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Abstract. The classical notion of determinantally homogeneous polyno-
mial is presented in the context of representations of Euclidean Jordan alge-
bras. When the Jordan algebra is of classical type, the study of the algebra
of determinantally homogeneous polynomials is strongly related to classical
invariant theory and a fairly complete description is obtained. For the Eu-
clidean Jordan algebra of Lorentzian type, the representations are related
to Clifford modules. In this case, only partial results are obtained, includ-
ing complete answers for pinor spaces associated to Clifford algebras of low
dimension.

0. Introduction

Representations of Euclidean Jordan algebras have been recognized in the last
ten years as a firm ground for many questions classically related to algebra or
analysis on matrix spaces. Among other themes, zeta integrals were studied
by several authors ([FK] ch. XVI, [A1],[A2],[C2]). The notion of determinan-
tally homogeneous polynomials (called ®-homogeneous in [C2]) emerges as an
important notion. The present paper is devoted to a systematic study of these
polynomials.

Section 1 introduces notation for the rest of the paper. Section 2 is con-
cerned with the ”classical” Euclidean Jordan algebras and makes connexion with
classical invariant theory. The four last sections are devoted to the Lorentzian
case, which turns out to be strongly connected with the theory of Clifford alge-
bras and pinor spaces. Complete answers are only obtained in low dimensional
cases (Section 6).

I wish to thank O. Hijazi for valuable discussions, and for pointing out
the reference [BRR).
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1. Determinantally homogeneous polynomials

Let V be a real Euclidean Jordan algebra, which we assume for simplicity to be
simple. A general reference for notation and results is [FK]. V* denotes the set
of invertible elements in V', and 2 is the open component of V' * containing the
neutral element e. Its closure is the set of squares in V. Let n be the dimension
of V', r its rank. Denote (*) by tr (resp. det) the trace and the generic norm
(or determinant) of V', and let (z,y) = trzy be the symmetric inner product on
V.

Recall that a representation ® of V in a Euclidean space (E,(.,.)) is a
Jordan algebra homomorphism ® : V. — Sym(F), or more explicitly a linear
mapping ® : V — End(F) which satisfies

1) D(ry) = (B(@)2(y) + 2(y)®(x))
(2) ®(e) =1d
Q (@()¢, ) = (€. B())

forall z,y € V and &,n € E. Let Q : E — V be the associated quadratic map
defined by the formula

(4) (Q(6),2) = (2(z)€, &), Vo e V.

Notice that the image of @ is contained in Q. The representation is said
to be regular, if the image of @ contains e (hence all the elements of 2, see
[C1]). An equivalent characterization of a regular representation is the condition

detQ(&) Z0 on E.

Also recall the formulae

2

(5) det Q(®(2)€) = (detz)2det Q(€),  Det ®(x) = (det z)*

for €V and £ € E, where N =dim E (% is always an integer).
A polynomial p defined on FE is said to be determinantally homogeneous
of degree [ (I a nonnegative integer) if

(6) p(®(x)€) = (det z)'p(€)

for all x € V and € € E. Denote by P the vector space of polynomials with
complex coefficients on E, and for m € N let P™ be the subspace of polynomials
which are homogeneous of degree m (in the ordinary sense). For [ € N, denote
by Pdet! the space of polynomials which are determinantally homogeneous of
degree 1, and let P = ), Pt. Clearly P9t is an algebra.

Notice that a polynomial which is determinantally homogeneous of de-
gree [ is homogeneous (in the ordinary sense) of degree Ir.

(*) Det and Tr are used for the determinant and the trace of an endomorphism.
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A first exemple of a non trivial determinantally homogeneous polynomial
is the polynomial det @(§) which by (5) is determinantally homogeneous of
degree 2, and non trivial if and only if the representation is regular.

When z € VX, then ®(x) has ®(x~!) as its inverse, and so belongs
to GL(F). Moreover from (5), we see that Det ®(z) = 1 if detz = 1. Let T’
be the closed subgroup of SL(FE) generated by the operators {®(z) | detz =
1}. Observe that T' is a reductive subgroup, as it is generated by symmetric
operators. The following result makes connexion with invariant theory.

Theorem 1.1. A polynomial p belongs to P if and only if

p(v§) =p(§), VyeT

p(A) = Np(€), VAeER.

Proof. The conditions are obviously necessary. Conversely, let p be a polyno-
mial which satisfies both conditions. Let x € 2, so that in particular detx > 0,

1 . o,
and set A = (detz)r. Then x = Az; with detzy; = 1. From the two conditions
we get

p(2(2)€) = p(@(Az1)€) = A"p(€) = (det z)'p(€).

But now for any ¢ fixed in E, the polynomial functions z +— p(®(z)§) and
x — (detz)'p(€) agree on Q hence everywhere. As ¢ is arbitrary this shows
that p is determinantally homogeneous of degree [. [ ]

In order to determine the group I', the following result will be helpful.

Lemma 1.2. Let G be a connected semi-simple real Lie group of the non-
compact type with finite center. Let g = Lie(G) be its Lie algebra, let 6 be a
Cartan involution of G, and let g = €y be the associated Cartan decomposition
of g. Then the set of all finite products {exp X1 exp Xo...exp Xp, X; € p} is
dense in G .

Proof. Let I' be the set of all such products. As (exp X)~! = exp(—X), the
set T' is a subgroup of G. Its closure T is a closed, hence a Lie subgroup of G,
whose Lie algebra contains p, hence also [p,p]. As G has no compact factor,
[p, p)®p = g. Thus T has Lie algebra g and, as G is assumed to be connected,
this implies T = G. n

2. The classical cases

In this section we determine the determinantally homogeneous polynomials in the
classical cases. So K will denote either R, C or the field of quaternions H, and
V = Herm(r,K) is the space of (r x r) K-Hermitian matrices, with the Jordan
product z.y = %(:Uy + yx). The representation space is F = End(r, k,K), and
the action of V on FE is by left multiplication
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The quadratic map is given by Q(§) = £€*, and the representation is regular if
and ounly if k£ > r (see [C1]).

The next result essentially amounts to the determination of the group
previously denoted by I', but in a different presentation.

Theorem 2.1. Let K= R C or H, and let V = Herm(r,K). The closed
subgroup T' of GL(r,K) generated by the elements {xr € V | detz = 1} is
I'=SL(r,K).

Proof. For K = R, first observe that detz = Detz for any element = of
Sym(r,R), so that the subgroup generated is contained in SL(r,R). For the
standard Cartan involution of SL(r,R)

p={X €Sym(r,R) | Tr(z) =0} ,

and for X € p, expX is belongs to V and has determinant 1. By Lemma
1.2. the closed subgroup generated by such elements is equal to SL(r,R). So, a
fortiori ' = SL(r,R).

Next, assume K = C, and V = Herm(r, C). In this case det z = Detc x,
so that clearly T" is a subgroup of SL(r,C). For the standard Cartan involution
of SL(r,C),

p ={X € Herm(r,C) | Tr X = 0}.

Now if X € p, then exp X belongs to V' and has determinant 1. So, again the
closed subgroup generated by these elements is SL(r,C). Hence I' = SL(r,C).

Now assume K = H, and realize the quaternions as usual, using (1, i, j, k)
as a basis of H over R. Consider the space C?", and let

0 Id,
J—JT—<_IdT ; )

Then C2" can be viewed as a right H vector space by letting
zi=1z, 2j=Jz, zk=1JZ.

Now
End(r,H) = {z € End(2r,C) | zJ = JT}.

The H-Hermitian matrices are realized as
V = Herm(r,H) = {z € End(2r,C) | zJ = JT, z* = z}.

Notice that the two conditions zJ = JZ and z* = x imply that (zJ)! = —z.J,

that is x.J is skew-symmetric. Moreover, J(zJ)J! = Jr =TJ = xJ.

For any skew-symmetric matrix, denote by Pf (A) its Pfaffian, with the
convention that Pf(J) =1 (see e.g. [GW] Appendix B.2.6). Recall the following
properties of the Pfaffian : for any skew-symmetric matrix A and any element
g € GL(2r,C),

Pf(A) = Pf(A), DetcA =Pf(A)?, Pf(gAg’) = Detc(g) Pf(A).
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For z € V, we infer from the last remarks that Pf(xJ) is real, and in fact
det z = Pf(zJ).
Let SL(r,H) = SL(2r,C) NEnd(r,H). If z € V with detz =1, then

Detc(z) = Detc(zJ) = Pf(zJ)? = (detz)? =1,

so that the subgroup T is certainly contained in SL(r, H).
For the standard Cartan involution on SL(2r,C),

p={zx € End(2r,C) | Jxr =TJ,z = =", Tr(x) = 0}.
For X € p, exp X belongs to V and
1 = Detc (exp X) = Detc (Jexp X) = Pf(J exp X)?

so that Pf(JexpX) = +£1, but by continuity of X +— Pf(Jexp X) one gets
Pf(JexpX) = 1, hence detexpX = 1. By Lemma 1.2, the closed subgroup
generated by such elements is equal to SL(r,H). Hence the result. n

After this preparation we are ready for the determination of Pd¢t. Let
us consider the real case. So let V = Sym(r,R), and E = End(r, &, R).

Theorem 2.2.  There exist non trivial determinantally homogeneous polyno-
mials on E if and only if k : geqr. Assume k > r. Then for n € E define

Py(§) = Det(£n°).

The polynomials p, belong to Ppdetsl and as n runs through E, they generate
Pdet 4s an algebra.

Remark. A finite set of generators can be obtained as follows. For 1 < j < r,
the j-th column of the matrix £n’ is a linear combination of the k¥ columns
of the matrix &, the coefficients of the linear combination being the elements
of the j-th row of n. By using the properties of the determinant, it is clear
that Det(én%) can be written as a linear combination of determinants of r x
matrices, whose columns are (a certain selection of) columns of the matrix £. In
other words, P4t is generated (as a vector space) by the rank r minors of the
matrix £. Hence P9t is generated (as an algebra) by the same elements.

Proof. The result, in this last version is a consequence of the characterization
of P9t obtained in Theorem (1.1) and a classical result in invariant theory for
SL(r,R) acting on k copies of the natural representation on R" (see [W] p. 54).m

Let us consider the case where K = C. Then V = Herm(r,C) and
E = End(r, k,C). It is important to recall that we are looking to E as a real
vector space, and in particular polynomials on F need not be holomorphic.

Theorem 2.3.  There exist non trivial determinantally homogeneous polyno-
mials on E if and only if k > r. Assume k > r. Then for n € E define

pn(&) = Det (¢ nt), ‘In(g) = Det(gnt)-



118 CLERC

The polynomials p, and g, belong to Pdet:l - and as n runs through E, they
generate P as an algebra.

Proof. Let m be an integer, and for s,t € N, with s+t =m, let
Pt ={peP|p(Ae) = AXp(¢), YA€ C'}.

By looking at the natural action of C* on P™,

er: @ Ps’t.

s+t=m
There is a similar decomposition for Pd¢t . First observe that
SL(r,C)NnC*Id ={A1d,\" =1} ~ T,

(U, is the multiplicative group of r-th roots of unity). So if p is invariant by
SL(r,C), and satisfies p(A{) = )\Sxtp(é“) with s +¢ = Ilr, then by comparing
these two properties on SL(r,C) N C*Id, it is necessary that s —t = 0 modr,
and hence s =0 modr,t =0 modr. So, set

(7) PSSt = {pc P | p(z¢) = (Det 2)°(Det2)!p(€), Vz € End(r, C)}.

Then clearly

Pdet,l — @ Pdet’s’t.
s+t=l

Let us now complexify the whole situation. Realize the complexification of
E = End(r,C) as E® = End(r,C) x End(r, C), with the conjugation

(Zl, 22) — (22, El)

through the embedding (z — (2,Z)) and in a similar fashion, realize the com-
plexification of End(r, k,C) as End(r, k,C) x End(r, k,C) with the conjugation
(€1, &) — (€,,&,) through the embedding (& — (£,€)). The natural action of
End(r,C) x End(r,C) on End(r, k,C) x End(r, k,C) given by

(21, 22)(€1,&2) — (21&1, 22€2)

is a complexification of the action of End(r, C) on End(r, k,C). The polynomial
(Det z)*(Det z)* on End(r,C) is the restriction of the holomorphic polynomial
(Det z1)®(Det 22)* on End(r, C) xEnd (r,C). A polynomial p € P95 extends in
a unique way to a holomorphic polynomial p on E® = End(r, k, C) x End(r, k, C)
which satisfies

(8) P (21€1, 22€2) = (Det 21)*(Det 22)* p(&1, &2)

for any 21, 2o € End(r, C). Denote by Pt the space of polynomials which satisfy

(8).
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The determination of P is now easy using the isomorphism
P(End(r, k,C) x End(r, k,C)) ~ P(End(r, k, C)) ® P(End(r, k, C)).

Clearly
ﬁs,t ~ PDet,S ® PDet’t.

But now a classical result in invariant theory (in fact the complex version of
the theorem we used in the real case) shows that PPe%$ (resp. PPt )is
generated by (the products of s (resp. t)) polynomials of the form Det(&1n?)
(resp. Det(£2n?)), where n is an arbitrary element of End(r, k,C). Theorem
4 follows by taking the restriction of these polynomials to the real form E =
{(¢,€) | € € End(r, k,C)} of End(r, k, C) x End(r, k,C). m

Let us now assume K = H, and use the same realization of Herm(r, H)
as above. Similarly,

End(r, k, H) ~ {¢ € End(2r,2k,C) | £Jy = J,£}.

Notice that these realizations are compatible in the sense that the action of
End(r,H) on End(r, k,H) is the restriction of the natural action of End(2r,C)
on End(2r,2k,C) given by (z,§) — 2€.

The conjugation z ~— —JzJ realizes End(r,H) as a real form
of End(2r, C), and similarly, ¢ — —J,.£Jy realizes End(r, k, H) as a real form of
End(2r,2k,C). The group SL(r,H) is realized as a real form of SL(2r,C).

Now a polynomial p on E = End(r, k,H) can be extended in a unique
way as a holomorphic polynomial p on End(2r,2k,C). Assume p is determi-
nantally homogeneous of degree /. Theorems 1.1 and 2.1 imply p satisfies

Vg € SL(2T5 C)’ ]7(96) :ﬁ(g) .

By the same classical result as before, the algebra of SL(2r, C)-invariants poly-
nomials is generated by the polynomials p, = Det(¢n?), where 7 is an arbitrary
element in End(2r, 2k, C). Observe that p, is homogeneous of degree 2r. But p
has the same degree of homogeneity as p, namely rl. So if [ is odd Pdet! = {0}.
Here is the final statement for this case.

Theorem 2.4. Let V. = Herm(r,H) acting on E = End(r,k,H) by left
multiplication. There exist non trivial determinantally homogeneous polynomials
on E if and only if k > r. Assume k > r, and let E = End(r,k,H) realized
in End(2r,2k,C) as above. Then Pt £ {0} if and only if | is even. For
n € End(2r, 2k, C), define

Dy (5) = Det (& nt)'

Then p, belongs to Pdet2 and the polynomials Py generate Pdet when n runs
through End(2r, 2k, C). [
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3. Representations of the Jordan algebra of Lorentzian type
and Clifford modules

Let W, (.|.) be a Euclidean vector space of dimension ¢. Define on V=Re W
the Jordan product

9) A, w)(N,w") = (AN + (w]w”), A" + N w)

This turns V into a Jordan algebra with unit element e = (1,0). For the inner
product, we use

(10) (A w), N, w")) =2\ + (w | w)

which is self-adjoint for the Jordan multiplication, so that V' has a structure of
Euclidean Jordan algebra. The corresponding cone is

Q={(\w) | A~ (w|w)>0,\> 0}

and this is the reason to say that V is of Lorentzian type. The case ¢ = 1 is
peculiar, because V' decomposes as a sum of two ideals, so that we may assume
that ¢ > 2. All Euclidean Jordan algebras of rank 2 are obtained in this manner
(see [FK] ch.V).

The determinant function for V is given by

(11) det(\, w) = A? — (w | w).

The element (A, w) € V is invertible if and only if det(), w) # 0, and its inverse
is given by
A w)™h = (A = (w | w) T (A, —w) .

There is an other approach to this family of Jordan algebras, via the
Clifford algebra CI(W). Recall that it is the associative algebra (the product
is denoted by a.b) generated by W with the relations w.w = ||Jw||?> (for most of
the references, this is the Clifford algebra for the negative-definite form —||w||?).
There exists a canonical injection from V into CI(W), which maps (A\,w) € V
to A+ w in CI(W). Moreover, CI(W), which is an associative algebra can be
turned into a Jordan algebra by using the symmetrized product

1

Then R@ W is a Jordan subalgebra of Cl(W) and the induced Jordan product
coincides with the one we introduced supra. So we indifferently denote elements
of V either as (A\,w) or as A+ w, where A € R and w € W.

On CI(W), there exists a unique involutive automorphism, denoted by
a +— a such that w = —w for all w € W . There exists also a unique involutive
anti-automorphism denoted by ~ such that @ = w for w € W, and by composing
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the two, there is a second involutive anti-automorphism, denoted by ~ such that
w = —w for w € W. With these notation, one has for any v € V>,

vt = (detv) o .

Let ® be a representation of the Jordan algebra V on an Euclidean
vector space (E,(.,.)). Let w € W. Then (0,w)? = (||w||?,0) = ||w||?e. Hence
®(w)? = ||w||*Id. The universal property of the Clifford algebra implies that
there exists a (unique) homomorphism of associative algebras

@ : CI(W) — End(E)

extending ®. Hence E is a Clifford module for Cl(W).

Conversely, let E be a Clifford module for CI(W), that is a real vector
E of finite dimension, with an action of CI(W). Fix an orthonormal basis
(e1,€2,...,eq) of W. For I = {i; < ip < ... < 4|7} any ordered subset of
{1,2,...,q}, let ef = ej,¢€;,...e;, . Then the set F' = { + eI}, where I runs
through all subsets of {1,2,...,q}, is a multiplicative group for the Clifford
product, of cardinality 2¢t!. Fix an inner product (. |.)o on E and let

&m) =270 Y "(a.g, ano.

a€F

This defines a new inner product on E. Let b € F'. As F' is a group,

(b-£,b.m) = (&, m)

for all £&,n € E. In particular, for 4,1 < i < ¢q, (e;.,e;.n) = (&,nm). Let

z =Y ¢  z;e; an arbitrary element of W. Then

(z.&,m) = in<ei-£7"7> = Z$i<ei-(ei-£)aei-n>

q

:in@,ei-n) = (&, z.m).

=1

Define @ : V. — End(FE) by the formula

where we use the identification V ~ ReW C CIl(W). Then & is a Jordan algebra
homomorphism from V into Sym(FE), where Sym(F) is defined with respect to
the new inner product (., .). This shows the equivalence between representations
of V and Cl(W)-modules. This correspondance had been observed before (see
e.g. [Do])

Let ® be a representation of V = R@& W on a Euclidean vector space E
and let ® be the extension of ® to CI(W). As the algebra {®(a),a € Cl(W)}
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is generated by {®(w),w € W}, the notions of equivalent or irreducible repre-
sentations are the same for V or CI(W). The classification of the irreducible
Clifford modules is well known, and in fact it is essentially equivalent to the
structure theorems for Clifford algebras. Up to equivalence, there is a unique
irreducible representation (when ¢ is even) or two (when ¢ is odd) (#). The
space for an irreducible representation is called a pinor space. The reference [H]
contains an exhaustive description of the pinor spaces (see also [D]). The follow-
ing table indicates the main facts. For each value of ¢, we list the dimension p
of the corresponding pinor space (in the odd case, both pinor spaces have same
dimension) and the commutant K of the representation (which is either R, C or

8 8k+1 8k+2 8k+3 8k+4 8k+5 8k+6 8k+7
P 16F  16F 2.16%  4.16F  8.16F  8.16%  16.16F 16.16F

K R R R C H H H C
Table 1

Let E be a pinor space. Then there exists on E a unique (up to a positive real
number) Euclidean inner product (., .) such that

(*) (@(z)€, n) = (£, ®(z)n)

In fact it is enough to verify the uniqueness, because the existence is true for
any Clifford module. But if (., .)" is another inner product with the property
(), then there exists a linear operator A such that (£, n) = (A&, n). The
symmetry of (.,.) shows that A has to be symmetric. Then, property ()
is satisfied if and only if A commutes with ®(z), for all x € V. But as A is
symmetric, and the representation is irreducible, A can have only one eigenvalue,
hence is a multiple of the identity.

Let us express () using the orthonormal basis {ei,es,...,eq} of W
already introduced. Let v = (X, Y_7_, z;e;) € V. Then

(v, Q) = (B(2)&,6) = ME,©) + 3 wilensé, €)

=1
so that

q

(12) Q&) = (€%, Y (ei&, E)es)-

=1

For the group I', we use a slightly different approach as before, by
realizing I' in the Clifford algebra (in Section 2, the group I' was constructed

(#) I wish to take the opportunity to indicate that Théoreme 2 in [C1] is
partially incorrect, as there are two non equivalent irreducible representations in
the “complex case” (¢ = 3,7 mod. 8)
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through an irreducible representation). Our approach is parallel to the classical
approach of the Clifford group or Pin group (see [GM]).

Let CI(W)* be the (multiplicative) group of invertible elements of
Cl(W) and let T' be the closed subgroup of CI(W)* generated by the elements
v € R® W with det(v) = 1. Observe that det(\,w) = A2 — ||w||? is a quadratic
form on V' of signature (1,q). Let SOy(V,det) ~ SOq(1,q) be the connected
component of the identity in O(V, det).

Lemma 3.1. Let v eV with detv=1. Then
VzeV, vzveV

and the mapping 7, : z — v.z.v belongs to the group SOy(V, det).

Proof. Let b be the bilinear form associated to the quadratic form det. Then,
for any v and z € V', the following identity holds

v.z.v = 2b(v, 2)v — (detv) 2,

so that v.z.v belongs to V. Moreover, if detv = 1 then clearly +, belongs to
O(V,det). As v_, =7, we may assume that v belongs to the set

{u=(\w) eV |\ —|uwl?>0X> 0}

The connectedness of this set implies the fact that +, € SOy(V, det).

Now, by composition and continuity, it is possible to extend Lemma 3.1
to all of I". n

Theorem 3.2.  For any element a in I', and z € V, aza belongs to V', and
the corresponding mapping vy, : z — a.z.d is in SOy(V,det). The mapping
v:T'— SOy (V,det) is a surjective homomorphism, with kernel {£1d}.

Proof. We may apply Lemma 1.2 to SO¢(V,det). With the standard Cartan
involution, the p-part of the Lie algebra so(V,det) ~ so(1,¢) is given by

{Xw: (3) “(’)t>,weW}.

cosht sinht 0
exp X¢e, = | sinht cosht 0
0 0 Idg,—»

belongs to the image of I', as can be seen from (13). This argument clearly
applies to any element w € W. By Lemma 1.2, this implies the surjectivity of
v. If a € T is an element in the kernel of v, then a.w = w.(a)~! for any w € W.
But as ad = 1 for any element of I', we get (d¢)~! = @, so that a.w = w.a for
any w € W. This implies that a € R (see [GM] ch. 1, Lemma (5.25)). But
as a.a = 1, necessarily a = +1. Conversely, it is clear that —1 belongs to the
kernel of ~. |

If w=te;, then

For further use, notice that the subgroup in CI(W)* generated by the
elements of the form wq.ws. ... wqp, where w; € W and ||w;|| =1 for each j is
a subgroup of I', called the spin group and denoted by Spin(W). Spin(W) is
mapped by v onto SO(W) viewed as a subgroup of SOy(R & W, det).
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4. Euclidean algebras and the non-regular cases

The regularity of the pinor representation was discussed in [Cl], and it was
shown that the pinor representation is regular if and only if ¢ # 2,3,5,9. We
digress from our general programm to give a short proof of the non-regularity
when ¢ = 2,3,5,9. It also serves as a presentation of some material to be used
thereafter. We closely follow [H] (see also [FK] ch. V).

By a Fuclidean algebra (or Euclidean Hurwitz algebra) we mean a (not
necessarily associative, nor commutative) finite dimensional algebra A over R
with unit element 1, equipped with a Euclidean inner product (, ) whose asso-
ciated square norm || ||? satisfies

labl|* = [la||*[[p]]* for a,b € A.
Let Im A be the orthogonal complement of R1. Each element a € A has a unique
decomposition as @ = a; + a’, where a; € R1,a’ € ImA. For convenience, set
Rea = ay,Ima = a’. Conjugation is defined by

a=a; —d =Rea—Ima.

Lemma 4.1. For all a,b € A

(i) a=a

(ii) ab =ba

(iii) aa =aa = ||al|?

(iv) {a,b) =Reab = Reab.

For a € A, denote by R, (resp. L,) the right (resp. left) multiplication by a,
viewed as a R-linear operator on A.

Lemma 4.2. Let a € A. Then

(14) R, =Rg, L, =Lg
(15) RzoR, = R,0 Rz = ||a]|*1d
(16) fora,be A, witha L b, RzoR,=-R;oR,

Lemma 4.3. The only Euclidean algebras are R,C,H (quaternions) and O
(octonians or Cayley numbers), of respective dimensions 1,2,4,8.

For a proof of these three lemmas, see [H|, ch. 6.
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Let A be a Euclidean algebra. Forgetting the extra structures on A, let
W =R & A viewed as a Euclidean vector space with the inner product defined
by
(21, @)||* = 21 + [|a]|*.

Observe that W is of dimension respectively 2,3,5 or 9. To each element
(z1,a) € W associate the (R linear) operator ®(z1,a) on E = A @ A described
by the following matrix

z1 Id R,
(w1, 0) = ( ]1%5 —331Id>'

Now
®(z1,a)®(z1,a) = (23 + [|a]*)1d

so that ® can be extended to an algebra homomorphism ® of the Clifford algebra
Cliff(W) in End(E). As the dimension of the pinor space(s) is known to be
respectively 2,4,8,16 (see Table 1) which is exactly the dimension (over R) of
FE, it is clear that this representation is nothing else but the pinor representation
of CI(W). As explained before, this can also be viewed as a representation of
the Lorentzian Jordan algebra V=R W,

(17) ($07x1’a) — cb(:co,:cl,a) - ((xo _i-R.zl) - (.’L'O ;R;Iﬁl) Id) )

As inner product on E we use

((2) ; (Z;)) = (&1,m) + (§2,m2)-

In this formalism, the quadratic map @ is easily determined, as

o (£):(8)

= (zo + z1)[|&1]]* + (mo — @1)[|&2]|® + (Ra &2, &) + (Ra &y, &2)

= zo([[a]l* + 1€2)1*) + z1(l&]” — [12ll?) + 2(a, &261)
by using (14) and (15). Hence

(18) Q€1, ) = (6l + leall®, a2 - &2l & 61 ).

Now

det Q(&1,€2) = (I&ll” + [I&211%)* — (€l — ll€2ll*)* — 4ll&2 &1

which equals 0 because of the multiplicative property of the square norm. We
can now reformulate the result in the language of Clifford algebras and pinor
spaces.
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Theorem 4.4. Let q =2,3,5 or 9. Let E be the pinor space associated to
the Clifford algebra Cl(W'). For any orthonormal basis (e1,e2,...eq) of W and
forany £ € E

q

(19) lEll* = ewt, &)

=1

Remark. Formula (19) implies several identities for the matrices representing
the operators E; = ®(e;),1 < j < ¢. In fact, fix an orthonormal basis
{e1,€9,...,en} of E and let & = SN €,eq. Notice that N = 2(g — 1) =
2,4,8 or 16. Then the identity is a polynomial identity in the variables ({,),
hence the coefficients of the monomials on both sides must be the same. For
7 = 1,2...,q, denote by E'(]lﬁ the coefficients of the matrix representing the
operator E; = ®(e;) in the basis {ey}. Then (19) implies

q
(20) Y ELoEL = bap
7=1

This is a special case of the Fierz identities (see [B-R-R]).

5. Determinantally homogeneous polynomials of degree 1
on pinor spaces

Let E be a pinor space, associated to the Jordan algebra of Lorentzian type
R @ W. The discussion of the space P91 is strongly related to the nature
of the commutant K of the representation, which is a real field, isomorphic to
either R,C or H. The real vector space E can be considered as a (right) K-
vector space. If ¢ € K, the corresponding action on E will be denoted by R,.
We will make use of the fact that RZ = Rg for any ¢ € K.

Proposition 5.1. A real-valued polynomial p on E belongs to P41 if and
only if p(§) = (A&, &) for some A € End(FE) satisfying

(21) i) At =A
ii) A2 =)\1d, X €10, 00)
iii) Ad(w) = — P(w)A, YweW

Proof. First let p € P91, The polynomial p is homogeneous of degree 2.
Hence, there exists a symmetric bilinear form b on E such that p(§) = b(¢,€).
If we W, then p(w.£) = —||w|]®>p(¢) for all £ € E. By polarization, b has to
satisfy

b(w.&, w.n) = —||lw||*b(&,n)
for all w € W. Apply this equality to n = w.( to get
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for all w € W,£,( € E. The operator A € End(F) defined by the relation
b(&,n) = (A, n) must satisfy A®* = A and Ao ®(w) = —P(w) o A for all
w € W. The operator A2 = AA! is positive self-adjoint, and must commute
with ®(w) for all w € W. As the representation is assumed to be irreducible, A2
must be a multiple of the identity, say A? = AId, and X has to be nonnegative.
Hence A satisfies (21).

Conversely, let A satisfy the conditions (21). For w € W and £ € F,
we have

(A(w.£),€) = (w.£, A) = (§,w.(Ag)) = —(A(w.£), &) ,
hence (A(w.€),£) =0 . Let p(§) = (A, &) . For (p,w) € V', we have

P(®(p, w)€) = (A(pé + w.£), pé + w.£) = p*(AE, &) + (A(w.£), w.£) .

But (A(w.£),w.£) = —(w.A&, wé) = —||w||*(AE, £), and eventually we get

p(®(u, w)€) = (1 — |lw[*)p(€)
which is exactly the property that characterizes elements of Pdet:1, [ ]

The operators which satisfy (21) are related to the spin structure op-
erators and our results are related to those in [H] (which cover the case of a
quadratic form of arbitrary signature).

Once a solution is known, it is easy to determine all of them. If A and B
are two operators which satisfy (21), then AB commutes with the representation,
hence there exists s € K such that AB = R;. As A~! is a multiple of A, we
have B = Ao Ry, for some ¢ € K. The conditions (217), (214¢) for B imply
that Ao R; = Rzo A. Conversely, if A satisfies (21), and if ¢ € K is such that
AoRy;=RgoA, then B= Ao R, also satisfies (21).

Theorem 5.1. Let W be a Euclidean vector space of dimension g > 2, and
let E be a pinor space for the Clifford algebra CI(W). Then the dimension p of
Pdetsl s given by the following table

gmod8 0 1 2 3 4 5 6 7
p 10 0 0 1 0 3 2.

Proof. Let first assume ¢ is even. Fix an orthonormal basis eq,eg,...e4 of
W. The element f = ejey...eq of CI(W) verifies fr = —xf for all x € W.
Moreover, ff = ff = 1, and f=f when ¢ = 0,4 mod8 , f = —f when
¢g=2,6 mod8. Let F' = ®(f). Then F anti-commutes with the representation,
FFt =1d and Ft = F when ¢ = 0,4 mod8, F* = —F when ¢ = 2,6 mod8.
If A is an operator which satisfies the conditions (21), then A and F' commute.
As A and F anti-commute with the representation, AF = F'A commutes with
the representation. Hence AF belongs to K. But (AF)? = FAAF = AF?, and
hence (AF)? = A1d when ¢ = 0,4 mod8, (AF)? = —\Id when ¢ = 2,6 mod8.
Finally, (AF)t = FtAt and hence AF is symmetric when ¢ = 0,4 mod 8, skew-
symmetric when ¢ = 2,6 mod 8.
Case ¢ =0,4 mod8
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Then F satisfies conditions (21), and if A also satisfies these conditions,
AF is a self-adjoint element of K, hence is real. Hence, there exists a unique
(up to a scalar) polynomial in P91 and it is given by

p(§) = (F§,6) .

Case ¢ =2 mod8

In this case, K = R, and AF' is a real multiple of the identity. As
(AF)2 = —)\1Id, with X\ > 0, there is no solution except 0, and P9t is trivial.

Case ¢ =6 mod8

In this case, K = H. Let ¢ be a pure imaginary quaternion so that
¢ =q(—q) = —||q||2 Set A = FoR,. Then A* = Rt o F' = Rzo (—F) =
R,oF = FoR, = A. Moreover, A> = FoR,0R,0F = —FoF = +1d,
and finally A anti-commutes with the representation, as F' anti-commutes with
the representation and R, commutes with the representation. Hence A satisfies
(21), and it is easily verifies that any solution is of that type. So, in this case,
Ppdetsl g of dimension 3.

Let us now consider the case when ¢ is odd. The element f =eiey...¢€q
belongs to the center of the Clifford algebra. Moreover, f f=ff=1, Wlth
f=f when ¢ =1,5 mod8 , f = —f when ¢ = 3,7 mod8. Let F = (ID(f)
Then F € K, F* = F when ¢ = 1,5 mod8 and F* = —F when ¢ = 3,7 modS8.
If A satlsﬁes (21), then Ao F = —Fo A.

Case ¢=1,5 mod8

In this case, F' is an element of K which is moreover symmetric, hence
a real multiple of Id. If A is an operator which satisfies (21), then AF = —F A,
which is impossible except if A = 0. Hence P91 = {0} in this case.

It remains to study the cases when ¢ = 3,7 mod 8. In this cases, f? =
—1. Let A the subalgebra of even elements in CI(W). As CI(W) = A& fA,
one has CI(W) ~ A®r C = Ac. Using previous notation, F2 = —Id and hence
the pinor space has a complex structure given by F' and the pinor space can be
regarded as a complex irreducible representation of the algebra Ac.

Case ¢ =3 mod8

In this case, the algebra A is isomorphic to Endy(E) for a H-structure
on E. If A is an operator which satisfies (21), then A? commutes with the
representation, hence belongs to K. The conditions (21) implies that A is a real
multiple of the identity, which contradicts (23), except if A = 0. Hence again
Pdet 1 _ {O}

Case ¢ =7 mod8

In this cases, the algebra A is isomorphic to Endg(S) where S is a real
form of E. The conjugation € with respect to S commutes with the action
of A, and anti-commutes with the action of f, hence anticommutes with the
action of odd elements, and in particular § o ®(w) = —®(w) o0 for any w € W.
Moreover, the inner product is associated to a Hermitian form on F for which 6
is Hermitian. So 6 satisfies (21). For any z € C, the condition § o R, = Rz o0
is satisfied. Hence, in this case the dimension of Pdet! ig 2. [ ]
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6. The low dimensional cases

In this last section we will determine the space P9 for the pinor space associated
to low dimensional Jordan algebras of Lorentzian type. We keep notation from
previous sections.

The cases where ¢ = 2, 3,5 have already been treated. In fact, for these
values of ¢, the Jordan algebra V = R @ W, is isomorphic to Herm(2,K),
where K = R when ¢ = 2, K= C when ¢ =3 and K = H when ¢ = 5, the
pinor representation being just the fondamental representation on K2 . Hence the
results from section 2 show that P9¢* only contains the constant polynomials.

Case ¢q=14

We use a specific realization of the Jordan algebra (and of the corre-
sponding Clifford algebra). The pinor space E has dimension 8 and admits a
quaternionic structure. So it is isomorphic to H? and can be realized as C*,
with the quaternionic structure (essentially) given by the 4 x 4 matrix

[0 L
J-(_Iz 0).

The Lorentzian Jordan algebra V4 = R @ R* is realized as the set of all
matrices

Tog U 0 v
u x9 —v O
&(x) = ®(x0, u,v) = 0 _% go T
) 0 u  Xo

where ¢ € R and u,v € C. In fact one can verify that the symmetrized Jordan
product gives

1
3 (®(z0, u, v)®(zh, v, v") + D(zf, v, v")P(z0, u, v))

!/
= O (zoz) +Re(<1;) ) (Z,)) , Tou' + zou, TV + THV) .

where (., .) is the standard Hermitian product on C?.
Consider the Hermitian form on C* given by

h(€1,€a,€3,€4) = 61]” — [€a” + [€3]° — [&a]®.
An elementary computation shows that
h(®(wo, u, v) (€1, €2, &3, €4)) = (25 — [ull® = [v]|*) h(&1, €2, &5, Ea)

so that h belongs to Pdet:1,
Let us introduce the matrices

0 0 1 0 1 0 0 O 0 01 O
0 0 0 1 0 -1 0 O 0 0 0 -1
T = -1 0 0 0 H= 0 0 1 0 2= -1 0 0 O
0 -1 0 O 0 0 0 -1 0 1 .0 O

Observe that Q@ = HJ = JH and that €2 is skew-symmetric and defines a
complex symplectic form on C*. Recall the following result.
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Proposition 6.1.  Let g € GL(4,C). Then any two of the following properties
imply the third one :

(i) Jg=gJ
(ii) g*Hg=H
(iii) g'Qg =Q

The elements which satisfy these conditions form a subgroup of GL(4,C) (even
of SL(4,C), denoted by HU(1,1) (the notation is borrowed from [H]).

As in the general case, let T' be the closed subgroup of GL(4,C) gener-
ated by the elements ®(zg,u,v) with 22 — |u|? — [v]? = 1.

Theorem 6.2.  The group I' coincides with HU(1,1).

Proof. As it is clear that ' € HU(1,1), we need only to prove the converse
statement. For the usual Cartan involution on SL(4,C), the Hermitian elements
of HU(1,1) (i.e elements of the form exp X with X in the p part of the Lie
algebra of HU(1,1)) are described as the elements g € GL(C*) which satisfy
Jg=9J,9g=g* and g*Hg=H.

The first condition guarantees that g is of the form g = ( @ b) . The

—-b @
second condition forces a = a* and b’ = —b. Hence g is of the form
Tog U 0 v
|l x —v O
9=l o —v 2 =
v 0 U  x

with g, 21 € R,u,v € C. One verifies that the last condition forces r; = ¢ and
z3—|u|?—|v|? = 1. Hence, there exists z = (xg, u,v) € V with 23— |u|?—|v|? =1,
such that g = ®(z). Lemma 1.2 then implies that I' = HU(1,1). m

Next we complexify the situation. Let us consider on GL(4,C) the
conjugation o defined by
o(g) =—-JgJ.

The corresponding real form is just GL(n,H). Consider now the subgroup
Sp2(C) = Sp(4,C) given by

Sp(4,C) = {g € GL(4,C) | ¢'Qg = Q}.

Then o preserves Sp(4,C) and the fixed points set of o in Sp(4,C) is just
HU(1,1).

On the space C* x C*, consider the conjugation (¢,n) — (iJ7, —iJE).
Then the imbedding C* — C* x C* given by

realizes C* x C* as a complexification of C*. The group Sp(4,C) acts on C* x C*

the diagonal action of Sp(4,C) on C* x C* is just the complexification of the
action of HU(1,1) on C*.
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Theorem 6.3. P9 is generated by the polynomial h.

Proof. Let p € P9%™ for some m. Then there exists a unique (holomorphic)
polynomial p on C* x C* such that p(¢) = p(&, —iJ€). The fact that p € Pdet
implies that p(g€) = p(§) for any g € HU(1,1). By holomorphicity of p, this
implies p(g&,gn) = p(&,n) for any g € Sp(4,C). As p is homogeneous (in the
ordinary sense) of degree 2m, the same is true for p. But now we can apply
the First Fondamental Theorem of invariant theory for the symplectic group (cf
[GW] Theorem 4.4.2.). It shows that p is proportional to the m-th power of
the symplectic form &'Qn. By restriction to the real form, we see that p is
proportional to the m-th power of the Hermitian form h. Conversely, it is clear
that h is determinantally homogeneous of degree 1 and so any polynomial in A
belongs to Pdet. n

A corollary of this result is the following identity.
Corollary 6.4.  Let (&1,&2,€3,64) be four complex numbers. Then
(161]? + [€2]? + €3] + |€4]?)? — 4]€1€5 + E58al® — 4]€, €4 — €3]

= (|&1]? = [&2]” + [€3]* = [€a]”)*.
Proof. The Euclidean product on C?* is

(€,m) = Re (&7 + &ally + €373 + €aTy) -

The map @ : E — V is then given by

Q(&1,62,8€3,84) = (|§1\2 + [&af? + [&5)% + [€4)?, 2(&&5 + Ea&s), 2(6:€4 — 5223))-

Now det Q(&1,&2,€3,&4) is equal to the left hand side of the identity and it
is determinantally homogeneous of degree 2, hence it must coincide (up to a
normalization factor) with h(€y, €2, £3,&4)?. The remaining constant is easily seen
to be 1. Needless to say, the identity can be easily verified by straightforward
computation. [ ]

Case ¢=6,7,8,9

The pinor spaces associated to the cases where ¢ = 6,7,8,9 are all of
the same dimension, namely 16, and in fact they admit a (very useful) common
realization on the space £ = O @& O, equipped with the standard inner product

(¢, m), (") = &Eo+ 1o

Case ¢ =9

The realization for ¢ = 9 has already be described in section 4. Let
Wy = R @ O considered as a 9-dimensional Euclidean space with the inner
product given by

<(331, Q), ('T,la q’)> = 'Tlxll + <Qa ql>(0>-
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For zy € R, (z1,q) € Wy let

Id R
P _ (xo + z1) Ids q ) .
('7:0;5[;17Q) ( Ra (xO _xl)IdS

This formula defines a representation of Vg = R& Wy on O Q. The spin group
Spin(9) in its 16-dimensional spin representation is known to be transitive on
the unit-sphere S5 (see [H]), and hence any determinantally homogeneous poly-
nomial being invariant by Spin(9) is a radial polynomial, that is a polynomial
in ||€]]2 + ||n]|?. But, for any ¢t € R, the action of the matrix

6t Ids 0

0 6_t Idg
should also preserve the polynomial, which is impossible, except for the con-

stant polynomials. Hence there are no non trivial determinantally homogeneous
polynomials in that case.

®(cosht,sinht,0) = (

Theorem 6.5.  For the representation of the Fuclidean algebra of Lorentzian
type of dimension 1+ 9 on the pinor space Q?, Pt is reduced to the constant
polynomials.

Case ¢ =38

Now let Wg = Q, Vg = R® O the 1+ 8-dimensional Euclidean Jordan
algebra of Lorentzian type, and consider the representation on £ = Q® O given

by
i‘oIdg R )
d(x0,q) = a .
(%0, 9) ( Ry  wolds

The orbits of the corresponding spin group Spin(8) in E are known. In fact
(see [H] Theorem 14.69) the orbit of the point (£2,7°) is given by

O¢ = {(&m) LIl = NI°11 IImll = [l°11}

If a polynomial p on E is invariant by Spin(8), it is constant on the orbits of
Spin(8), and hence there exists a function f defined on [0, +00) x [0, +00) such
that p(&,n) = f(E]]; ||n]])- Fix vo,wp € @ with norm 1. Then p(Avg, pwy) =
f(\ p) for all A\, > 0. The left hand side of this equality is a polynomial in
A, o which is even with respect to both A and p, hence can be written as a
polynomial of A\? and p?. So there exists a polynomial ¢ in two variables such
that p(¢,n) = q(||€]|% ||n]|?)- This may be rewritten as

p(&m) = r(IEN* + lInll* llgl* = llnll*)

with r a polynomial in two variables. Now assume that the polynomial p is also
invariant under the mappings

. cosht Idg sinht Idg
®(cosht,sinht) = (sinht Idgs cosht Id8>
for t € R. As [[¢]|* — ||n]|* is invariant under this transformation, whereas
I€11% + |Inl|* is not invariant, it is clear that the invariance of p under these
transformations is equivalent to the fact that r does not depend on the first
variable. Hence any determinantally homogeneous polynomial can be written as
a polynomial in ||¢]|> — [|n]|>. But the converse statement is easily seen to be

true.
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Theorem 6.6.  For the representation of the Fuclidean Lorentzian algebra of
dimension 148 on the pinor space Q? , P is generated (as an algebra) by the
quadratic invariant ||€]|% — ||n]]?.
Remark. The quadratic map () in this realization of the representation is easily
seen to be given by Q(£,7) = (||€]|2 + |Inl|?,7€). The corresponding polynomial
det Q(&,n) is determinantally homogenous of degree 2 and in fact is easily seen
to be equal to (|[£]|* — [[n]|*)?.

Case ¢q=7

Let W; = Im O = (R.1)* be the space of pure imaginary elements in
O, and let V; =R @ Wr;. We get a representation of V; on £ =0 O by

_ Xo Idg Rq
@(mﬂ)—( R, xOIdg)’ zo € R,q € Im(Q).
As ®(0,9)®(0,¢') = <_R(Q)Rq' —RSRq' ), the action of Spin(7) is just two

copies of the spin representation of Spin(7) of dimension 8. This is the situation
where the ¢riality phenomenon occurs. Recall the following results (see [H] p.
285).

Lemma 6.7. An element g € O(Q) belongs to Spin(7) if and only if

9(ad’) = 9()9(g~"(1)q")

for all q,q' € O.

Moreover, the spin representation of Spin(7) on the unit sphere in O is
transitive. The stabilizer of the element 1 is the automorphism group Aut(Q)
of the algebra O (which incidentally, turns out to be isomorphic to the special
simple group G4, but we won’t use this fact). Moreover, the group Aut(Q) acts
transitively on the unit sphere of Im Q.

As a consequence of this, it is possible to give a description of the orbits

of Spin(7) in O @ O.
Lemma 6.8. The orbit of (£€°,7°) under Spin(7) is given by

Ogo o = {(&,m) € 0D O [l = IE°1], llnll = [In°]], (€%, n") = (&, m)}

Proof.  First observe that the spin representation being unitary, Ogo 0 con-
tains the orbit of (€9 7°). Conversely, assume (£,7) and (£°,7°) are two couples
which satisfy the conditions

€l = 1€°1, Inll = 11m°1l, (€%, n°) = (&, m)-

As Spin(7) is transitive on the unit sphere S7 (in the spin representation), it
is enough to prove the conjugation result when ¢ = ¢° = 1. Now let 5 be
arbitrary and decompose n as 7 = a + ¢ where a is real and ¢ € Im O. As
a= (1,7) = (1,n°), the corresponding decomposition for 1° is n° = a +¢° and
observe that ||q|| = ||q°||. But we know that there exists an element g € Aut(Q)
such that g(g) = ¢°. This finishes the proof. [ |
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Let p € P9, Then p is invariant under the action of Spin(7) and
hence only depends on [[£[, [[n]| and (¢,7), or on [|€][*+ [In][>, I€]* — IIn]|* and
(&,m). Moreover p is also invariant by the transformations ®(cosht,sinht q),
where ¢ is a pure imaginary quaternion of norm 1. It is easily seen that
I€II2 — |Im||? and (&,n) are invariant under these transforms, but this is not the
case for ||£||? + ||n||?. This implies that p(£,n) only depends on ||£]|2 — ||n]|?
and (£,m). In other words, there is a function f defined on R? such that
p&,n) = FUIEI% = IInll?, (€,m)). Now let 4, j, k, e be four imaginary quaternions
of length 1 and two by two orthogonal. Then for A, any real numbers, one
verifies that the following identity holds:

A A
FOwp) =p(+ (5 + )i+ ujnt gk+e).

As the right hand side is a polynomial in (A, ) it shows that f is a polynomial
function. Hence the following result:

Theorem 6.9.  For the representation of the Fuclidean Lorentzian algebra of
dimension 147 on the pinor space Q? , P is generated (as an algebra) by the
quadratic polynomials ||&||2 — ||n||? and (&,7). n

Case ¢ =6

Fix a imaginary octonion of norm 1, say i, and let W = (R1 @ Ri)..
We realize the representation of the corresponding Jordan algebra Vg =R & Wy
on F by

Id R
(I)(;L'OaQ) - ("IiORq Zo %d) ) To € Raq S WG-

The commutant of the representation is isomorphic to H, with generators given

by
w (B 0 0 Id 0 R;
"\o —-Rr; )’ \=1d 0/’ \R, 0]/

The commutation relations are due to the relation R;o0 R; = —R; o R, valid for
all ¢ € Wg (cf property (16)).
It is easy to verify that the three real-valued quadratic polynomials

EN* = linl?, <& m), (€, Rin)

are determinantally homogeneous of degree 1 under the action of the represen-
tation.

Through the specified element ¢, O is given a complex structure, which
allows to identify @ with C*. The spin group Spin(6) acts diagonally on OO,
and on each factor, this action commutes with R;, hence is complex-linear.
Moreover, the Hermitian inner product on C* given by

(fa gl) = <§a §,> + \/—_1<§a RZ£I>

is preserved by the action of Spin(6). More precisely, one can show that
Spin(6) ~ SU(4), the latter acting in the standard way on @ ~ C* (see [H]).
Recall now the following classical result of invariant theory.
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Lemma 6.10. Consider the action of SU(n) on C*** =C" @ C" ... C",

k times
and assume k < n. Then the algebra of polynomials on C*** invariant under

the action of SU(n) is generated by the quadratic polynomials

(&, &m), 1<Im<<k.

Proof. This result is easily obtained by complexification from the correspond-
ing classical result for SL(n,C) acting covariantly on some copies of C", and
contravariantly on some other copies of C" (see [W]). If we want to stick to the
real Euclidean inner product (£,¢') = Re (&, &), we may replace the complex
valued invariants by the family of real valued invariants (£, &) and (&, R; ),
with 1 <[l <m <k. [

Assume p is a polynomial on F which is invariant under the action of
Spin(6). So p can be regarded as a polynomial on C* @ C* invariant under
SU(4). By Lemma 6.10 , p can be written as a polynomial in the following
quadratic polynomials

IENZ, linll?, €, m), (€, Rin)

which we prefer to write as

p(&m) =€ + Inll*, €N = lInll*, (€, m), (€, Rim))

where r is some polynomial depending on four variables. Now assume further p is
determinantally homogeneous (say of degree [). Let j be any norm 1 imaginary
octonion orthogonal to ¢. Then p has to be invariant under the mapping
®(cosht,jsinht), for t € R. As we have already seen, the last three expressions
€112 = 1ImlI?, (€, m), (€, Rin) are invariant under these transformations, whereas
it is easily seen that this is not the case for the first one ||£||? + ||n]|?>. It implies
that r does not depend on the first variable.
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