Goan2t A )

j! ti—1
( Y Z2 4+ 241 |-
For ¢ > j one has ||z; + al| + §||Z1 +b|| > ||b — a|| and so

1
Tj(zl, .. .,Zj) + Tj+1(21, .. .,Zj_|_1) Z m“b — 0,“

i—2 j—3 i—k . j
S 2 S A PR T
”(] 1! 2+( 2! z3 + - +( —k—l—l)( )2k + ‘I‘tz_7-|-1||
Thus
1 .
(5) Ti(z1, .-, 25) + Tjg1(z1,- -+, 2j41) > ZTj(zz’ 223, ..., J%j+1)-

From above,

|[(expt.T) expt.C(z ||_ZT(Z1,...,zj)2 Z Tj(z1,--.,%j).

j=n—k+1

Hence, by (5), for all t > n,

1 n—1 .
|[(expt.T)expt.C(z)]| > % Z Tj(22,223, ..., j%j+1)

j=n—k+1
Z Z T; (223,324, ...,J(J + 1)2j42)
j=n—k+1
1 k! (n—1)!
> WTn—k—H((k — 1)z, ﬂzk—l—la SRR (n— k)!zn)
1 ||t 2Rtk —1)! tn—2kg! P (n —1)!

= z —— 2 et 2

2k—1 m—k)! *T (k-1 (n— k)ith=1""

So,as m—2k+1>1 and 2z, # 0 for all z € U, it is clear that for all M > 0
there exists N > 0 such that |[(expt.T)expt.C(z)|] > M for all ¢ > N and
z € U. This establishes Lemma 1. [ ]

Let y be an element of g. Let M, denote the Jordan form of the linear
endomorphism of C" determined by ad(y), and denote the Jordan blocks of M,
by Ci(y),. (y) and the correspondlng eigenvalues A1,...,\.. If z € g, we
write z, = z! EB @ a" € C" where ¢* = (2%,...,2% ) are the components of
x with respect to the decomposition of C" determined by the Jordan form M, ;

one has My(z,) = Ci(y)(z') & - - & Cr(y)(z").
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Lemma 2. Let z, y € g. The following two conditions are equivalent:
(a) there exists a neighbourhood U of x in g such that

(exptu.tr(ady))expad(t.y)lv: U — g

tends uniformly to infinity as t — oo,
(b) there exists 1 < i <r and a neighbourhood U; of x* in C" such that

(exptu.tr(ady)) exp(t.Ci(y))|v,: U; = C™

tends uniformly to infinity as t — oco.

Proof. (a) follows immediately from (b) because

| expad(t.y)(z)[| = Z |l expad(t.Ci(y)) (=)

for all z € C*. To see the converse, notice that if
(exptu.tr(ady)) exp(t.C;(y))|u,: Ui — C™i

does not tend uniformly to infinity as ¢ — oo, then the point z; € C* given by
(4), in the proof of Lemma 1, has real coordinates; the required result follows
easily. [ ]

Set
¢, (y,3) = {z* € C" | 2z = 0, if Re(utr(ady) + A;) #0, and
i =0forall 1 <1l< (n;+1)/2, if Re(ptr(ady) + ;) = 0}.

From Lemmas 1 and 2, one has:

Lemma 3. With the notation introduced above, the approximative centre of g
18

<, = ﬂ{$€9|xy € @%(y,i)}.

yEg i=
In particular, €, is a vector space. In fact, we have:

Lemma 4. &, is a characteristic ideal of g.

Proof. Let ¢: g — g be a derivation and consider the automorphism ®, = e*¢
of g. Note that €, is ®,-invariant. Indeed, if  and y belong to g, then

P, (exp(t. ady)(z)) = exp(t. ad(Psy) ) (Ps)
and hence
®s(exp ptr(ad(t.y)) exp(t-ady)(z)) = (exp p tr(ad(t.@sy)) exp(t. ad(P,y))(Psz).

It follows that if z is an element of €,, then ®,z is too, for all s € R.
Differentiating with respect to s, one has that €, is invariant under ¢. |
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Remark 1. Let gc = g®r C denote the complexification of g. One can define
the approzimative centre €,(gc) of gc is an analogous manner to that of g. It
is clear from the above that €,(gc) is an ideal of gc. However, it is not true
in general that €,(gc) = €, ®r C. Nevertheless, €, ® C is clearly an ideal of
gc. Thus, if y € €, and z € g, then ad(y)(z) € €, ®r C and in particular,

Ci(y)(z) € €,(y, 1), for all 4.
If y € €, let ade, (y): €, — €, denote the restriction of ad(y) to €,.

Lemma 5. Ifye€C,, then:
(a) the eigenvalues Ai,...,\. of ad(y): g — g are all imaginary, whence
tr(ady) =0,
(b) for all i, one has:
(i) zf Ai = 0, then the corresponding Jordan block has size at most
3; that is, n; < 3,
(ii) of A; # 0, then the corresponding Jordan block has size 1; that
18, n; =1,
(c) €, =ker(adg, (y)) ® im(adg, (¥)),
Proof. First note that y is an eigenvector of ad(y) with eigenvalue 0, and
so Re(ptr(ady)) = 0, by Lemma 3. Hence ptr(ady) = 0. Fix ¢ and let
{Z; |1 <j <mni} be the canonical basis of C* . Using the notation from above,
one has
74 g Y .
© Ci0)(2)) = { N
)\iZ} ; if 7 = n,.
(a). If Re(\;) # 0, then Re(\;+ptr(ady)) # 0, since ptr(ady) = 0. By
Lemmas 1 and 2, one has Z ‘ & ¢€,(y,i), but by (6) and the previous remark, one
has Z}, = C( )(Z,.) € Qf 4 (Y, ) which is a contradiction. Thus Re()\;) = 0,
for all 7.
(b)(i). If A\; = 0, then by the previous remark, Z& = C;(y)(Z%) €
¢, (y,1). Hence, by Lemma 1(b), 2 > 2itL: that is, n; < 3.
(b)(ii). If A; # 0, then by the previous remark,
Zh, = 3.Ci0)( 7)) € €ula)
aed Z; = %(Cz(y)(ZJ’) Z;_I_l) for all 1 < j < ni— 1. So by induction,
Z; € €u(y,4) for all 1 < j < n;. In particular, Z] € €,(y,%), and hence, by
Lemma 1(b), 1 > "iTH; that is, n; = 1.
(¢). Now consider ad?(y). Note that:
(i) if n; =1, €,(y,9) = (Z%), and C?(y)(Zi) = 0 if \; = 0, and Zi =
A—%Cf(Z{) if \; #0.
(i) if n; =2, €u(y,4) = (Z3), and 02(’y)(Z%) =
(iii) if n; = 3, €, (y,4) = (2%, Z%), C2(y)(Z%) _0 and C?(y)(Z%) = 0.
Hence each of the basis elements of €,(y,4) belongs to either the kernel
or the image of C?(y). Since €, C {z € g|z, € B,_, €,(y,%)}, it follows that
¢, is the vector subspace sum ker(ad¢ (y)) + im(adg,, ( )). So for dimension

reasons, €, = ker(adgzu (v) ® im(adg‘;u (¥))- "
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Lemma 6.
(a) If y € g, one has €, C ker(ad(y)) + im(ad(y)),
(b) €, C Z(g) +1[g,9]-

Proof. (a). Suppose that y € g. With the above notation,

(1) = { 0 ; if Re(utr(ady) + A;) # 0,
i (Zi| 1> (ns+1)/2) 5 if Re(utr(ady) + Ag) = 0.

Suppose that Re(ptr(ady) + A;) = 0. If A\; =0, then:
(i) if n; =1, then C;(y)(Z%) = 0.
(ii) if n; > 2, then Zf = C;(y)(Z}_,), for all I > (n; +1)/2.
If X; # 0, then Z; = Ci(y)(x: Z4,) and Z{ = Ci(y)(x: Z}) — x4}y, fo
all 1 <1 <n; —1. In particular, Z € imC;(y), for all I > (n; + 1)/2
Hence each of the basis elements of €, (y,%) belongs to either the kernel
or the image of C;(y). Since €, C {z € g |z, € D;_, €,(y,%)}, it follows that
¢, is a subset of the vector subspace sum ker(ad(y)) + im(ad(y)).
(b). From (a), one has:

for

¢, C ﬂ ker(ad(y)) + @ im(ad(y))

YEg YEY

That is, €, C Z(g) + g, 9] n

Let K denote the Killing-Cartan form of €, ; this is the map K: €, x
€, — R defined by K(z,y) = tr(ade, (v) cade, (y): €, — €,).

Remark 2. If y € €, and {\; [i=1,...,7} are the eigenvalues of ad¢, (¥),
one has K(y,y) = >, nz)\ By Lemma 5 one has K(y,y) <0 and K(y,y) =
0 if and only if the map ad¢ (y) is identically zero.

Let n denote the max1ma1 nilpotent ideal of €,. Consider the radical
R(¢,) of €,. Recall that R(¢,) is the K -orthogonal complement of the derived
algebra [€,,¢,]. Let €, denote the K -orthogonal complement of €,,. Recall
that

(7) R(¢,) D Q:HJ_

Definition 2. For convenience, we introduce four sets:
(a) A= {xEQﬁM\adz()ZO},
(b) B= {x€€u|K(x x) = 0}.
(¢) D = @uec, imadg, (z),
(d) E=Ngee, ker adé (z)

I

Lemma 7. R(€,) =n, and n is metabelian.

Proof.  First notice that ¢, C BC ACncC ¢, . Indeed,

t={re¢,|K(xy) =0foralycc,}
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and so Qﬁ,f C B. Remark 2 gives B C A. Recall that n is the set of elements
x for which ade, (z): €, — €, is nilpotent [1]. So A C n. Equation (7) gives
nC CNL. So B=A=n= quL. In particular, n = A and so n is metabelian.

Now note that £ C A. Indeed, if x € FE, then for all y € ¢,,
x € ker adéu (y) and z € ker adéu (x+y). So

0=[z+ylr+yz]l =[x+ Yyl = [z,[y, 2] + [y, [y, 2]] = [, [y, z]]-

Thus adéu (z)(y)=0forallye €,. So z € A.

From Lemma 5, for all # € €,, kerad®(z) Nimad?®(z) = {0}. Hence
¢, =D®E. As EC A=n, we have E C R(¢,), from (7). Thus

(8) R(¢,) = (R(€,)ND) S E.

Note also that R(€,)ND C A. Indeed, it suffices to show that if z,y € €,, and
z = adéu (z)(y) € R(€,), then z € B. But

K(z,2) = K([z, [2,9]], 2) = K([z,9], [z, 2])-

Now [z, 2] € [€,, R(€,)] C €, . So K(z,2) = 0.
Since E C A and R(€,)ND C A, (8) gives R(€,) C A=n, and hence
by (7), R(€,) =n. .

Let s be a Levi subalgebra of €, .

Lemma 8. n is a characteristic ideal of g and s is a direct summand of g.

Proof.  As v is a characteristic ideal [1], and by Lemma 4, €, is a characteristic
ideal, so t N €, is one too. But n = v N ¢, since by [6, Theorem 3.8.1],
tN¢, = R(¢,), and by the previous Lemma R(C,) = n.

For all y € v, Lemma 6 and the fact that v is an ideal gives

§ C €, C kerad(y) +imad(y) C kerad(y) + .
Hence s C Zy(t) 4+ v. Thus, as s is semisimple,
s =[s,8] C [Zy(r) +1,Zy(r) + ] C[Z4(r), Zg(v)] + [v,t] C Zg(r) + [v, 1]

Taking repeated brackets of s with itself, and using the fact that v is solvable,
one obtains § C Zg4(v).

By the Malcev-Harish-Chandra Theorem, g has a Levi subalgebra &
such that s C & (See [6, Cor. 3.14.3]). Note that s = G N <, . Indeed, clearly
s C 6N ¢,. On the other hand, since & is a subalgebra and €, is an ideal of
g, 6N¢, is an ideal of &. So GN €, is a semisimple subalgebra. Thus, as s is
a maximal semisimple subalgebra of €,, s = GN¢,. In particular, s is an ideal
of &. As & is semisimple, s is a direct summand of &; that is, there is an ideal
s’ of & such that & is an internal direct sum of ideals & = s ® s’. Consider
the vector space direct sum t = ¢’ @ v. By construction t is an ideal of g. From
above, s C Z4(t). So we have an internal direct sum of ideals: g =5 @ t. u
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Remark 3. By Remark 2, K(z,2) <0 for all z € s, where K is the Killing—
Cartan form of €,. So, by the previous Lemma, the Killing—Cartan form of s is
negative semi-definite; that is, s is compact.

Returning to the statement of the theorem, note that with the exception
of (a)(ii), part (a) follows from Lemma 8, Remark 3, and Lemmas 7 and 6(b).
From Lemma 6(a), one has:

€, C [ ker(ad(2)) + €P im(ad(2)).

zen zen

That is, €, C Zy(n) + [n, g]. Hence n C Z,(n) + [n, g]. It follows that as n is an
ideal, by Lemma 8,

nCnnZg(n)+[n,g] = Z(n)+ [n,g.

Clearly Z(n) 4+ [n,g] C n. To see that Z(n) is an ideal of g, notice that as n is
an ideal of g, the Jacobi identity gives

[, [Z(n), gll = [9, [Z(n), n]] + [Z(n), [n, 6]] = 0,

and so [Z(n),g] C Z(n). So we have established (a)(ii).

Suppose that g is unimodular or that g = 0. One sees directly from
Lemma 3 that Z(g) C €,, and hence Z(g) C n. Notice that if g; is a compact
semisimple Lie algebra, then g; is the Lie algebra of a compact Lie group and
so the orbits of the adjoint action are bounded. Hence €,(g1) = g1. As g is
unimodular or 4 = 0, Lemma 3 implies that if g is a direct sum of ideals,
g = g1 D g2, then €, = €,(g1) ® €,(g2). In particular, if g, is compact
semisimple, g C €,, from which it follows that g; C s. Thus s is the maximal
compact semisimple direct summand of g.

Finally, suppose that g is not unimodular and px # 0. Let x € g with
T = —tr(ad(z)) # 0. Consider the Jordan form of the induced derivation
adg, (7): €, — €,. Suppose that A1, Ay are (not necessarily distinct) eigenvalues
of adg, () and for each ¢ = 1,2 let {Z] | 1 < j < n;} be linearly independent
vectors in €, ®g C with ad(z)(Z}) = A\iZ} + Z;_, for all j, where by definition
Zb = 0. We will show by induction on p = j + k that [Z},Z;] = 0 for all
7 <ni,k <ng. The claim is obviously true for p = 0. Suppose that it holds for
p =1. Then for p =1+ 1, the inductive hypothesis gives:

ad(z)[Z], Zp) = [ad(z) Z], Z7) + | Z}, ad(z) Z}))

9) = (A1 +X2)[ 2}, Z]).

As 7}, 7} € €, @ C, one has [Z], Z}] € €, ®r C. By Lemma 3, the eigenvalues
of adg,(z) all have real part equal to pu7. So Re(A1) = Re(\z) = p7 and
Re(A1 + Az) = 2u7 # pu7. So A1 + Az is not an eigenvalue of adg, (), and thus
(9) gives [Z},Z,f] = 0. This completes the induction. Thus €, is abelian. So
s =0 and n is abelian, as required. This completes the proof of the theorem. m
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Proof of the corollary. Part (a) follows immediately from Lemma 5(a), while
(c) follows immediately from the theorem.

(b) If g is nilpotent, then €, =n and by part (a)(ii) of the theorem,

¢, = Z(Q:u) + [Q:w gl = Z(Q:u) + [Z(Q:M) + [Q:u,g],g]
(10) =Z(€,) +[2(€), 8] + [y, 8], 0]

Now by part (a)(ii) of the theorem, Z(¢,) is an ideal of g, and so [Z(€,),g] C
Z(€,) and (10) gives €, = Z(€,) + [[€4, 9], 9]. Repeating this argument, one
has €, = Z(€,) + gF(¢,) for all k > 1, where g*(¢,) = [g,g" }(¢,)] and
9'(¢,) = [g,€,]. Thus, if g is nilpotent, €, = Z(&,); that is, €, is abelian.
(d) If g is the Lie algebra of a compact Lie group, the orbits of the
adjoint action of g are bounded and thus €, = g. Conversely, if €, = g, then
by the theorem, g = s @ n, where s is compact semisimple and n is metabelian.
In fact, by part (a)(ii) of the theorem, n = Z(n) + [n,g] = Z(n), and so n is
abelian. Hence g is the Lie algebra of a compact Lie group. ]

Example 1. The approximative centre of the following (solvable unimodular)
Lie algebra is nilpotent non-abelian:

g= (m,y,z,w | [IC,Z/] =z, [IC, Z] =Y, [y7 Z] = w)
Indeed, it is easy to see from Lemma 3 that €, = (y, z, w).

Example 2. Consider the standard filiform nilpotent Lie algebra (see [2]):

g= <$,y1, ) | [x7yz] = yi+1,Vi < ’I’L)

The approximative centre of g is abelian and strictly greater than the centre;
indeed, it is easy to see from Lemma 3 that €, = (y; |1 > (n+1)/2).

Example 3. Consider the Lie algebra g = R® x s0(3,R), where the action
of 50(3,R) on R3 is the standard linear one. Here g has a Levi subalgebra
which is compact and simple, but the approximative centre has no simple factor
(€, = R? )-

Remark 4. If a Lie algebra g has an ideal a which is the Lie algebra of a
compact Lie group, it doesn’t necessarily follow that a C €,, or that €, C a.
In Example 2, the ideal (y1,...,yn) is abelian but it is not contained in €,. In
Example 1, €, is not contained in the (maximal) abelian ideal (z, w).

Thanks. The author is very grateful to the referee, whose careful reading and
sensible suggestions improved the presentation of this paper.
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