The Approximative Centre of a Lie Algebra

Grant Cairns

Communicated by M. Cowling

Abstract. This paper examines the approximative centre of a Lie algebra; this is the set of elements which are not sent uniformly to infinity by the adjoint action of the underlying Lie group.

The centre $Z(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is the set of elements that are fixed by the adjoint action of the underlying Lie group. A natural generalization would be to consider the set of elements with *bounded* orbit under the adjoint action. It turns out that another useful notion is the set of elements which are not sent uniformly to infinity. More generally, one has:

Definition 1. If \mathfrak{g} is a finite dimensional real Lie algebra, and $\mu \in \mathbb{R}$, let $\mathfrak{C}_{\mu}(\mathfrak{g})$, or simply \mathfrak{C}_{μ} , denote the complement of the set of elements $X \in \mathfrak{g}$ for which there exists a neighbourhood $U \ni X$ and an element $Y \in \mathfrak{g}$ such that the map

$$(\exp t\mu.\operatorname{tr}(\operatorname{ad} Y))\exp\operatorname{ad}(t.Y)|_{U}\colon U\to\mathfrak{g}$$

tends uniformly to infinity as t goes to positive infinity.

When \mathfrak{g} is unimodular, \mathfrak{C}_{μ} is independent of μ and is called the *approximative centre* of \mathfrak{g} ; this notion is due to Etienne Ghys and was introduced in [4]. Some of the ideas presented below were developed in [3], but were not published. A further application for $\mu = 1$ is given in [5]. The present paper is devoted to the following:

Theorem. Let g be a finite dimensional real Lie algebra. Then:

- (a) $\mathfrak{C}_{\mu} = \mathfrak{s} \oplus \mathfrak{n}$, where \mathfrak{s} is a compact semisimple direct summand of \mathfrak{g} , and \mathfrak{n} is a nilpotent characteristic ideal of \mathfrak{g} . Moreover:
 - (i) n is metabelian,
 - (ii) $Z(\mathfrak{n}) (= Z(\mathfrak{C}_{\mu}))$ is an ideal of \mathfrak{g} and $\mathfrak{n} = Z(\mathfrak{n}) + [\mathfrak{n}, \mathfrak{g}]$,
 - (iii) $\mathfrak{C}_{\mu} \subset Z(\mathfrak{g}) + [\mathfrak{g}, \mathfrak{g}].$
- (b) If \mathfrak{g} is unimodular or $\mu = 0$, then \mathfrak{s} is the maximal compact semisimple direct summand of \mathfrak{g} , and $Z(\mathfrak{g}) \subset \mathfrak{n}$.
- (c) If g is not unimodular and $\mu \neq 0$, then $\mathfrak{s} = 0$ and \mathfrak{n} is abelian.

Corollary. With the above notation, one has:

- (a) \mathfrak{C}_{μ} is unimodular,
- (b) If \mathfrak{g} is nilpotent, \mathfrak{C}_{μ} is abelian,
- (c) If \mathfrak{g} is solvable, \mathfrak{C}_{μ} is metabelian,
- (d) $\mathfrak{C}_{\mu} = \mathfrak{g}$ if and only if \mathfrak{g} is the Lie algebra of a compact Lie group.

Following the proofs of the theorem and its corollary, the paper concludes with 3 examples.

Notation. In the following, if \mathfrak{k} is a subalgebra of \mathfrak{g} , then

- (a) $R(\mathfrak{k})$ denotes the radical of \mathfrak{k} , and we write $R(\mathfrak{g}) = \mathfrak{r}$,
- (b) $Z(\mathfrak{k})$ is the centre of \mathfrak{k} , and $Z_{\mathfrak{g}}(\mathfrak{k})$ is the centralizer of \mathfrak{k} in \mathfrak{g} .

Proof of the theorem. For convenience, throughout this proof, we will use the l_1 norm $\|(z_1,\ldots,z_n)\|=\sum_{i=1}^n|z_i|$ on \mathbb{C}^n , rather than the Euclidean norm. We begin by studying the automorphism $\exp(t.C)$ of \mathbb{C}^n , where C is the following Jordan form:

$$C = \begin{pmatrix} \lambda & & & 0 \\ 1 & \lambda & & & \\ & \ddots & \ddots & & \\ & & 1 & \lambda & \\ 0 & & & 1 & \lambda \end{pmatrix}.$$

First, note that

(*)
$$\exp t.C = \exp t.\lambda \begin{pmatrix} 1 & & & 0 \\ t & 1 & & \\ t^2/2! & t & 1 & \\ \vdots & \ddots & \ddots & \ddots \\ t^{n-1}/(n-1)! & \dots & t^2/2! & t & 1 \end{pmatrix}.$$

Lemma 1. Let $T \in \mathbb{R}$.

(a) If the real part of $\lambda + T$ is positive (or negative), then for all $x \in \mathbb{C}^n \setminus \{0\}$, there exists a neighbourhood U of x in \mathbb{C}^n such that

$$(\exp t.T) \exp t.C|_U: U \to \mathbb{C}^n$$

tends uniformly to infinity as $t \to +\infty$ (or $t \to -\infty$).

- (b) If $\lambda + T$ is imaginary, then for all $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$, the following conditions are equivalent:
 - (i) there exists a neighbourhood U of x in \mathbb{C}^n such that

$$(\exp t.T) \exp t.C|_U: U \to \mathbb{C}^n$$

tends uniformly to infinity when t tends to infinity,

(ii) there exists $1 \le l < \frac{n+1}{2}$ such that $x_l \ne 0$.

Proof. (a) Suppose $\lambda + T > 0$. Setting $A_t = (\exp t.T) \exp t.C$, one has from (*):

$$(A_t)^{-1} = (\exp -t \cdot (\lambda + T)) \begin{pmatrix} 1 & & & 0 \\ -t & 1 & & \\ t^2/2! & -t & 1 & \\ \vdots & \ddots & \ddots & \ddots \\ (-t)^{n-1}/(n-1)! & \dots & t^2/2! & -t & 1 \end{pmatrix}.$$

Let $x \in \mathbb{C}^n \setminus \{0\}$, and 0 < K < 1. Let U be a relatively compact neighbourhood of x in \mathbb{C}^n which doesn't contain zero in its closure.

Let B>0. Clearly, there exists $m\in\mathbb{N}$ such that $\|z\|/K^m>B$ for all $z\in U$. One has

$$||z|| = ||A_t^{-1} \circ A_t(z)|| \le ||A_t^{-1}|| \cdot ||A_t(z)||$$

and so $||A_t(z)|| \ge ||z||/||A_t^{-1}||$. There exists $t_0 > 0$ such that for all $t \ge t_0$ the operator norm $||A_t^{-1}||$ of the automorphism A_t^{-1} is less than K. Hence, for all $t > t_0$,

$$||A_{mt}(z)|| \ge ||z||/||A_{mt}^{-1}|| = ||z||/||A_{t}^{-m}|| \ge ||z||/||A_{t}^{-1}||^{m} > ||z||/K^{m} > B.$$

Thus, $||A_s(z)|| > B$ for all $z \in U$ and $s > m.t_0$. The case where $\text{Re}(\lambda + T) < 0$ is analogous.

(b) First suppose that $x_l = 0$ for all $1 \leq l < (n+1)/2$. We will show that there does not exist any neighbourhood U of x for which the map $(\exp t.T) \exp t.C|_U: U \to \mathbb{C}^n$ tends uniformly to infinity when t tends to infinity. Let U be a relatively compact neighbourhood of x. It suffices to show that there exists N > 0 such that, for all sufficiently large t > 0, there exists $z_t \in U$ such that $\|(\exp t.T) \exp t.C(z_t)\| < N$.

Let k be the smallest natural number such that $x_k \neq 0$. By hypothesis, $2k \geq n+1$. For all sufficiently large t>0 we will construct an element z_t of U of the form $z_t=(\epsilon_1(t),\ldots,\epsilon_{k-1}(t),x_k,x_{k+1},\ldots,x_n)$. First note that if $z=(\epsilon_1,\ldots,\epsilon_{k-1},x_k,\ldots,x_n)\in\mathbb{C}^n$, then, by (*), one has

$$\|(\exp t.T) \exp tC(z)\| = |\epsilon_1| + |\epsilon_1 t + \epsilon_2| + \dots + |\epsilon_1 \frac{t^{k-1}}{(k-1)!} + \dots + \epsilon_{k-1} t + x_k| + |\epsilon_1 \frac{t^k}{k!} + \dots + \epsilon_{k-1} \frac{t^2}{2} + x_k t + x_{k+1}| + \dots + |\epsilon_1 \frac{t^{n-1}}{(n-1)!} + \dots + x_n|.$$

We choose the (k-1) numbers ϵ_j such that the last (n-k) terms of the preceding expression are zero. To do this, consider the following equation:

$$(1) \qquad \begin{pmatrix} \frac{t^k}{k!} & \frac{t^2}{2} \\ \vdots & \ddots & \vdots \\ \frac{t^{n-1}}{(n-1)!} & \frac{t^{n+1-k}}{(n+1-k)!} \end{pmatrix} \begin{pmatrix} \epsilon_1(t) \\ \vdots \\ \epsilon_{k-1}(t) \end{pmatrix} = \begin{pmatrix} -x_k t - x_{k+1} \\ \vdots \\ -x_k \frac{t^{n-k}}{(n-k)!} - \dots - x_n \end{pmatrix}$$

We have (k-1) variables (the $\epsilon_j(t)$) and (n-k) equations. Because $2k \geq n+1$, one has $n-k \leq k-1$. In order to solve equation (1), set $\epsilon_j(t)=0$ for all $n-k < j \leq k-1$, and solve the following equation:

$$(2) \qquad \begin{pmatrix} \frac{t^k}{k!} & \frac{t^{2k-n+1}}{(2k-n+1)!} \\ & \ddots & \\ \frac{t^{n-1}}{(n-1)!} & \frac{t^k}{k!} \end{pmatrix} \begin{pmatrix} \epsilon_1(t) \\ \vdots \\ \epsilon_{n-k}(t) \end{pmatrix} = \begin{pmatrix} -x_k t - x_{k+1} \\ \vdots \\ -x_k \frac{t^{n-k}}{(n-k)!} - \dots - x_n \end{pmatrix}$$

This equation possesses a unique solution $(\epsilon_1(t), \ldots, \epsilon_{n-k}(t))$ since the coefficient matrix is invertible for all $1 \leq 2k - n + 1 \leq k \leq n$ and t > 0. Let F denote the coefficient matrix of the left hand side of (2), and let F_j denote the matrix obtained by replacing the j^{th} column of F by the right hand side of (2). By Cramer's method, $\epsilon_j(t) = \det F_j/\det F$, for all $1 \leq j \leq n - k$. Notice that $\det F = at^{k(n-k)}$ for some non-zero real a, while $\det F_j$ is a polynomial in t of degree k(n-k) - k + j which is divisible by $t^{k(n-k)-n+j}$. Hence the solution $(\epsilon_1(t), \ldots, \epsilon_{n-k}(t))$ of equation (2) has the following form; for all $1 \leq j \leq k-1$

(3)
$$\epsilon_j(t) = \frac{a_{j1}}{t^{k-j}} + \frac{a_{j2}}{t^{k-j+1}} + \dots + \frac{a_{j(n-k+1)}}{t^{n-j}}$$

where the coefficients a_{jl} are constants depending only on x_k, \ldots, x_n . Note that as $2k \geq n+1$, one has $k-j \geq 1$. Let

(4)
$$z_t = (\epsilon_1(t), \dots, \epsilon_{k-1}(t), x_k, \dots, x_n) \in \mathbb{C}^n.$$

By (3), it is clear that $z_t \in U$ for all sufficiently large t. By construction, one has

$$\|(\exp t.T) \exp tC(z_t)\| = |\epsilon_1(t)| + |t\epsilon_1(t) + \epsilon_2| + \dots + |\epsilon_1(t)| + \frac{t^{k-1}}{(k-1)!} + \dots + \epsilon_{n-k}(t)t^{2k-n} + x_k|.$$

But, by (3), each of the terms of the preceding expression is bounded as $t \to \infty$. In other words, there exists N > 0 such that $\|(\exp t.T) \exp tC(z_t)\| < N$ for all sufficiently large t.

Conversely, we will show that if there exists $1 \leq l < (n+1)/2$ such that $x_l \neq 0$, then there exists a neighbourhood U of x such that the map $(\exp t.T) \exp t.C|_U: U \to \mathbb{C}^n$ tends uniformly to infinity as $t \to \infty$. Let k again denote the smallest natural number such that $x_k \neq 0$. By hypothesis, 2k < n+1. Let U be a relatively compact neighbourhood of x in \mathbb{C}^n such that for all $z = (z_1, \ldots, z_n) \in U$ one has $z_k \neq 0$. One has, for all t > 0,

$$\|(\exp t.T) \exp t.C(z)\| = \|z_1\| + \|z_1t + z_2\| + \dots + \|\frac{t^{n-1}}{(n-1)!}z_1 + \dots + z_n\|.$$

Our strategy is consider only the k last terms, and to eliminate the terms z_j for j < k. Set $T_j(z_1, \ldots, z_j) = \|\frac{t^{j-1}}{(j-1)!}z_1 + \frac{t^{j-2}}{(j-2)!}z_2 + \cdots + z_j\|$. Note that

$$T_j(z_1,\ldots,z_j)+T_{j+1}(z_1,\ldots,z_{j+1})=\frac{t^{j-1}}{(j-1)!}\left(\|z_1+a\|+\frac{t}{j}\|z_1+b\|\right),$$

where

$$a = \frac{(j-1)!}{t^{j-1}} \left(\frac{t^{j-2}}{(j-2)!} z_2 + \dots + z_j \right),$$

$$b = \frac{j!}{t^j} \left(\frac{t^{j-1}}{(j-1)!} z_2 + \dots + z_{j+1} \right).$$

For t > j one has $||z_1 + a|| + \frac{t}{i}||z_1 + b|| \ge ||b - a||$ and so

$$T_{j}(z_{1},...,z_{j}) + T_{j+1}(z_{1},...,z_{j+1}) \ge \frac{t^{j-1}}{(j-1)!} ||b-a||$$

$$= ||\frac{t^{j-2}}{(j-1)!} z_{2} + \frac{t^{j-3}}{(j-2)!} 2z_{3} + \dots + \frac{t^{j-k}}{(j-k+1)!} (k-1)z_{k} + \dots + \frac{j}{t} z_{j+1}||.$$

Thus,

(5)
$$T_j(z_1,\ldots,z_j) + T_{j+1}(z_1,\ldots,z_{j+1}) \ge \frac{1}{t} T_j(z_2,2z_3,\ldots,jz_{j+1}).$$

From above,

$$\|(\exp t.T) \exp t.C(z)\| = \sum_{j=1}^{n} T_j(z_1, \dots, z_j) \ge \sum_{j=n-k+1}^{n} T_j(z_1, \dots, z_j).$$

Hence, by (5), for all t > n,

$$\|(\exp t.T) \exp t.C(z)\| \ge \frac{1}{2t} \sum_{j=n-k+1}^{n-1} T_j(z_2, 2z_3, \dots, jz_{j+1})$$

$$\ge \frac{1}{2^2 t^2} \sum_{j=n-k+1}^{n-2} T_j(2z_3, 3!z_4, \dots, j(j+1)z_{j+2})$$

$$\vdots$$

$$\ge \frac{1}{2^{k-1} t^{k-1}} T_{n-k+1}((k-1)!z_k, \frac{k!}{1!} z_{k+1}, \dots, \frac{(n-1)!}{(n-k)!} z_n)$$

$$= \frac{1}{2^{k-1}} \left\| \frac{t^{n-2k+1}(k-1)!}{(n-k)!} z_k + \frac{t^{n-2k}k!}{(n-k-1)!1!} z_{k+1} + \dots + \frac{(n-1)!}{(n-k)!t^{k-1}} z_n \right\|.$$

So, as $n-2k+1 \ge 1$ and $z_k \ne 0$ for all $z \in U$, it is clear that for all M > 0 there exists N > 0 such that $\|(\exp t.T) \exp t.C(z)\| > M$ for all t > N and $z \in U$. This establishes Lemma 1.

Let y be an element of \mathfrak{g} . Let M_y denote the Jordan form of the linear endomorphism of \mathbb{C}^n determined by $\mathrm{ad}(y)$, and denote the Jordan blocks of M_y by $C_1(y),\ldots,C_r(y)$, and the corresponding eigenvalues $\lambda_1,\ldots,\lambda_r$. If $x\in\mathfrak{g}$, we write $x_y=x^1\oplus\cdots\oplus x^r\in\mathbb{C}^n$ where $x^i=(x_1^i,\ldots,x_{n_i}^i)$ are the components of x with respect to the decomposition of \mathbb{C}^n determined by the Jordan form M_y ; one has $M_y(x_y)=C_1(y)(x^1)\oplus\cdots\oplus C_r(y)(x^r)$.

210 CAIRNS

Lemma 2. Let $x, y \in \mathfrak{g}$. The following two conditions are equivalent:

(a) there exists a neighbourhood U of x in \mathfrak{g} such that

$$(\exp t\mu.\operatorname{tr}(\operatorname{ad} y))\exp\operatorname{ad}(t.y)|_{U}\colon U\to\mathfrak{g}$$

tends uniformly to infinity as $t \to \infty$,

(b) there exists $1 \leq i \leq r$ and a neighbourhood U_i of x^i in \mathbb{C}^{n_i} such that

$$(\exp t\mu.\operatorname{tr}(\operatorname{ad} y))\exp(t.C_i(y))|_{U_i}:U_i\to\mathbb{C}^{n_i}$$

tends uniformly to infinity as $t \to \infty$.

Proof. (a) follows immediately from (b) because

$$\|\exp \operatorname{ad}(t.y)(z)\| = \sum_{i=1}^{r} \|\exp \operatorname{ad}(t.C_i(y))(z^i)\|$$

for all $z \in \mathbb{C}^n$. To see the converse, notice that if

$$(\exp t\mu.\operatorname{tr}(\operatorname{ad} y))\exp(t.C_i(y))|_{U_i}:U_i\to\mathbb{C}^{n_i}$$

does not tend uniformly to infinity as $t \to \infty$, then the point $z_t \in \mathbb{C}^{n_i}$ given by (4), in the proof of Lemma 1, has real coordinates; the required result follows easily.

Set

$$\mathfrak{C}_{\mu}(y,i) = \{ x^i \in \mathbb{C}^{n_i} \mid x^i \equiv 0, \text{ if } \operatorname{Re}(\mu \operatorname{tr}(\operatorname{ad} y) + \lambda_i) \neq 0, \text{ and} \\ x^i_l = 0 \text{ for all } 1 \leq l < (n_i + 1)/2, \text{ if } \operatorname{Re}(\mu \operatorname{tr}(\operatorname{ad} y) + \lambda_i) = 0 \}.$$

From Lemmas 1 and 2, one has:

Lemma 3. With the notation introduced above, the approximative centre of \mathfrak{g} is

$$\mathfrak{C}_{\mu} = \bigcap_{y \in \mathfrak{g}} \{ x \in \mathfrak{g} \mid x_y \in \bigoplus_{i=1}^r \mathfrak{C}_{\mu}(y, i) \}.$$

In particular, \mathfrak{C}_{μ} is a vector space. In fact, we have:

Lemma 4. \mathfrak{C}_{μ} is a characteristic ideal of \mathfrak{g} .

Proof. Let $\phi: \mathfrak{g} \to \mathfrak{g}$ be a derivation and consider the automorphism $\Phi_s = e^{s\phi}$ of \mathfrak{g} . Note that \mathfrak{C}_{μ} is Φ_s -invariant. Indeed, if x and y belong to \mathfrak{g} , then

$$\Phi_s(\exp(t.\operatorname{ad} y)(x)) = \exp(t.\operatorname{ad}(\Phi_s y))(\Phi_s x)$$

and hence

$$\Phi_s(\exp \mu \operatorname{tr}(\operatorname{ad}(t.y)) \exp(t.\operatorname{ad} y)(x)) = (\exp \mu \operatorname{tr}(\operatorname{ad}(t.\Phi_s y)) \exp(t.\operatorname{ad}(\Phi_s y))(\Phi_s x).$$

It follows that if x is an element of \mathfrak{C}_{μ} , then $\Phi_s x$ is too, for all $s \in \mathbb{R}$. Differentiating with respect to s, one has that \mathfrak{C}_{μ} is invariant under ϕ .

Remark 1. Let $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ denote the complexification of \mathfrak{g} . One can define the approximative centre $\mathfrak{C}_{\mu}(\mathfrak{g}_{\mathbb{C}})$ of $\mathfrak{g}_{\mathbb{C}}$ is an analogous manner to that of \mathfrak{g} . It is clear from the above that $\mathfrak{C}_{\mu}(\mathfrak{g}_{\mathbb{C}})$ is an ideal of $\mathfrak{g}_{\mathbb{C}}$. However, it is not true in general that $\mathfrak{C}_{\mu}(\mathfrak{g}_{\mathbb{C}}) = \mathfrak{C}_{\mu} \otimes_{\mathbb{R}} \mathbb{C}$. Nevertheless, $\mathfrak{C}_{\mu} \otimes_{\mathbb{R}} \mathbb{C}$ is clearly an ideal of $\mathfrak{g}_{\mathbb{C}}$. Thus, if $y \in \mathfrak{C}_{\mu}$ and $z \in \mathfrak{g}_{\mathbb{C}}$, then $\mathrm{ad}(y)(z) \in \mathfrak{C}_{\mu} \otimes_{\mathbb{R}} \mathbb{C}$ and in particular, $C_i(y)(z) \in \mathfrak{C}_{\mu}(y,i)$, for all i.

If $y \in \mathfrak{C}_{\mu}$, let $\mathrm{ad}_{\mathfrak{C}_{\mu}}(y) \colon \mathfrak{C}_{\mu} \to \mathfrak{C}_{\mu}$ denote the restriction of $\mathrm{ad}(y)$ to \mathfrak{C}_{μ} .

Lemma 5. If $y \in \mathfrak{C}_{\mu}$, then:

- (a) the eigenvalues $\lambda_1, \ldots, \lambda_r$ of $ad(y): \mathfrak{g} \to \mathfrak{g}$ are all imaginary, whence tr(ad y) = 0,
- (b) for all i, one has:
 - (i) if $\lambda_i = 0$, then the corresponding Jordan block has size at most 3; that is, $n_i \leq 3$,
 - (ii) if $\lambda_i \neq 0$, then the corresponding Jordan block has size 1; that is, $n_i = 1$,
- (c) $\mathfrak{C}_{\mu} = \ker(\operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(y)) \oplus \operatorname{im}(\operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(y)),$

Proof. First note that y is an eigenvector of ad(y) with eigenvalue 0, and so $Re(\mu \operatorname{tr}(ad y)) = 0$, by Lemma 3. Hence $\mu \operatorname{tr}(ad y) = 0$. Fix i and let $\{Z_j^i \mid 1 \leq j \leq n_i\}$ be the canonical basis of \mathbb{C}^{n_i} . Using the notation from above, one has

(6)
$$C_{i}(y)(Z_{j}^{i}) = \begin{cases} \lambda_{i}Z_{j}^{i} + Z_{j+1}^{i} & ; \text{ if } j < n_{i}, \\ \lambda_{i}Z_{j}^{i} & ; \text{ if } j = n_{i}. \end{cases}$$

- (a). If $\operatorname{Re}(\lambda_i) \neq 0$, then $\operatorname{Re}(\lambda_i + \mu \operatorname{tr}(\operatorname{ad} y)) \neq 0$, since $\mu \operatorname{tr}(\operatorname{ad} y) = 0$. By Lemmas 1 and 2, one has $Z_{n_i}^i \notin \mathfrak{C}_{\mu}(y,i)$, but by (6) and the previous remark, one has $Z_{n_i}^i = \frac{1}{\lambda_i} C_i(y)(Z_{n_i}^i) \in \mathfrak{C}_{\mu}(y,i)$, which is a contradiction. Thus $\operatorname{Re}(\lambda_i) = 0$, for all i.
- (b)(i). If $\lambda_i=0$, then by the previous remark, $Z_2^i=C_i(y)(Z_1^i)\in \mathfrak{C}_{\mu}(y,i)$. Hence, by Lemma 1(b), $2\geq \frac{n_i+1}{2}$; that is, $n_i\leq 3$.
 - (b)(ii). If $\lambda_i \neq 0$, then by the previous remark,

$$Z_{n_i}^i = \frac{1}{\lambda_i} C_i(y)(Z_{n_i}^i) \in \mathfrak{C}_{\mu}(y, i)$$

and $Z_j^i = \frac{1}{\lambda_i}(C_i(y)(Z_j^i) - Z_{j+1}^i)$ for all $1 \leq j \leq n_i - 1$. So by induction, $Z_j^i \in \mathfrak{C}_{\mu}(y,i)$ for all $1 \leq j \leq n_i$. In particular, $Z_1^i \in \mathfrak{C}_{\mu}(y,i)$, and hence, by Lemma 1(b), $1 \geq \frac{n_i+1}{2}$; that is, $n_i = 1$.

- (c). Now consider $ad^2(y)$. Note that:
- (i) if $n_i = 1$, $\mathfrak{C}_{\mu}(y, i) = \langle Z_1^i \rangle$, and $C_i^2(y)(Z_1^i) = 0$ if $\lambda_i = 0$, and $Z_1^i = \frac{1}{\lambda_i^2} C_i^2(Z_1^i)$ if $\lambda_i \neq 0$.
- (ii) if $n_i = 2$, $\mathfrak{C}_{\mu}(y, i) = \langle Z_2^i \rangle$, and $C_i^2(y)(Z_2^i) = 0$.
- (iii) if $n_i = 3$, $\mathfrak{C}_{\mu}(y, i) = \langle Z_2^i, Z_3^i \rangle$, $C_i^2(y)(Z_2^i) = 0$ and $C_i^2(y)(Z_3^i) = 0$.

Hence each of the basis elements of $\mathfrak{C}_{\mu}(y,i)$ belongs to either the kernel or the image of $C_i^2(y)$. Since $\mathfrak{C}_{\mu} \subset \{x \in \mathfrak{g} \mid x_y \in \bigoplus_{i=1}^r \mathfrak{C}_{\mu}(y,i)\}$, it follows that \mathfrak{C}_{μ} is the vector subspace sum $\ker(\operatorname{ad}_{\mathfrak{C}_{\mu}}^2(y)) + \operatorname{im}(\operatorname{ad}_{\mathfrak{C}_{\mu}}^2(y))$. So for dimension reasons, $\mathfrak{C}_{\mu} = \ker(\operatorname{ad}_{\mathfrak{C}_{\mu}}^2(y)) \oplus \operatorname{im}(\operatorname{ad}_{\mathfrak{C}_{\mu}}^2(y))$.

212 CAIRNS

Lemma 6.

- (a) If $y \in \mathfrak{g}$, one has $\mathfrak{C}_{\mu} \subset \ker(\operatorname{ad}(y)) + \operatorname{im}(\operatorname{ad}(y))$,
- (b) $\mathfrak{C}_{\mu} \subset Z(\mathfrak{g}) + [\mathfrak{g}, \mathfrak{g}].$

Proof. (a). Suppose that $y \in \mathfrak{g}$. With the above notation,

$$\mathfrak{C}_{\mu}(y,i) = \begin{cases} 0 & ; \text{ if } \operatorname{Re}(\mu \operatorname{tr}(\operatorname{ad} y) + \lambda_i) \neq 0, \\ \langle Z_l^i \mid l \geq (n_i + 1)/2 \rangle & ; \text{ if } \operatorname{Re}(\mu \operatorname{tr}(\operatorname{ad} y) + \lambda_i) = 0. \end{cases}$$

Suppose that $\operatorname{Re}(\mu\operatorname{tr}(\operatorname{ad} y) + \lambda_i) = 0$. If $\lambda_i = 0$, then:

- (i) if $n_i = 1$, then $C_i(y)(Z_1^i) = 0$.
- (ii) if $n_i \geq 2$, then $Z_l^i = C_i(y)(Z_{l-1}^i)$, for all $l \geq (n_i + 1)/2$.

If $\lambda_i \neq 0$, then $Z_{n_i}^i = C_i(y)(\frac{1}{\lambda_i}Z_{n_i}^i)$ and $Z_l^i = C_i(y)(\frac{1}{\lambda_i}Z_l^i) - \frac{1}{\lambda_i}Z_{l+1}^i$, for all $1 \leq l \leq n_i - 1$. In particular, $Z_l^i \in \operatorname{im} C_i(y)$, for all $l \geq (n_i + 1)/2$.

Hence each of the basis elements of $\mathfrak{C}_{\mu}(y,i)$ belongs to either the kernel or the image of $C_i(y)$. Since $\mathfrak{C}_{\mu} \subset \{x \in \mathfrak{g} \mid x_y \in \bigoplus_{i=1}^r \mathfrak{C}_{\mu}(y,i)\}$, it follows that \mathfrak{C}_{μ} is a subset of the vector subspace sum $\ker(\operatorname{ad}(y)) + \operatorname{im}(\operatorname{ad}(y))$.

(b). From (a), one has:

$$\mathfrak{C}_{\mu} \subset \bigcap_{y \in \mathfrak{g}} \ker(\operatorname{ad}(y)) + \bigoplus_{y \in \mathfrak{g}} \operatorname{im}(\operatorname{ad}(y)).$$

That is, $\mathfrak{C}_{\mu} \subset Z(\mathfrak{g}) + [\mathfrak{g}, \mathfrak{g}].$

Let K denote the Killing–Cartan form of \mathfrak{C}_{μ} ; this is the map $K \colon \mathfrak{C}_{\mu} \times \mathfrak{C}_{\mu} \to \mathbb{R}$ defined by $K(x,y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{C}_{\mu}}(x) \circ \operatorname{ad}_{\mathfrak{C}_{\mu}}(y) \colon \mathfrak{C}_{\mu} \to \mathfrak{C}_{\mu})$.

Remark 2. If $y \in \mathfrak{C}_{\mu}$ and $\{\lambda_i \mid i=1,\ldots,r\}$ are the eigenvalues of $\mathrm{ad}_{\mathfrak{C}_{\mu}}(y)$, one has $K(y,y) = \sum_{i=1}^r n_i \lambda_i^2$. By Lemma 5, one has $K(y,y) \leq 0$ and K(y,y) = 0 if and only if the map $\mathrm{ad}_{\mathfrak{C}_{\mu}}^2(y)$ is identically zero.

Let $\mathfrak n$ denote the maximal nilpotent ideal of $\mathfrak C_\mu$. Consider the radical $R(\mathfrak C_\mu)$ of $\mathfrak C_\mu$. Recall that $R(\mathfrak C_\mu)$ is the K-orthogonal complement of the derived algebra $[\mathfrak C_\mu,\mathfrak C_\mu]$. Let $\mathfrak C_\mu^\perp$ denote the K-orthogonal complement of $\mathfrak C_\mu$. Recall that

(7)
$$R(\mathfrak{C}_{\mu}) \supset \mathfrak{C}_{\mu}^{\perp} \supset \mathfrak{n}.$$

Definition 2. For convenience, we introduce four sets:

- (a) $A = \{x \in \mathfrak{C}_{\mu} \mid \operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(x) \equiv 0\},$
- (b) $B = \{x \in \mathfrak{C}_{\mu} \mid K(x, x) = 0\}.$
- (c) $D = \bigoplus_{x \in \mathfrak{C}_{\mu}} \operatorname{im} \operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(x),$
- (d) $E = \bigcap_{x \in \mathfrak{C}_{\mu}} \ker \operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(x)$,

Lemma 7. $R(\mathfrak{C}_{\mu}) = \mathfrak{n}$, and \mathfrak{n} is metabelian.

Proof. First notice that $\mathfrak{C}_{\mu}^{\perp} \subset B \subset A \subset \mathfrak{n} \subset \mathfrak{C}_{\mu}^{\perp}$. Indeed,

$$\mathfrak{C}_{\mu}^{\perp} = \{ x \in \mathfrak{C}_{\mu} \mid K(x, y) = 0 \text{ for all } y \in \mathfrak{C}_{\mu} \}$$

and so $\mathfrak{C}_{\mu}^{\perp} \subset B$. Remark 2 gives $B \subset A$. Recall that \mathfrak{n} is the set of elements x for which $\mathrm{ad}_{\mathfrak{C}_{\mu}}(x) \colon \mathfrak{C}_{\mu} \to \mathfrak{C}_{\mu}$ is nilpotent [1]. So $A \subset \mathfrak{n}$. Equation (7) gives $\mathfrak{n} \subset \mathfrak{C}_{\mu}^{\perp}$. So $B = A = \mathfrak{n} = \mathfrak{C}_{\mu}^{\perp}$. In particular, $\mathfrak{n} = A$ and so \mathfrak{n} is metabelian.

Now note that $E\subset A$. Indeed, if $x\in E$, then for all $y\in \mathfrak{C}_{\mu}$, $x\in\ker\operatorname{ad}^2_{\mathfrak{C}_{\mu}}(y)$ and $x\in\ker\operatorname{ad}^2_{\mathfrak{C}_{\mu}}(x+y)$. So

$$0 = [x + y, [x + y, x]] = [x + y, [y, x]] = [x, [y, x]] + [y, [y, x]] = [x, [y, x]].$$

Thus $\operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(x)(y) = 0$ for all $y \in \mathfrak{C}_{\mu}$. So $x \in A$.

From Lemma 5, for all $x \in \mathfrak{C}_{\mu}$, $\ker \operatorname{ad}^2(x) \cap \operatorname{im} \operatorname{ad}^2(x) = \{0\}$. Hence $\mathfrak{C}_{\mu} = D \oplus E$. As $E \subset A = \mathfrak{n}$, we have $E \subset R(\mathfrak{C}_{\mu})$, from (7). Thus

(8)
$$R(\mathfrak{C}_{\mu}) = (R(\mathfrak{C}_{\mu}) \cap D) \oplus E.$$

Note also that $R(\mathfrak{C}_{\mu}) \cap D \subset A$. Indeed, it suffices to show that if $x, y \in \mathfrak{C}_{\mu}$, and $z = \operatorname{ad}_{\mathfrak{C}_{\mu}}^{2}(x)(y) \in R(\mathfrak{C}_{\mu})$, then $z \in B$. But

$$K(z,z) = K([x,[x,y]],z) = K([x,y],[x,z]).$$

Now $[x, z] \in [\mathfrak{C}_{\mu}, R(\mathfrak{C}_{\mu})] \subset \mathfrak{C}_{\mu}^{\perp}$. So K(z, z) = 0.

Since $E \subset A$ and $R(\mathfrak{C}_{\mu}) \cap D \subset A$, (8) gives $R(\mathfrak{C}_{\mu}) \subset A = \mathfrak{n}$, and hence by (7), $R(\mathfrak{C}_{\mu}) = \mathfrak{n}$.

Let \mathfrak{s} be a Levi subalgebra of \mathfrak{C}_{μ} .

Lemma 8. $\mathfrak n$ is a characteristic ideal of $\mathfrak g$ and $\mathfrak s$ is a direct summand of $\mathfrak g$.

Proof. As \mathfrak{r} is a characteristic ideal [1], and by Lemma 4, \mathfrak{C}_{μ} is a characteristic ideal, so $\mathfrak{r} \cap \mathfrak{C}_{\mu}$ is one too. But $\mathfrak{n} = \mathfrak{r} \cap \mathfrak{C}_{\mu}$ since by [6, Theorem 3.8.1], $\mathfrak{r} \cap \mathfrak{C}_{\mu} = R(\mathfrak{C}_{\mu})$, and by the previous Lemma $R(\mathfrak{C}_{\mu}) = \mathfrak{n}$.

For all $y \in \mathfrak{r}$, Lemma 6 and the fact that \mathfrak{r} is an ideal gives

$$\mathfrak{s} \subset \mathfrak{C}_{\mu} \subset \ker \operatorname{ad}(y) + \operatorname{im} \operatorname{ad}(y) \subset \ker \operatorname{ad}(y) + \mathfrak{r}.$$

Hence $\mathfrak{s} \subset Z_{\mathfrak{g}}(\mathfrak{r}) + \mathfrak{r}$. Thus, as \mathfrak{s} is semisimple,

$$\mathfrak{s} = [\mathfrak{s},\mathfrak{s}] \subset [Z_{\mathfrak{g}}(\mathfrak{r}) + \mathfrak{r}, Z_{\mathfrak{g}}(\mathfrak{r}) + \mathfrak{r}] \subset [Z_{\mathfrak{g}}(\mathfrak{r}), Z_{\mathfrak{g}}(\mathfrak{r})] + [\mathfrak{r},\mathfrak{r}] \subset Z_{\mathfrak{g}}(\mathfrak{r}) + [\mathfrak{r},\mathfrak{r}].$$

Taking repeated brackets of $\mathfrak s$ with itself, and using the fact that $\mathfrak r$ is solvable, one obtains $\mathfrak s \subset Z_{\mathfrak g}(\mathfrak r)$.

By the Malcev-Harish-Chandra Theorem, \mathfrak{g} has a Levi subalgebra \mathfrak{S} such that $\mathfrak{s} \subset \mathfrak{S}$ (See [6, Cor. 3.14.3]). Note that $\mathfrak{s} = \mathfrak{S} \cap \mathfrak{C}_{\mu}$. Indeed, clearly $\mathfrak{s} \subset \mathfrak{S} \cap \mathfrak{C}_{\mu}$. On the other hand, since \mathfrak{S} is a subalgebra and \mathfrak{C}_{μ} is an ideal of \mathfrak{g} , $\mathfrak{S} \cap \mathfrak{C}_{\mu}$ is an ideal of \mathfrak{S} . So $\mathfrak{S} \cap \mathfrak{C}_{\mu}$ is a semisimple subalgebra. Thus, as \mathfrak{s} is a maximal semisimple subalgebra of \mathfrak{C}_{μ} , $\mathfrak{s} = \mathfrak{S} \cap \mathfrak{C}_{\mu}$. In particular, \mathfrak{s} is an ideal of \mathfrak{S} . As \mathfrak{S} is semisimple, \mathfrak{s} is a direct summand of \mathfrak{S} ; that is, there is an ideal \mathfrak{s}' of \mathfrak{S} such that \mathfrak{S} is an internal direct sum of ideals $\mathfrak{S} = \mathfrak{s} \oplus \mathfrak{s}'$. Consider the vector space direct sum $\mathfrak{t} = \mathfrak{s}' \oplus \mathfrak{r}$. By construction \mathfrak{t} is an ideal of \mathfrak{g} . From above, $\mathfrak{s} \subset Z_{\mathfrak{g}}(\mathfrak{r})$. So we have an internal direct sum of ideals: $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{t}$.

214 CAIRNS

Remark 3. By Remark 2, $K(x,x) \leq 0$ for all $x \in \mathfrak{s}$, where K is the Killing–Cartan form of \mathfrak{C}_{μ} . So, by the previous Lemma, the Killing–Cartan form of \mathfrak{s} is negative semi-definite; that is, \mathfrak{s} is compact.

Returning to the statement of the theorem, note that with the exception of (a)(ii), part (a) follows from Lemma 8, Remark 3, and Lemmas 7 and 6(b). From Lemma 6(a), one has:

$$\mathfrak{C}_{\mu} \subset \bigcap_{z \in \mathfrak{n}} \ker(\operatorname{ad}(z)) + \bigoplus_{z \in \mathfrak{n}} \operatorname{im}(\operatorname{ad}(z)).$$

That is, $\mathfrak{C}_{\mu} \subset Z_g(\mathfrak{n}) + [\mathfrak{n}, \mathfrak{g}]$. Hence $\mathfrak{n} \subset Z_g(\mathfrak{n}) + [\mathfrak{n}, \mathfrak{g}]$. It follows that as \mathfrak{n} is an ideal, by Lemma 8,

$$\mathfrak{n}\subset\mathfrak{n}\cap Z_g(\mathfrak{n})+[\mathfrak{n},\mathfrak{g}]=Z(\mathfrak{n})+[\mathfrak{n},\mathfrak{g}].$$

Clearly $Z(\mathfrak{n}) + [\mathfrak{n}, \mathfrak{g}] \subset \mathfrak{n}$. To see that $Z(\mathfrak{n})$ is an ideal of \mathfrak{g} , notice that as \mathfrak{n} is an ideal of \mathfrak{g} , the Jacobi identity gives

$$[\mathfrak{n}, [Z(\mathfrak{n}), \mathfrak{g}]] = [\mathfrak{g}, [Z(\mathfrak{n}), \mathfrak{n}]] + [Z(\mathfrak{n}), [\mathfrak{n}, \mathfrak{g}]] = 0,$$

and so $[Z(\mathfrak{n}),\mathfrak{g}]\subset Z(\mathfrak{n})$. So we have established (a)(ii).

Suppose that \mathfrak{g} is unimodular or that $\mu=0$. One sees directly from Lemma 3 that $Z(\mathfrak{g})\subset \mathfrak{C}_{\mu}$, and hence $Z(\mathfrak{g})\subset \mathfrak{n}$. Notice that if \mathfrak{g}_1 is a compact semisimple Lie algebra, then \mathfrak{g}_1 is the Lie algebra of a compact Lie group and so the orbits of the adjoint action are bounded. Hence $\mathfrak{C}_{\mu}(\mathfrak{g}_1)=\mathfrak{g}_1$. As \mathfrak{g} is unimodular or $\mu=0$, Lemma 3 implies that if \mathfrak{g} is a direct sum of ideals, $\mathfrak{g}=\mathfrak{g}_1\oplus\mathfrak{g}_2$, then $\mathfrak{C}_{\mu}=\mathfrak{C}_{\mu}(\mathfrak{g}_1)\oplus\mathfrak{C}_{\mu}(\mathfrak{g}_2)$. In particular, if \mathfrak{g}_1 is compact semisimple, $\mathfrak{g}_1\subset\mathfrak{C}_{\mu}$, from which it follows that $\mathfrak{g}_1\subset\mathfrak{s}$. Thus \mathfrak{s} is the maximal compact semisimple direct summand of \mathfrak{g} .

Finally, suppose that \mathfrak{g} is not unimodular and $\mu \neq 0$. Let $x \in \mathfrak{g}$ with $\tau := -\operatorname{tr}(\operatorname{ad}(x)) \neq 0$. Consider the Jordan form of the induced derivation $\operatorname{ad}_{\mathfrak{C}_{\mu}}(x) \colon \mathfrak{C}_{\mu} \to \mathfrak{C}_{\mu}$. Suppose that λ_1, λ_2 are (not necessarily distinct) eigenvalues of $\operatorname{ad}_{\mathfrak{C}_{\mu}}(x)$ and for each i = 1, 2 let $\{Z_j^i \mid 1 \leq j \leq n_i\}$ be linearly independent vectors in $\mathfrak{C}_{\mu} \otimes_{\mathbb{R}} \mathbb{C}$ with $\operatorname{ad}(x)(Z_j^i) = \lambda_i Z_j^i + Z_{j-1}^i$ for all j, where by definition $Z_0^i = 0$. We will show by induction on p = j + k that $[Z_j^1, Z_k^2] = 0$ for all $j \leq n_1, k \leq n_2$. The claim is obviously true for p = 0. Suppose that it holds for p = l. Then for p = l + 1, the inductive hypothesis gives:

$$\operatorname{ad}(x)[Z_{j}^{1}, Z_{k}^{2}] = [\operatorname{ad}(x)Z_{j}^{1}, Z_{k}^{2}] + [Z_{j}^{1}, \operatorname{ad}(x)Z_{k}^{2}]$$

$$= [\lambda_{1}Z_{j}^{1}, Z_{k}^{2}] + [Z_{j-1}^{1}, Z_{k}^{2}] + [Z_{j}^{1}, \lambda_{2}Z_{k}^{2}] + [Z_{j}^{1}, Z_{k-1}^{2}]$$

$$= (\lambda_{1} + \lambda_{2})[Z_{j}^{1}, Z_{k}^{2}].$$
(9)

As $Z_j^1, Z_k^2 \in \mathfrak{C}_{\mu} \otimes_{\mathbb{R}} \mathbb{C}$, one has $[Z_j^1, Z_k^2] \in \mathfrak{C}_{\mu} \otimes_{\mathbb{R}} \mathbb{C}$. By Lemma 3, the eigenvalues of $\mathrm{ad}_{\mathfrak{C}_{\mu}}(x)$ all have real part equal to $\mu\tau$. So $\mathrm{Re}(\lambda_1) = \mathrm{Re}(\lambda_2) = \mu\tau$ and $\mathrm{Re}(\lambda_1 + \lambda_2) = 2\mu\tau \neq \mu\tau$. So $\lambda_1 + \lambda_2$ is not an eigenvalue of $\mathrm{ad}_{\mathfrak{C}_{\mu}}(x)$, and thus (9) gives $[Z_j^1, Z_k^2] = 0$. This completes the induction. Thus \mathfrak{C}_{μ} is abelian. So $\mathfrak{s} = 0$ and \mathfrak{n} is abelian, as required. This completes the proof of the theorem.

Proof of the corollary. Part (a) follows immediately from Lemma 5(a), while (c) follows immediately from the theorem.

(b) If \mathfrak{g} is nilpotent, then $\mathfrak{C}_{\mu} = \mathfrak{n}$ and by part (a)(ii) of the theorem,

$$\mathfrak{C}_{\mu} = Z(\mathfrak{C}_{\mu}) + [\mathfrak{C}_{\mu}, \mathfrak{g}] = Z(\mathfrak{C}_{\mu}) + [Z(\mathfrak{C}_{\mu}) + [\mathfrak{C}_{\mu}, \mathfrak{g}], \mathfrak{g}]$$

$$= Z(\mathfrak{C}_{\mu}) + [Z(\mathfrak{C}_{\mu}), \mathfrak{g}] + [[\mathfrak{C}_{\mu}, \mathfrak{g}], \mathfrak{g}].$$
(10)

Now by part (a)(ii) of the theorem, $Z(\mathfrak{C}_{\mu})$ is an ideal of \mathfrak{g} , and so $[Z(\mathfrak{C}_{\mu}),\mathfrak{g}] \subset Z(\mathfrak{C}_{\mu})$ and (10) gives $\mathfrak{C}_{\mu} = Z(\mathfrak{C}_{\mu}) + [[\mathfrak{C}_{\mu},\mathfrak{g}],\mathfrak{g}]$. Repeating this argument, one has $\mathfrak{C}_{\mu} = Z(\mathfrak{C}_{\mu}) + \mathfrak{g}^{k}(\mathfrak{C}_{\mu})$ for all $k \geq 1$, where $\mathfrak{g}^{i}(\mathfrak{C}_{\mu}) = [\mathfrak{g},\mathfrak{g}^{i-1}(\mathfrak{C}_{\mu})]$ and $\mathfrak{g}^{1}(\mathfrak{C}_{\mu}) = [\mathfrak{g},\mathfrak{C}_{\mu}]$. Thus, if \mathfrak{g} is nilpotent, $\mathfrak{C}_{\mu} = Z(\mathfrak{C}_{\mu})$; that is, \mathfrak{C}_{μ} is abelian.

(d) If $\mathfrak g$ is the Lie algebra of a compact Lie group, the orbits of the adjoint action of $\mathfrak g$ are bounded and thus $\mathfrak C_\mu=\mathfrak g$. Conversely, if $\mathfrak C_\mu=\mathfrak g$, then by the theorem, $\mathfrak g=\mathfrak s\oplus\mathfrak n$, where $\mathfrak s$ is compact semisimple and $\mathfrak n$ is metabelian. In fact, by part (a)(ii) of the theorem, $\mathfrak n=Z(\mathfrak n)+[\mathfrak n,\mathfrak g]=Z(\mathfrak n)$, and so $\mathfrak n$ is abelian. Hence $\mathfrak g$ is the Lie algebra of a compact Lie group.

Example 1. The approximative centre of the following (solvable unimodular) Lie algebra is nilpotent non-abelian:

$$\mathfrak{g} = \langle x, y, z, w \mid [x, y] = z, [x, z] = -y, [y, z] = w \rangle.$$

Indeed, it is easy to see from Lemma 3 that $\mathfrak{C}_{\mu} = \langle y, z, w \rangle$.

Example 2. Consider the standard filiform nilpotent Lie algebra (see [2]):

$$\mathfrak{g} = \langle x, y_1, \dots, y_n \mid [x, y_i] = y_{i+1}, \forall i < n \rangle.$$

The approximative centre of \mathfrak{g} is abelian and strictly greater than the centre; indeed, it is easy to see from Lemma 3 that $\mathfrak{C}_{\mu} = \langle y_i \mid i \geq (n+1)/2 \rangle$.

Example 3. Consider the Lie algebra $\mathfrak{g} = \mathbb{R}^3 \rtimes \mathfrak{so}(3,\mathbb{R})$, where the action of $\mathfrak{so}(3,\mathbb{R})$ on \mathbb{R}^3 is the standard linear one. Here \mathfrak{g} has a Levi subalgebra which is compact and simple, but the approximative centre has no simple factor $(\mathfrak{C}_{\mu} = \mathbb{R}^3)$.

Remark 4. If a Lie algebra \mathfrak{g} has an ideal \mathfrak{a} which is the Lie algebra of a compact Lie group, it doesn't necessarily follow that $\mathfrak{a} \subset \mathfrak{C}_{\mu}$, or that $\mathfrak{C}_{\mu} \subset \mathfrak{a}$. In Example 2, the ideal $\langle y_1, \ldots, y_n \rangle$ is abelian but it is not contained in \mathfrak{C}_{μ} . In Example 1, \mathfrak{C}_{μ} is not contained in the (maximal) abelian ideal $\langle z, w \rangle$.

Thanks. The author is very grateful to the referee, whose careful reading and sensible suggestions improved the presentation of this paper.

References

- [1] N. Bourbaki, "Lie groups and Lie algebras. Chapters 1–3," Springer-Verlag, Berlin, 1998.
- [2] D. Burde, Affine cohomology classes for filiform Lie algebras, in "Crystallographic groups and their generalizations," Amer. Math. Soc., Providence, RI, Contemp. Math. 262 (2000), 159–170.
- [3] G. Cairns, "Feuilletages géodésibles," Thesis, Montpellier, 1987.
- [4] G. Cairns and E. Ghys, *Totally geodesic foliations on 4-manifolds*, J. Diff. Geom. **23** (1986), 241–254.
- [5] G. Cairns and P. Molino, Weakly involutive totally geodesic distributions of constant rank, preprint.
- [6] V.S. Varadarajan, "Lie groups, Lie Algebras, and their Representations," Springer-Verlag, 1984.

G. Cairns
Department of Mathematics
La Trobe University
Melbourne, Australia 3083
G.Cairns@latrobe.edu.au

Received November 17, 2000 and in final form May 15, 2001