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Integral Structures on H-type Lie Algebras
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Abstract. In this paper we prove that every H-type Lie algebra possesses
a basis with respect to which the structure constants are integers. Existence of
such an integral basis implies via the Mal’cev criterion that all simply connected
H-type Lie groups contain co-compact lattices. Since the Campbell-Hausdorff
formula is very simple for two-step nilpotent Lie groups we can actually avoid
invoking the Mal’cev criterion and exhibit our lattices in an explicit way. As an
application, we calculate the isoperimetric dimensions of H-type groups.

1. Introduction

In this paper we prove that every H-type Lie algebra [7, 8, 9] possesses
a basis with respect to which the structure constants are integers. We are going
to call such a basis an integral basis. Existence of an integral basis implies via
the Mal’cev criterion that all simply connected H-type Lie groups contain co-
compact lattices. Since the Campbell-Hausdorff formula is very simple for two-
step nilpotent Lie groups we can actually avoid invoking the Mal’cev criterion and
exhibit our lattices in an explicit way.

The theory of H-type Lie algebras is related very closely to the theory of
Clifford algebras and Clifford modules (cf. [4, 10]) and we are going to use the
classification of Clifford modules in our construction.

We briefly recall the definition of H-type Lie algebras and establish notation
and conventions for the sequel. Let U and V be two finite-dimensional inner
product spaces over R of dimensions m and n respectively. Let J : Y — End(V),
z — J,, be a linear mapping satisfying

()] = lz]]v| (1)
Joo L (v) = —|zv (2)

for all z € U and v € V. Such a mapping J is called an orthogonal multiplication.
Because of (2), by the universal property of Clifford algebras [10, Proposition 1.1,
Chapter 1], J extends to an algebra homomorphism ¢ of the Clifford algebra
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C(U) into End(V) so that V acquires the structure of a module over C(U). We
will often write ¢(a)v = v and call aw the Clifford product of « and v.
After squaring, polarization of (1) yields

(J (v), Ty (v)) = (21, 22) 0] (3)
(S (1), Jo(v2)) = |2[*(v1,2) (4)

holding for all z, z1,2: € U and v, v, v2 € V. In order not to complicate notation,
we use the same notation for norms and inner products in ¢/ and V. It follows
immediately that

(J2(v1),v2) = —(v1, J:(v2)), (5)

i.e. J,(v) is a skew-adjoint endomorphism of V, J; = —J,. Now the Lie algebra
structure is defined on N'=U &V by requiring that ¢ be contained in the center
and that the bracket of two elements of V belong to U and satisty

(2, [v1,v2]) = (J(v1), v2).

In this way, N becomes a two-step nilpotent Lie algebra which is referred to
as a Heisenberg-type or H-type Lie algebra. Orthonormal bases zi,...,z, and
v1,...,v, of U and V respectively give rise to the basis z1,... ,2m,v1... ,V, of N
which is orthonormal. The only nonzero structure constants for A/ with respect
to this basis occur among numbers Af, ; defined by

[Ui, Uj] = Af,jzk. (6)

We are now ready to state our main result.

Theorem 1.1.  For every H-type Lie algebra N = U & V as above there
exist orthonormal bases zi,...,zm and vy,...,v, of U and V respectively so
that the structure constants Aﬁj of the Lie algebra N with respect to the basis
Zlyenn s Zmy V1 ..., U, are integers and in fact take values 0,1, —1.

The numbers Af; are clearly equal to (J,, (vi),v;) = (2xvs,v;), i.e. depend
only on the Clifford module structure and the inner product of V. According
to [10, Proposition 5.16], every Clifford module, i.e. a finite dimensional module
over C(U), admits an inner product such that the Clifford multiplication by
elements of YU C C(U) is an orthogonal multiplication. We remark that the
Clifford multiplication is orthogonal if and only if elements of ¢ act by skew-
adjoint transformations, i.e. if and only if (5) holds.

Thus every Clifford module gives rise to an H-type Lie algebra and Theorem
1.1 can be reformulated as a statement about Clifford modules as follows.

Theorem 1.2. Given an inner product space U with an orthonormal basis
21y 2m and a module V' over the Clifford algebra C(U) there exists an inner
product (-,-) on V and an orthonormal basis vy ... ,v, of V = (V,(,-)) so that
the Clifford multiplication J,(v) = zv by elements of U satisfies (1) and (2) and
(zivp, vq) is equal to 0,1 or —1 for all i,p,q.
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We will say that the choice of an inner product and a basis for V' as above is an
integral structure and that V with this additional structure is an integral Clifford
module. Observe that the fact that the values of (e;v,,v,) are 0,1, —1 is equivalent
to the assertion that each of the generators e; acts on the basis vy, vs,... ,v, by
a permutation and, possibly, some changes of sign.

. From now on we will abandon the notational distinction between an inner
product space U and the underlying vector space U.

2. Proof of Theorem 1.2

Since Clifford modules are completely reducible [10, p. 31], it suffices to
prove Theorem 1.2 for irreducible Clifford modules. Suppose dimi/ = k and let

€1, ... ,e, be an orthonormal basis of . We are going to identify ¢/ with R¥ and
C(U) with the algebra Cy generated over R by ey, ... , e, subject to relations
€i€; = —€;€, 6i2 =—1. (7)

According to the classification of irreducible Clifford modules, for every
k # 3 (mod 4) there exists only one isomorphism class of irreducible modules
over Cy. If k& = 3 (mod 4) there are two such classes, but the dimensions as
vector spaces over R of non-isomorphic modules are equal and the H-type groups
associated to them are isomorphic. We will denote an irreducible module over Cj
by Vk .

Classification of irreducible Clifford modules proceeds by induction on &, cf.
[10, p. 33], and we shall retrace this induction proving at every stage existence of an
integral basis. It will be convenient to first classify Z,-graded Clifford modules. We
briefly recall their definition. Denote by C? the subspace generated by products
of even numbers of generators e;,...,e; and by C; the subspace generated by
products of an odd number of generators. Then C} is a subalgebra, CY & C}, = Cy,
and . o

Ci-CiC C,Z:’J
for i,7 € Zs. A finite dimensional space W over R is a Zs-graded Clifford module
if W=W°pW!' and
Cy Wi cwHti

with 7,j € Zs.

We need to define an analog of integral structure on Zs-graded Clifford
modules (we use definitions and notation of [4, Chapter 11, Sections 4,6] regarding
Zs-graded tensor products of Clifford algebras and Clifford modules).

Definition 2.1.  Suppose W? is a module over CP. A choice of inner product
(-,-) on W° and an orthonormal basis w,...w,, with respect to this inner
product is called integral if the basis elements are permuted with a possible change
in sign by Clifford multiplication by all double products e;e; and

(zepw, zegw) = |2[*|w|?

for all w € W° and z € R¥. We will call W° with the inner product and a basis
satisfying the conditions above integral.
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If W0 is the 0-component of a Z,-graded Clifford module W then multiplication
by ey is an isomorphism of W° onto W'. Therefore we can transfer the inner
product on W% to W' and define the inner product on W° @ W' = W by
requiring the two summands to be orthogonal. A simple calculation then shows
that the Clifford multiplication by elements of RF is an orthogonal multiplication
and the elements of the basis wy, ... , Wy, exwi, ... exw,, are permuted by Clifford
multiplication by every e; with a possible change in sign. In particular, Theorem
1.2 holds for W. In the sequel we are only going to use inner products such that
W° 1L W' and the multiplication by e, maps W° onto W' isometrically.

Our proof of Theorem 1.2 will be carried out by showing that for every
k there exists an irreducible Z,-graded Clifford module W, with an integral
structure. This will imply that every (ungraded) irreducible Clifford module is
integral. It will follow a posteriori that all Zs-graded Clifford modules are integral.
The main fact in the classification of Clifford modules is that if W), and W3 are
irreducible Z,-graded modules over Cj, and Cy respectively, then W,®Wj is an
irreducible Zj-graded module over C4&®Cs ~ Ciis. Our proof of Theorem 1.2
will consist of exhibiting an integral irreducible Zs-graded Clifford module W, for
k =1,...,8 and then showing that W,®Wj is integral if W), carried an integral
structure. To handle the low dimensional cases we need the following general
lemma.

Lemma 2.2.  Suppose V is an integral module over the algebra C?. Then
W = C% ®co V' is a Zgy-graded module over Cy with the Zo-grading given by
Wo=1QV and W' =¢,®V . Thus W° has integral structure transfered from V
via the isomorphism v — 1 ® v. In addition, if V is irreducible as a CJ-module
then W is irreducible as a Zsg-graded module over Cl.

Proof.  This is obvious (see [4, Chapter 11, Proposition 6.3]). [

Our next task is to describe integral structures on Clifford modules over Cy
for k < 8. For k <7, we refer to the description of (ungraded) Clifford modules
given in [1].

Case k=1. R ~ jR is acting on C by complex multiplication. The real
and imaginary parts are 0- and 1-components of Z,-grading respectively and the
standard inner product together with 1 as the basis of the 0-component give the
integral structure.

Case k =2.  Consider the space of quaternions H equipped with the standard
inner product. Identify R? with the span of 7, j and let it act on H by quaternion
multiplication. This makes H into an irreducible module over C5. In addition,
the decomposition H = span{1,k} & span {7, j} is a Z,-grading and an integral
structure is given by the basis 1,%,7, 5.

Case k =3. In this case the space of quaternions becomes a module over
the Clifford algebra Cj represented in the algebra of endomorphisms of H as
the subalgebra generated by quaternion multiplications by ¢, 7, and k. Clearly,
the standard basis 1,7, 7,k is permuted with possibly a change in sign by these
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endomorphisms so that H as a module over C3 carries an integral structure.
However, this module does not have a natural Zs-graded structure. We regard
H as a module over CY C C3 and apply Lemma 2.2 to create an integral Zs-
graded irreducible C3-module structure on C3 ®¢g H.

To cover the remaining low-dimensional cases we will use the algebra of
octonions @ with its standard generators 1,4y, ...77 and multiplication table given
in [5, Page 448] with ¢ = —1.

Case k =4. This is analogous to the case ¥k = 2. R! is identified with
span{iy, i, 43,74} which acts on @ by octonion multiplication. The resulting
Clifford module is Z,-graded with the 0-component equal to span{1,is, is, 47} and
the 1-component span{iy,is,i3,44}. These bases are orthonormal with respect to
the standard inner product and give rise to an integral structure. This follows
from inspection of the multiplication table.

Case k =5,6,7. We treat these three cases simultaneously. The Clifford al-
gebra C) can be represented as an algebra of endomorphisms of @ generated
by transformations of octonion multiplications by 4;, 1 < j < k. The resulting
Clifford module V} is irreducible but not Z,-graded. As above, we regard it as
a module over C} which allows us to create an irreducible, Z,-graded, integral
Clifford module Wy = Ck ®¢o O using Lemma, 2.2.

Case k =8.  This uses the isomorphism, for every k > 2, ¢ : Cy,_; — C}
defined as follows [4, Chapter 11, Section 6]. Let © = zo+x; be the decomposition
of x € C into its 0 and 1 components. Then ¢(z) = zo + exx; where, given
standard generators ey, ... ,e; of Cy, we regard Cp_; as the subalgebra generated
by e1,...,e,_1. The octonions are a module over C7 as above (we relabel i; as e;)
which allows us to regard Q as a module over Cy by defining the multiplication
zo as ¢ '(z)o. Since ¢ '(e;) = e; and ¢ '(ege;) = e; for j < 7 and O was
integral as a module over C7, the resulting module over CY is integral. Applying
Lemma 2.2 we obtain an integral, irreducible, Z,-graded module W5 = Cs ®¢9 O.
We remark that Wy is irreducible as an ungraded Clifford module as well. This
is because WY is irreducible as a module over Cy (since the pair (WQ,CY) is
isomorphic to (V7,C7) and V7 is irreducible as a module over C7).

We are now ready for the inductive step in the argument. Suppose W
and W, are integral, Z,-graded Clifford modules over Cj; and Cj respectively.
Let eq,...,ex and fi,..., f; be the standard generators of C}; and C;. Suppose
W2 and W} are equipped with inner products and integral bases vy, ... ,v,, and
wy, ... ,w, respectively. Recall that as a vector space W,®W, is isomorphic to
W, ® W, so that we can equip W,®W), with an inner product by requiring that

(1 @ Y1, T2 ® y2) = (1, T2) - (Y1, Y2)-

In particular, different components W} ® le for (i,7) € Zy x Zy are orthogonal.
Under the isomorphism Cy®C; ~ Ciyy, cf. [4, Corollary 4.8] (note that our
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notation differs from the notation in [4] since we use the symbol & instead of ® to
denote the tensor product of Zs-graded algebras), the standard generators of Cy
correspond to e; ®1,...,e, R 1,1® f1,...1® f;. To exhibit an integral structure
we need a basis of (W,&W;)? = (W @ W) @ (W ® W}') in addition. The basis
that we are going to use is

{vi ®wj,ev; @ fiw;j |1 <i<m,1<j<n} (8)

Lemma 2.3. The bases described above give rise to an integral structure on
(Wp@W))° and, consequently, on WyQW,.

Proof.  We first verify that the Clifford multiplication by elements of the space
U spanned by the generators of C,®C; is orthogonal. Recall that it suffices to
verify that each element z € U acts on W,®W, as a skew-symmetric endomor-
phism. We abuse the notation and write z for an endomorphism associated with
z. Clearly,

(ei®1l)' =€ ®1=—-¢QR]1
lefi) =10 f =-1®f;

since Clifford multiplications on W), and W, are orthogonal. Since every element
of U is a linear combination of such products, our assertion follows.

To verify properties of the integral structure, it suffices to show that el-
ements of the basis (8) are permuted up to sign by the double products of
generators. There are three cases to consider (e; ® 1) - (¢; ® 1) = e;e; @ 1,
1®fi)-1®f)=1® fif;,and (&;®1)-(1® f;) = (e; ® f;). In the first two
cases the action is as desired since the multiplication by e,’s permutes v1,... ,vp,
up to sign and the multiplication by f,’s acts the same way on wi,...,w,. To
treat the third case, note that e, = +egeye, and f, = = f;f,f;. Thus, up to signs,

(ep @ fy) - (Vi ® wj) = exeperv; @ fifyfiw; = exvir @ frw;

since double products of generators of Cy and C; permute up to sign the distin-
guished bases of W) and W} respectively. Similarly,

(ep @ fq) - (exvi @ fiw;) = eperv; @ fyfiw; = exvyr @ frw;r.

This proves the lemma. ]

Corollary 2.4.  Suppose that Wy is an irreducible, integral, Zo-graded mod-
ule over Cy. Then W,@Ws is an irreducible, integral, Zs-graded module over
C,®Cs ~ Crig with the integral structure described above.

Proof.  All assertions except irreducibility are contained in the lemma above.
By [4, Chapter 11, 6.5] dimg W,®Wg = dimg W}, - dimg Ws = 16 dimg W}, is equal
to the dimension of an irreducible, Z,-graded Clifford module over Cyg. It follows
immediately that W,®Ws is irreducible. n
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Table 1: Dimensions of irreducible Clifford modules

An easy induction using the explicit description of irreducible, Zs-graded Clifford
modules over Cy,1 < k < 8 and the lemma above yields existence of an irreducible,
Zo-graded Clifford module W over Cj for every k.

Some additional work is required to show that every (ungraded) Clifford
module has an integral structure. Let a; be the dimension of an irreducible
Clifford module over C}, and let b, denote the dimension of an irreducible, Zs-
graded module over Cj. It follows from [4, Propositions 6.2 and 6.3, Chapter 11]
that ar = bgy1/2. From basic periodicity [4, 6.5, Chapter 11], ax;s = 16a; and
bxrs = 16b,. All values of a; and by can now be computed from Table 1, which
summarizes some of the information about Clifford modules of low dimensions.

Recall now (cf. [4, Chapter 6]) that if £ = 1,2,4,8 (mod 8) then the
dimensions over R of an irreducible Clifford module and an irreducible Z,-graded
Clifford module are equal. Thus Z,-graded Clifford modules W), constructed above
are irreducible as (ungraded) Clifford modules. The classification also says that
for these values of k£ there exists exactly one isomorphism class of Clifford modules
over Cy which proves Theorem 1.2 for £ =1,2,4,8 (mod 8).

Next consider the case k =3 (mod 4). According to the classification there
are two non-isomorphic Clifford modules over Cy. We are going to show that their
direct sum is isomorphic as an ungraded Clifford module to W, and that the
integral structure of W}, induces integral structures on the two modules. The key
role in the proof of this fact is played by the “volume element” w = ejes...é€x.
w belongs to the center of Cy and satisfies w? = 1, cf. [10, Proposition 3.3,
Chapter 1]. In addition, the multiplication by w is a symmetric operator on every
orthogonal Clifford module. This can be seen as follows. If k£ = 4] + 3, then

wr=ceef ;...ef =(—1)"Berep_y...e0 = — (— )weleg e =W,
since multiplications by e,’s are skew-symmetric and e,’s anti-commute. Now
define ¢, and ¢_ to be multiplications by central elements (1+w)/2 and (1—w)/2
respectively. ¢4 are self-adjoint and satisfy ¢% = ¢, i.e. they are orthogonal
projections onto their images. Since (1 + w)(l —w) = 0 and ¢, + ¢_ = 1 the
ranges of these projections are perpendicular. Since 14 w are central, they are in
fact (ungraded) Clifford submodules V; and V_ of Wj. Since wW) = W}, ¢4
is injective on W?. A count of dimensions shows that Wy, = ¢, WP & ¢ W} is
an orthogonal direct decomposition of W into two Clifford submodules. w acts
on VL by multiplication by +1 so that the two modules are non-isomorphic. To
conclude our analysis we exhibit integral bases of the two modules. We do the
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argument for V, since the argument for V_ is identical after 1+ w is replaced by
1—w. Let wy,...,w, be an integral basis of W, i.e. an orthonormal basis which
is permuted up to sign by multiplications by double products e;e;. Let

1
vy = —=(1+w)w, eV
p \/5( ) p +
for p=1,...,m. Since wW? = W} is perpendicular to W}, the Pythagorean
theorem insures that this is an orthonormal basis. For a generator e; of Cp we
calculate
(€ivp, vg) = (e;wp + ewwp, Wy + wwy) /2.

Observe that eww, and w, belong to W) while e;w, and ww, are in W} .
Therefore the inner product above simplifies to

((eiwpa wwq) + (eiwwpa wq))/2 = (eiwpa wwq)a

since w is central and self-adjoint. Now ww, can be expressed as a product of e;
times a product of an even number of generators of C. It therefore follows from
the definition of an integral basis that e;ww, is up to sign equal to e;wy so that,
finally

(€ivp, €ivg) = (Up, vg) = bp g
which proves that the basis vy, ... ,v,, is integral.

The remaining two cases of Theorem 1.2 are k¥ = 5,6 (mod 8) say k =
8l + r, with r equal to 5 or 6. By the classification, in either case there is only
one isomorphism class of irreducible modules over C} and the dimension over R of
an irreducible module in this class is equal to the dimension of the Clifford module
V, over Cyy7 constructed above. Clearly, Cy can be regarded as the subalgebra
of Cy47 generated by the first £ generators so that V. = V, becomes a module
over Cy. It is irreducible since its dimension is that of an irreducible module and,
trivially, integral. Theorem 1.2 is proved.

We conclude this section with a very simple proof, available now, of the
fact that two non-isomorphic Clifford modules over Cy, k = 3 (mod 4) give rise
to isomorphic H-type algebras. This is very well known, cf. [11], but we give the
proof for completeness. The structure constants of the H-type Lie algebra U &V,
associated to the Clifford module V, have been computed above and are equal to
(€ivp, vg) = (e;wp, ww,) (here U = span{ey,...,ex}). In the analogous calculation
for V. w is replaced by —w so that the corresponding structure constants for

!

the Lie algebra U @& V_ (with respect to the basis ey,...,ex,v],... v, where
vy = (1/v/2)(1 — w)w, are negatives of the structure constants for U & V, if we
choose the obvious correspondence between bases of V., and V_. However, if we
deploy the set —ey,...,—ek,v],...,v],...,v,, as the basis for U @ V_ instead,
the structure constants for the two Lie algebras are equal so that the algebras are

isomorphic.

3. Examples and applications

In this section we show that every simply connected Lie group of Heisenberg
type contains a co-compact lattice. We are also going to calculate the isoperimetric
dimension of such groups.
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We choose and fix an integral basis as in Theorem 1.1. Since H-type Lie
algebras are two-step nilpotent (in particular nilpotent) the exponential mapping
is a global diffeomorphism of the Lie algebra and the group. We will therefore use
it to identify the two. In addition the Campbell-Hausdorff formula that expresses
the group multiplication in terms of the Lie bracket takes a particularly simple
form

XY =X+Y+1[X,Y] (9)

where X, Y € N =U@&YV asin the Introduction. Let Uy be the abelian subgroup
of U consisting of linear combination with integer coefficients of the generators
€1y... 6, of C(U) ~ Cy. Let Vz be the lattice in V' generated by elements of an
integral basis. Since [Vz,Vz] C Uz our candidate for the lattice L in the group
(N, -) is the subset

L= %UZ & Vy.

Verification of this claim is straightforward after first checking that —X is the
inverse of X with respect to the group operation. Thus L is a subgroup of N
and it is obviously discreet. The product of an arbitrary element u + v of N
with w € V is equal to v + (1/2)[v, w] + v+ w and has v+ (1/2)[v,w] as its U
component and v + w as the component in V. Given v we can choose w € V7 so
that v+ w has all coefficients in the interval [0, 1] when expanded with respect to
the distinguished basis of V. We can then act on u + (1/2)[v, w] by elements u
of (1/2)Uy. Since this action is by ordinary translation (Uz is contained in the
center of V) we can easily achieve that u+ v+ (1/2)[v, w] 4+ u; has its coefficients
with respect to the basis eg,... , e, in the interval [0,1/2]. Hence all coefficients
in the expansion of

1
(u+v)-(u1+w):u+u1+§[v,w]+v+w

with respect to the integral basis chosen lie in [0, 1], which proves that L is co-
compact.

To calculate the isoperimetric dimension of N we will need to calculate the
ranks of groups in the lower central series of L. Using our explicit description
of the product in N one verifies very easily that the bracket operation of the Lie
algebra coincides with the commutator operation in the group. We therefore have
[L, L] = [Vz, Vz] = Uz. The second equality requires a proof. Observe first that

(2, [v, w])| = [(zv,w)| < |2 - o] - |w]
if ze U, v,we V. It follows that
|[v; w]| < Jof - |w].

Now let e; be one of the generators of C. Then e; induces a permutation of the
basis vectors of V' with a possible change in sign. Thus given v,, eyv, = Fv,
for some ¢. It follows that |(e;, [vp, v4])| = [(e1vp, vg)| = 1 so that e; = £[vy, vy].
Thus each of the generators e; is a commutator which proves the claim. We see
therefore that

L/[L, L] ~ (%Uz/Uz) OVy, =7 ® V5.
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We remark that there is no ambiguity in the interpretation of the quotient above
since [L,L] € U and the group multiplication by u € U amounts to the the
translation by v because of (9).

A theorem of Bass [2] gives the estimate of growth of L in the word metric
with respect to a finite set of generators. In our case we can take for example
the generating set S given by the vectors of an integral basis and their negatives.
The lower central series of L reduces to Ly = L D Ly = [L,L] D Ly = 0.
The ranks of successive quotients are therefore equal to dimV and dimU. If
d=dimV 4 2dim U then by Bass’ theorem L has polynomial growth of degree
d, i.e. the number g(R) of distinct elements of L in the metric ball of radius R in
L satisfies

g(R) > cR".

where the constant ¢ depends on the choice of the generating set. A result of
Coulhon and Saloff-Coste [3] asserts that the Cayley graph of a group of polynomial
growth of degree d satisfies a d-dimensional isoperimetric inequality. Since every
Lie group has bounded geometry we can invoke Kanai’s theorem [6] to conclude
that the H-type group under consideration satisfies an isoperimetric inequality of
the same kind. More precisely we have the following.

Theorem 3.1.  Suppose N = U &V is an H-type group equipped with a left-
imwvariant metric. There exists a positive constant ¢ such that for every relatively
compact subset F of N with smooth boundary OF we have

A@F)
V(F)l—l/d =6

where A(OF) and v(F') denote the n — 1-dimensional volume of the boundary of
F and V(F) stands for the volume of F.
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