The Abelian Subgroup Conjecture: A Counter Example

Wolfgang Herfort

Communicated by K. H. Hofmann

Abstract. If an abelian subgroup A of a locally compact group G has the same weight as G, it is termed large (see [3]). It has been conjectured that every compact group has a large abelian subgroup. In this note we show that no free pro-p group F(X) on set X of cardinality greater than \aleph_0 contains a large abelian subgroup.

1. The Background

The weight w(G) of a locally compact topological group is defined as the minimal cardinality of a base of open sets. K. H. Hofmann and S. A. Morris in [3] proposed the following:

Conjecture 1.1. (The Abelian Subgroup Conjecture) Every infinite compact group G has an abelian subgroup A whose weight equals that of G.

For brevity, we adopt the convention in [3], to say G is an LAS-group, if it satisfies the conjecture. As an important consequence of their investigations the authors prove the following extension Theorem (Theorem D):

Theorem 1.2. Let G be an infinite compact group and N a closed subgroup such that G/N and N are LAS-groups. Then G is an LAS-group.

In particular, when $N = G_0$ is the connected component of G they show in Corollary E:

Corollary 1.3. Let G be a compact group and assume that G/G_0 is an LAS-group. Then G is an LAS-group.

Therefore, if the Abelian Subgroup Conjecture is false, it should fail for some profinite group. According to [2], a compact group G is *strictly reductive*, if it is isomorphic to the direct product of simple compact groups (a compact group is called simple, if it does not contain nontrivial closed normal subgroups). Then in [3] the same authors show in Corollary F:

306 Herfort

Corollary 1.4. Every strictly reductive compact group is an LAS-group.

The most important step in further reducing the Abelian Subgroup Conjecture is Theorem 3.4, the *Countable Layer Theorem*, in [2], which, together with Theorem 4.4, the *Topological Decomposition Theorem*, implies the following theorem:

Theorem 1.5. Every profinite group G has a series $G = G^0 > G^1 > \dots$ of characteristic closed subgroups with each G^i/G^{i-1} strictly reductive and $\bigcap_{i\in\mathbb{N}} G^i = \{1\}$. Moreover $w(G) = \sup_{i\in\mathbb{N}} \{w(G^i/G^{i+1})\}$.

Proof. The last statement is a consequence of Theorem 4.14 in [2].

2. The Counterexample

Profinite groups admit, for every prime p, p-Sylow subgroups, any two of them being conjugate, and every pro-p subgroup of G being contained in a suitable p-Sylow subgroup. The *cofinality* of a cardinal \aleph is the smallest cardinal \aleph' such that the set of predecessors of \aleph contains a subset S of cardinality \aleph' satisfying $\aleph = \sup S$.

Lemma 2.1. Let $G = \prod_{j \in J} S_j$ with simple compact groups S_j .

- (i) If w(G) has uncountable cofinality, then G has either a torus subgroup T or a p-Sylow subgroup P for a some prime p such that w(T) = w(G) or w(P) = w(G), respectively.
- (ii) If the cardinal \aleph has countably infinite cofinality, then a family of groups S_j of prime order can be selected so that G has weight \aleph and all its Sylow-subgroups have a weight that is properly smaller than \aleph .

Proof. In both cases w(G) is infinite. We assume $w(G) \geq \aleph_0$. The identity component G_0 is a product of simple Lie groups. It has a maximal torus T such that $w(T) = w(G_0)$. Let S be a system of representatives of the finite simple groups; note that S is countable. Then $G = G_0 \times \prod_{S \in S} S^{J(S)}$ for a countable family of cardinals J(S). Then $w(G) = \max \{\aleph_0, w(G_0), \sup \{\operatorname{card} J(S) : S \in S\}\}$

Assume now that w(G) has uncountable cofinality. Then, since S is countable, either $w(G) = w(G_0) = w(T)$ or there is an $S \in S$ such that $w(G) = \operatorname{card} J(S)$. In the second case let p be any prime such that S has a nontrivial p-Sylow subgroup. Then $S^{J(S)}$ contains a subgroup isomorphic to $\mathbb{Z}(p)^{w(G)}$ and thus G has a p-Sylow subgroup of weight w(G).

Assume next that \aleph is an infinite cardinal of countable cofinality. Let $\{\aleph_n:n\in\mathbb{N}\}$ be a sequence of infinite cardinals $\aleph_n<\aleph$ such that $\aleph=\sup_{n\in\mathbb{N}}\aleph_n$. Let $\{p_n:n\in\mathbb{N}\}=\{2,3,5,7,\ldots\}$ be the sequence of primes in ascending order. Set $G=\prod_{n\in\mathbb{N}}\mathbb{Z}(p_n)^{\aleph_n}$. The weight of the p_n -Sylow subgroup $\mathbb{Z}(p_n)^{\aleph_n}$ of G is $\aleph_n<\aleph=\sup_{m\in\mathbb{N}}\aleph_m=w(G)$.

Lemma 2.2. For any profinite group G whose weight w(G) has uncountable cofinality there exists a p-Sylow subgroup G_p with $w(G_p) = w(G)$.

HERFORT 307

Proof. The Countable Layer Theorem 1.5 yields $w(G) = \sup_{i \in N} w(G_i/G_{i+1})$. Since w(G) has infinite cofinality, there is a natural number i such that $w(G) = w(G_i/G_{i+1})$. The hypotheses of 2.1 apply to G_i/G_{i+1} and secure the existence of a prime p such that the p-Sylow subgroup P_i of G_i/G_{i+1} satisfies $w(P_i) = w(G)$. Let P be the p-Sylow subgroup of G. The image PG_{i+1}/G_{i+1} of the p-Sylow subgroup P of G in the quotient G/G_{i+1} is a p-Sylow subgroups. Thus it contains a conjugate of the p-group P_i . Therefore $w(P) \geq w(PG_{i+1}/G_{i+1}) \geq w(P_i) = w(G)$. Trivially, $w(P) \leq w(G)$. Hence w(P) = w(G). This proves the lemma.

Thus, if there is any profinite counterexample to Conjecture 1.1, there should be one which is a pro-p group and we turn to describing one of them.

For this purpose recall the concept of a free pro-p group: Let X be any set, then there is a pro-p group $F_p(X)$, unique up to isomorphism, containing X in such a way that every open normal subgroup contains all but a finite number of elements of X, and having the following universal property: Assume that $f: X \to G$ is any function into a profinite group such that for every open normal subgroup N of G, the identity neighborhood $f^{-1}(N)$ contains all but a finite number of the elements of X; then there is a unique morphism of topological groups $F_p(X) \to G$ extending f. The details can be found e.g. in Chapter 3 of [4] and in Chapter 5 [5].

Example 2.3. Fix any prime p and an infinite set X. Then $F_p(X)$ is a compact group of weight $\operatorname{card}(X)$ such that every closed abelian subgroup is isomorphic to the additive group of p-adic integers \mathbb{Z}_p , whose weight is \aleph_0 .

In particular, whenever $\operatorname{card}(X) > \aleph_0$, $F_p(X)$ is a counterexample to Conjecture 1.1.

Proof. Since |X| is infinite, [4], Proposition 2.6.1 (b) together with Proposition 2.6.2, or [5], p. 84, Lemma 5.5.1, yield $w(F_p(X)) = |X|$. Let A be any maximal abelian subgroup of $F_p(X)$. Then, by Corollary 7.7.5 in [4], or by [5], p. 83, Theorem 5.4.6, or by [1], the subgroup A is again a free pro-p group; since A is abelian and nonsingleton, $A \cong \mathbb{Z}_p$.

Aacknowledgement: The author would like to thank K. H. Hofmann for lively email discussions, contributing Lemma 2.1 and adjusting the original proof of Lemma 2.2.

308 Herfort

References

- [1] Cossey, J., G. H. Kegel, and L. G. Kovács, Maximal Frattini extension, Arch. Math. **35** (1980), 210–217.
- [2] Hofmann, K. H., and S. A. Morris, A structure theorem on compact groups, Math. Proc. Cambridge Philos. Soc. 130 (2001), 409–426.
- [3] —, Compact groups with large abelian subgroups, Math. Proc. Cambridge Philos. Soc. 133 (2002), to appear.
- [4] Ribes, L., and P. A. Zalesskii, *Profinite Groups*, Springer-Verlag, Berlin etc., 2000, xiv+435 pp.
- [5] Wilson, J. S., "Profinite Groups," Oxford Univ. Press, 1998, xi+284pp.

Wolfgang Herfort University of Technology Vienna, Austria herfort@tuwien.ac.at

Received August 30, 2001 and in final form October 10, 2001