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Abstract. Let (G,G') be the reductive dual pair (Sp(n,R),O(k)) or
(U(p,q),U(k)), and let K be a maximal compact subgroup of the noncompact
group G. Then for the representations 7w of G which occur in the Howe dual-
ity correspondence for (G,G'), we construct explicit intertwining maps between
mixed models of 7 and spaces of holomorphic sections of vector bundles over the
hermitian symmetric space G/K, where G/K is embedded in its holomorphic
tangent space as a type III Siegel domain. This result provides a link between
the original construction of these representations using tube domain and type
IT Siegel domain realizations of G/K and more recent constructions using the
bounded domain realization of G/K .

1. Introduction

Let (G,G") be the reductive dual pair (Sp(n,R),O0(k)) or (U(p,q),U(k)). Then
the noncompact group G is of hermitian type, meaning that G/K is a hermitian
symmetric space for K maximal compact in G, and the representations 7 of G
(a suitable covering group for G) that occur in the Howe correspondence are all
unitarizable highest weight representations. A natural way to try to geometrically
realize these representations of G is to find appropriate invariant subspaces of
sections of vector bundles over G/K . In this paper, we obtain such a realization
by constructing a set of new and explicit intertwining maps between mixed models
[11] of these representations and spaces of holomorphic functions on unbounded
realizations of G/K known as type III Siegel domains.

Our results rely on a method due to Davidson and Fabec [3] that produces
an intertwining map between an abstract unitary highest weight representation for
a hermitian linear group G and a multiplier representation on a function space
on the bounded domain realization D of the hermitian symmetric space G/K.
In particular, their method produces a G-intertwining map between Fock models
for the representations we consider and reproducing kernel spaces of holomorphic
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vector-valued functions on D. By using the geometric framework of Siegel do-
mains and the Davidson-Fabec construction, we obtain a new set of intertwining
maps corresponding to mixed models of the oscillator representation. First, we
fix partial Cayley transforms ¢,, 1 < b < r, where r is the real rank of G, and
consider the image S, under ¢, of the bounded domain D via the Harish-Chandra
embedding of G/K in its holomorphic tangent space. For b # r, these domains
are type III Siegel domains in the sense of Piatetski-Shapiro [17]. Second, we define
partial Bargmann transforms B, which intertwine mixed models and Fock models
of w. We show how the action of the inverse partial Bargmann transform on the
space of G'-invariant polynomials and the space of G’-harmonic polynomials can
be reinterpreted in terms of the geometric action of the partial Cayley transform.
As a result, in Theorem 8.8 and Theorem 13.5, we obtain explicit intertwining
maps between mixed models of highest weight representations and multiplier rep-
resentations of holomorphic functions on S,. For the case b = r, we retrieve the
intertwining maps found in Kashiwara-Vergne [14]. The structure of the differ-
ent Siegel domain realizations Sy is closely connected to the boundary component
theory of the bounded domain D [22]. Thus we obtain a new connection be-
tween the polarization of models of the oscillator representation and the boundary
component theory of D, which could be of interest in the study of automorphic
forms.

In Sections 2 and 3 we outline a (straightforward) generalization of the
Davidson-Fabec construction [3] for arbitrary covers of linear hermitian groups.
Sections 4 and 5 describe the dual pair (Sp(n,R),O(k)) and the Fock model
for the representations of %(n,R) which occur, while in Section 6 to Section 8,
we describe the domains S, and partial Bargmann transforms, and we construct
our new Sp(n,R)-intertwining maps for mixed models. Background on the Fock
model for the second dual pair (U(p,q),U(k)) is given in Sections 9 and 10, while
in Sections 11 to 13 we develop our intertwining maps for mixed models of the
U(p, q)-representations in the Howe correspondence.

This work was done as part of my doctoral dissertation under the supervi-
sion of Prof. Joseph A. Wolf. I would like to thank Prof. Wolf for his guidance and
support.

2. Lifting Factors of Automorphy

As we will be working with non-linear Lie groups, we need to define various notions
in the geometry of hermitian symmetric domains for arbitrary covers of linear
groups. In particular, we need to describe how to lift the factor of automorphy for
the linear group to a covering group. These ideas are well-known and can be found
in a number of references [20, 10, 21]. For convenience, we follow our exposition
in [15].

Let g be a simple Lie algebra over R with Cartan decomposition g = ¢&®p.
We assume that [£,€] # €. Then ¢ has one dimensional center 3(£), and we can
find an element H € 3(¢) such that ad(H) gives a complex structure on p. This
gives the decomposition gc = p; @ €c @ p_, where p, are the +i eigenspaces of
ad(H) on pc and p, = p_ under conjugation with respect to the real form g of
dc-

Let G¢ be the connected, simply connected group with Lie algebra gc.
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Then G¢ is a complex simple Lie group. Let K¢ be the connected subgroup
of G¢ corresponding to ¢c. Let P, = exp(py), P. = exp(py). Then the map
pr x K¢ x p_ — Gg given by (Z,k,W) — exp(Z) kexp(W) is a holomorphic
diffeomorphism onto a dense open subset ) = P, KcP_ of G¢. We can write
g € Q uniquely as g = (9)+k(9)(9)-, (9)+ € Px, k(g) € Kc. Then g+ k(g) is a
holomorphic map Q2 — K.

Let G C G¢ be the connected subgroup of G¢ corresponding to g C gc.
Then G is a linear real Lie group, G C P, K¢P_ and GNK¢P_ = K, where K is
the connected subgroup of G corresponding to €. Finally, G/K is a noncompact
hermitian symmetric space, and we say G (or g) is of hermitian type.

The map ¢ : © — p, given by exp(((g9)) = (9)+ induces a holomorphic
diffeomorphism of G/K onto the domain D = ((G) C p;. The set D is a bounded
domain in p,, and the map G/K — D C p, is known as the Harish-Chandra
embedding.

For (g,7) € G¢ x py such that gexp(Z) € Q, we define g(Z) € p,,
j(g,7Z) € K¢ by the formulas

exp(9(Z)) = (gexp(Z))+,
j(9,Z) = k(gexp(Z)).

Now consider a covering map v : G — @ of Lie groups, with K the maximal
compact subgroup of G such that V(K ) = K. We can define an action of G on
Dby §-Z=v(3)(Z). Thus D can be identified with G/K .

The maximal compact subgroup K C G is a linear group and therefore
has a complexification K¢ corresponding to £c. We can extend the covering map
v: K — K to a covering map v : K¢ — K¢. When we have Z € p, for which
j(g,Z) is defined for all g € G, we can define a map which we will also call j by
(7,2) — j(w(7), Z) for § € G. We need to lift this map to K¢.

The following statement comes from [15, Proposition 1.1.1]:

Proposition 2.1.  Let U be any connected open domain in p, on which the
function j: G x U — Kc_is defined. Fiz a basepoint Uy € U. Then there exists a
unique holomorphic map j : G XU — K¢ such that ]( o) = 1z, and Voj = j.

In particular, we have a unique holomorphic lift:

j:GxD—Ke,  j(l50) =1z,

Corollary 2.2. The map 3 GxD— I?(c satisfies the cocyle relation
30192 2) = (G152 £)j(@. 2), §1.52€ G, Z€D (1)
and the property
ik, Z) = k. 2)
Finally, the canonical kernel function ¢ : D x D — K¢ is defined by

a(Z,W) = jlexp(W) ,Z)"
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and satisfies

-1

9(0,2) =q(2,0) =1, q(W,2)=q(Z,W)
. 1
a(9(2),g(W)) = j(9, Z)a(Z,W)j(g, W)
Since D is simply connected, we obtain a unique holomorphic lift

i:DxD— Ke, 0,0)=1g

C

such that

-1

i(9(2),9(W)) = j(9, 2)q(Z,W)j(g, W) . (3)

3. The Davidson-Fabec Construction

Let G be a linear group of Hermitian type and w an irreducible unitary highest
weight representation of G' on a Hilbert space H. In [3], Davidson and Fabec give
a geometric construction of an intertwining map between (w,H) and a space of
holomorphic sections of a homogeneous vector bundle over G/K with G acting by
translation. The latter space is realized as a space of holomorphic vector-valued
functions on the bounded domain D. _

We will need to extend the result in [3] to arbitrary covers v : G — G of
the linear group G. We will outline the original argument, making the necessary
reformulations to handle our more general setting. _

Let w be a nontrivial irreducible highest weight representation of G' on
a Hilbert space H with inner product (-|-). Let H C H be the K-span of the
highest weight vector. Then H is an irreducible K -space, and we let 7 denote the
restriction of w to V, = H. Since [bc, p+] C p+, we have T-v =0 for all T € p,
and v € H. N
B Extend 7 to a holomorphic representation of K¢, the complexification of
K. Then we define:

J: G x D — Aut(V;), J(9,T)=71(j(9,T)).

Let T € p.. Define gr : H — H formally by grv=> ", (73 ° for v e H.
By [3, Theorem 5.1] we have:

Theorem 3.1.  Let v be a nonzero vector in H and T € p,. Then the series
which defines qrv converges if and only if T € D.

The main result is a reformulation of [3, Theorem 6.1]:

Theorem 3.2. LetveH and §€ G. Then w(g)v = @) ) (9, 0)*'o.

Theorem 3.2 leads easily to the following Proposition by the proof of [3, Proposition
7.1].

Proposition 3.3. Let g € é, T eD,and veH. Then

w(@)arv = @@ J (G, 1) v.

Now the previous Proposition and the irreducibility of w give:
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Proposition 3.4. The span of the vectors qrv, T € D, v € H, is dense in the
Hilbert space H.

Thus it will be sufficient to determine the intertwining operator on the set of
vectors qrv. We first define a kernel function on D:

Theorem 3.5. There is a positive definite operator-valued kernel function Q) :
D x D — Aut(V;) such that

(grvlgsw) = (Q(S, T)v|w). (4)

Following [3], as @ is a positive definite operator-valued kernel function,
we use a result of Kunze [13] to construct a Hilbert space H(D,7) of continuous
functions f : D — H such that:

The span of {S +— Q(S,T)v:T € D,v € H} is dense in H(D, 7);
For S € D, the map eg : f — f(S) is a continuous map H (D, ) — H;
(S,T) = egey for all S,T € D;
The inner product on H(D, 7) is given by
(QC, TI|Q(, Sw) = (Q(S, T)vjw)y,.

Using property (3) of ¢ and the fact that 7(k) = 7'(75)*_1 for k € K¢, we establish:

Proposition 3.6. Let S,T €D, € G. Then

Q@-S.3-T)=J(@GS)Q(S,T)J(g,T) "

It follows, using arguments of Kunze [13] that H(D, ) is a representation space
for G':

Proposition 3.7.  The formula T(9)f(S) = J(g=',8)7'f(g~" - S) where f €
H(D, 1), defines a strongly continuous unitary representation of G on H(D,T).

Finally, we can write down the intertwining map as in [3]:

Theorem 3.8. The map grv — Q(-,T)v extends to an intertwining operator
= between (w,H) and (T, H(D,7)). The intertwining map can be defined globally
by Ef(S) = qsf for f € H.

4. The Fock Model for Sp(n,R)

We let Gc = Sp(n,C) be the group of automorphisms of C?" preserving a
nondegenerate antisymmetric bilinear form J. Fix a basis with respect to which

J = (10 _gn), and define an indefinite hermitian form on C*" by (u,v) =

— Z?:1 UV + Z?:l Un+jUn4; With respect to the same basis. We have a real form
G of Sp(n,C), isomorphic to Sp(n,R), defined by

G = Sp(n,C) NU(n,n) = {(g %) . AA* — BB*=1,,'AB = tBA}
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. : A 0
with maximal compact subgroup K = U(n) = 0 A :A€eU(n); and
Harish-Chandra decomposition gc = py + €c + p_, where

b {0 %) eomac)
be = {(%( _9X> . X € gl(n, (C)}

b= {(3 8)Y e Symn(C)} -

A B
C D
Q= P,KcP_ C G if and only if D is nonsingular [19, Lemma 7.3], and for g € Q
we have a unique decomposition g = (g)+k(g)(g)_ given by

(e 5)=0"7)(% )b o)

We identify K¢ with gl(n,C) via (61 tj_l

Gc¢ X py such that g-exp(Z) € 2, the automorphy factor is given by

Let Py = exp(py). Then g = < belongs to the dense open subset

) < A. Then for (¢9,72) €

i(9,2) = k(g exp(2)) ="(CZ + D)
and the action of g on p, defined by exp(g(Z)) = (g - exp(Z))+ is given by
9(Z)=(AZ+ B)(CZ + D).

The image of the Harish-Chandra embedding G/K — D C p, is given by
the generalized Siegel disk

D = {n-planes pz : (-,)|,, > 0} ={Z € Sym,(C) : 1, — Z*Z > 0}

where we use the notation that W > 0 if W is positive definite.
Fix £k > 1 and let M = M, ;(C) with inner product (wlw') = Tr(ww'™).
We realize the Heisenberg group H = M x R with group law

(w; 1) (w's 1) = (w + w's £ + 1" + Im(w]|w')).

Let F be the Hilbert space of holomorphic functions on M which are square-
integrable with respect to the Gaussian measure du(w) = e "®)dw. Note that
F has a reproducing kernel K given by K (z,w) = ™) so that we have

() = /M (=11 F(4p) =m0 gy

for feF and z€ M.

As is well known, we obtain an irreducible unitary representation p, of H
on F with central character x(t) = e™™ by

po(w; ) f(w') = e ™tem W W) e=5wiw) £ (4" qp),
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We define an action of G on M by g-w = Aw — 1Bw for g = <% g) and

w € M. If we identify w with the 2n x k matrix (_1:.]@> , then the action g - w

simply becomes matrix multiplication.

Via the action w +— ¢ - w, we can identify G as a group of real-linear
automorphisms of M that preserve the real symplectic form Im(-|-). It follows
that G acts as a group of automorphisms of H preserving the center 0 x R of
H, and g € G leads to a unitary representation pf(w;t) = po(g - w,t) with the
same central character x. Thus by the Stone-von Neumann theorem, pj and

po are unitarily equivalent, and we obtain a projective representation w : G —
U(F)/U(1) defined by

w(g)po(w;t) = po(g - w;t)w(g). (5)

By straightforward calculations as in [6, Proposition 4.31], we obtain the
following description of the action of G'.

A B

Theorem 4.1. For g = (E 1

on F by

) € G, define the operator w(g) modulo +1

w(g)f(z)=/MKg(z,w)f(w)e_“(“’“’)dw, (6)

Kg(z, ’LU) — (detfg A)e%r Tr(tzEA’lz)eﬂ' Tr(tEA’lz)e%r Tr(tEAleE)

where the sign of det™2 A is left undetermined. Then W(g) is a unitary operator
modulo + satisfying (5) and moreover W(g:)w(g2) = £W(g192)-

For T € p, we can define an entire function on M by

& (2|Tz) _ e%" Tr(2t2T*)

ar(z) = e e TreT2),

Now, by a generalization of of the proof for the case kK =1 given in [6, Proposition
4.69], we obtain:

Lemma 4.2. The function qr lies in F if and only iof T € D.

We use the ¢r notation and also our expression for the reproducing kernel K on
F to obtain:

Lemma 4.3.  The operator w(g) given by (6) can be expressed as
@(g)f(2) = (det > A)QBZ—I(Z)/ T_a-1p(w)K(A7 2z, 0) f(w)e ™ Wdw.  (7)
M

We wish to construct from @ a representation of the the double cover G of
G. We use the following description of G. Consider the function d : G x D —
C — {0} given by d(g,Z) = det(j(g,Z)). Since D is simply connected, a branch
of the square root function is uniquely determined by its value at a single point.
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Given g € G, we identify the choice of branch of d2 (g9, 7Z) by its value at Z =0,
and we obtain a pair (g,d?(g, Z)) < (g,t) where 2 = d(g,0) = det(k(g)). We
define G as the set {(g,d%(g, Z))} with multiplication

(91,47 (91, Z)) (92, 42 (95, Z)) = (9195, 4 (g1, 95(2))d2 (g5, Z)). (8)

By the cocycle relation d(g192, Z) = d(g1,92(Z))d(ge, Z), we see that the group

law is well-defined. The identity element is 1 = (1¢, 1), that is, we take the root
of d(1g, Z) = det(1g,) = 1 whose value is identically 1.

We now define a lift G — U(F) of the map @ : G — U(F)/Z, given by
(6). We will call this lift w. For (g,t) € G, g= <A

B Z) we define an operator
in U(F) by

G(0.00) = ) M) [ Tap@EA 50 w)e 0. (9)
M

Note that for (g,¢) € G, 2 = det(k(g)) = det(*A ), so f_1~agrees with
dets A up to sign. More precisely, consider the covering maps v : G — G and
p: U(F) = U(F)/Zy. The composition w o v gives a map G — U(F)/Zy. We
can see:

Lemma 4.4. The map w : G — U(F) defines a continuous lift of W o v with
respect to the covering map p : U(F) — U(F)/Z,.

Now as in [15, Theorem 2.2.5] we have:

Theorem 4.5. The lift w : G — U(F) defines a unitary representation.

5. The Dual Pair (Sp(n,R),O(k))
Let G' = O(k) act on F(M) by right multiplication:

¢ f(2) = f(zc)

for ¢ € O(k) and f € F. Clearly the action of G' commutes with w. In
fact, (G,G") = (Sp(n,R),O(k)) is a dual pair inside Sp(M) = Sp(nk,R), the
real symplectic group on the symplectic vector space (M,Im(-|-)), and w is the
restriction to G of the oscillator representation on Sf:]/)(M )-

Following [2, Chapter 7], we define a map

6:M—p,, 0(z) =2z

Let P = P(M) be the subspace of polynomial functions in F. Then P is dense
in F. Let I be the space of polynomials invariant under the action of G'. Then
I is generated as an algebra by the matrix entries of z — 6(2) and the constant
functions [2, Chapter 7]. Let Z be the ideal in P generated by the matrix entries
of z = 6(z) and let H be the orthogonal complement of Z. We call H the space
of harmonic polynomials.

We have [2, Chapter 7]:
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Proposition 5.1.  Let h € P. Then the following are equivalent:

(1) heH
(i1) g(0)h =0 for all matriz entries g of z — 6(z)
k 52
(i) Aih(z) =0,1<i<j<n where A;; = ; T

I/azjl/

Let I:( C G be the inverse image under v of K. It is straightforward to
check that K is just the linear group {(u,t) € U(n) x C : det(u) = ¢*}. A simple
calculation shows:

Lemma 5.2. Let f € F and (u,t) € K. Then

w(u, ) f(z) =t f(u™"2) (10)

Let O/(F) denote the unitary dual of O(k). We write (A, V)) for an ir-

reducible unitary representation of O(k) on a space V), and we let X' be the

contragredient representation of A on the dual space V). We now have sufficient
background to state the following result of Kashiwara-Vergne [14]:

Theorem 5.3. The space H is K x G -invariant and decomposes as a multi-
plicity free orthogonal direct sum of unitary K x G' representations 7(\) @ \'.

For later use, we wish to make the correspondence A — 7(\) more concrete.
Since G' = O(k) commutes with the representation w, we get the decomposition
F(M) =&, gmF (M)A

where F (M), denotes the isotypic component of type A\. We write (-,-) for the
canonical bilinear pairing between a vector space V and its dual V'. Now for

(A, Vy) in 5(?), we let F(M; ) be the subspace of functions f from M to V)
such that z — (f(2),¢) € F for every ¢ € Vy and f(zc) = M)t f(z) for all
¢ € O(k). The group G acts on F(M;A) by the same formula as w; we will
call this representation wy. Then JF(M), is isomorphic to F(M;)\) ® V) by
(h®vY)(z) = (¢, h(z)) for h € F(M;)N), ¢ € V). Thus we get

F(M) = 69,\6(7(19\)‘7:(]\/[; A)® VY
as a representation of Gx G

Similarly we have the decomposition

H(M) = EB)\ea(lc\)%(M; A)®Vy
as a representation of K x G'. Here H(M;\) C F(M;A), and given A, we identify
the representation 7()) in the theorem as the irreducible unitary K representation
H(M; \), where K acts as (10). From [2, Proposition 7.12], we obtain:
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Proposition 5.4.  Let A € 5(?) be such that F(M;\) # 0. Then F(M;)\) is
an irreducible G representation.

Fix X € O/(F) such that the space H(M;\) is non-zero. As outlined in
Section 3, we will construct a G-intertwining map between (w,F(M;))) and
sections of the homogeneous vector bundle over D associated to the K -module
H(M; ).

We write 7 = 7()\) for the K-representation given by wy| 7 acting on
H(M; \). We can complexify K as follows. Let

K¢ ={(l,t) € GL(n,C) x C : det(l) = £*} .

Then K is a real form of I?(C, and we can extend 7 holomorphically to l’%@ by
7(l,t)h(z) = t7*h(712) for (I,t) € K¢, h € H(M;)).

Let o be the real group automorphism of K¢ whose differential is conju-
gation with respect to the real form € of €¢. If we identify K with U(n) and K¢
with GL(n, C), then for I € GL(n,C), we have o(I) = [* !, where [* is the matrix
operation of conjugate transpose. We can lift o to a real group automorphism & of

K¢ fixing K in the obvious way: &(1,t) = (I* 5,7 '). Then 7(5(l,t)) = 7(I,t)*~

The automorphy factor gives amap j : GXD — K¢ defined by j((g, 1), Z ) =
k(g - exp(Z)). For (g,t) € G, t corresponds to a choice of branch of the square
root of the function d(g, Z) = det(j(g, Z)) via t = d2(g,0). Let t; = d2(g, Z),
where we are using the branch of the root function determined by ¢. Now let
(g, 1), Z) = (g, Z),tz). Clearly (tz)? = det(j(g, Z)), so we have a well-defined
continuous lift of j which satisfies j(1g,0) = 1%,

We write J((g,%), Z) = 7(j((g, 1), Z)).

Lemma 5.5.  Let h € H(M;\). Then wy(g,t)h(2) = go00)(2) (I ((g, 1), 0)* ") (2).

Proof.  Recall from (9) that we have for g = <% g)

wrlg, () = (F) Fay5-1(2) /Ma_AIB(w>K<A—1z,w)h(me—ﬂwlwdw.

Now q_s-15 = 1+ ¢ where ¢ belongs to the closure in F of the subalgebra of
I consisting of O(k)-invariants with zero constant coefficient. Thus the function
w — ¢(w)K(w, A7'2) belongs to the closure of the ideal Z in F. Since h is
harmonic, h is orthogonal to Z, and we obtain:

wa(g, )h(2)

@ “Fg g /KA z,w)h(w)e™™ @) dy

= () Fgg- (2)h(A712).
Now j((g,),0) = (j(g,0),1) = (tfl), T((9,),00 ™" = 7(5(((9,1),0)) =
(4,7 "), and g(0) = BA . n

Define the operator gr : H — F, T € D, from Section 3 by (qrh)(z) =
gr(z)h(z), that is, multiplication by the function ¢r(z). Then just as in Proposi-
tion 3.3, Lemma 5.5 implies:
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Corollary 5.6. Let T € D and h € H(M;\). Then:

wA(g, t)th = QQ(T)J((97 t), T)*ilh"

Let V, = H(M;)), and take v,w € V,. Exactly as in Section 3, we can
construct a positive definite operator-valued kernel function @ : D x D — Aut(V})
by: (grv|gsw) = (Q(S,T)v|w) and a calculation shows that as in Theorem 3.5:
Q(S,T) = 7(q(S,T)). @ gives the reproducing kernel for a space of V,-valued
holomorphic functions on D, denoted by H (D, 7), on which G acts by translation
T, , where we recall

T, (9,)F(T) = J((9,t)", 1) F(g~(T))

for (g,t) € G, T €D, and F € H(D, 7).

Finally, the intertwining map =, : F(M;\) — H(D, 1) is given on a dense
subset of F(M;A) by ¢rv — Q(-,T)v, and is globally defined by Z, f(S) = ¢%f for
f € F. In the last statement, gs is regarded as an operator H(M;\) — F(M;\)
given by multiplication by the function gg.

We want to establish one more form of the intertwining map which will be
best suited to our situation:

Proposition 5.7.  Let f € F(M;\) and let w — I,(w) be the Hom(V,,V,)-
valued polynomial function on M defined by Iy(w)h = h(w) for h € V, =
H(M; ). Then:

ENf(T) = /MqT(w)],\(w)*f(w)e_”(”"“’)dw.

Proof. The map =, is defined by (E,f(T)|h)amny = (flarh)zouny for f €
F(M; ) and h € H(M;)). Now we calculate:

</M ar ()T (w)" f(w)e™™ M dw | R)uar
ar ()T (w)" () W) sariye™ ) duw
= [ @) hw) v

¢
= | (fw)lgr(w)h(w))ve ™™ dw = (flgrh)r -
M |

Il
S

6. Cayley Transforms and Unbounded Domains

Let tc be a compact Cartan subalgebra for gc, A = A(gc, tc) the set of roots,
and let A, and A,,. be the subset of compact and noncompact roots, respectively.
We can choose an ordering on A such that

pr= Y, 6%  po= > gt

dEAT, PEAL,
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For ¢ € A, define hy € it by %ﬁ—(g)) = (hg, h) for h € t. We choose root vectors

ey € g& normalized so that [eg, e 4] = hy and 0(g,) = —e_4. Then p will have a
real basis consisting of x4 = €4 + e_g, Yp = i(ey —e—y), ¢ € A}L,.

Let 7 be the real rank of G. We inductively construct a maximal set W
of strongly orthogonal noncompact roots by taking 1, to be the largest element
of Af , 1; the largest root in A} strongly orthogonal to y,...,%;_1. Then

nco

|¥| =r. For I' C ¥, we define the partial Cayley transform cr [22] by
T
cr = ch Cy = €exp (Z%) :
r

Now we have cr -expZ € P, KcP_ for every Z € D [19, Chapter III, Section 7],
so we can define a domain

Sr=c (D)={cer(Z): Z €D} Cp,.

Then Sr is the image under the Harish-Chandra embedding ( of the translated
orbit ¢r - G(x9) C Ge/KcPy, where the basepoint xy = 1KcP, . For T' nonempty,
Sr gives an unbounded realization of the symmetric domain D [19, 23].

We now specialize to the example G = Sp(n, C)NU(n,n). We take compact
Cartan subalgebra for g¢ = sp(n, C) to be

tc = {diag(by ...bn,—by -+ —by) 1 by...b, € C}.

Write w; for the linear form on t¢ given by w;(diag(by ...bn, —by -+ — b)) = b;.
Then the set of roots is

A(ge, te) = {F2w;, 1 <1 <mj Fw; Fw;, 1 <i# j <n}

with simple system S = {1 ...a,} where o; = w;—w;iy1,1 <i<n-—1, a, = 2w,.
Write A* for the system of positive roots determined by S, A~ = —A*. Let
P =2w1,. .., = 2w, and let ¥ = {¢);...¢,}. Then ¥ C A is a maximal set
of strongly orthogonal noncompact positive roots.

For v; € ¥, the element h,, defined above is given by hy, = E;;—FEp1in+ti €
it. Taking ey, = —iFEj,; € g and ey, = iE,;; € go”’ gives [ey,, e y.] = hy,
and defines elements z,, = ey, + e_y, and yy,, = i(ey, — e_y,;) in p. Now for b =

1...n, define T'y = {¢1,..., 9} C ¥ and let zp = 3 cr, Ty, Yo = D _yer, Yv € P-
We have:

0 0 —i-1, 0 0 0 1, 0
N 0 0,., 0 0 {0 0. 0 0
b= 1i-1, 0 Op o |° =11, o 0 o0
0 0 0 Opp 0 0 0 0,

We define the b™ partial Cayley transform by ¢, = cr, = Hwer exp(%yw). Then:

1 %
. a0 Geh 0
¢ = exp (my) _ 0 1,5 O 0
b — R 7 1
4 Sl 0 51, 0
0 0 0 1o
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Tl 1 T12

For T' = (tle Ty

) € D, we calculate
a(T) = (T +4) (0T + 1)1 V2(iT1y + 1) Thy
b V2T 1o(iT + 1) Tog — i T1o(iT11 + 1) T

with the factor of automorphy given by

j(cb,T)=< V2(iTy; + 1)1 0 )

—1 T (T +1)7 1,

Write Sy = ¢,(D) C py for the unbounded realizations of G/K obtained
as above. We will write ¢ = ¢, for the full Cayley transform and S = ¢(D) C p;..
As G preserves the form

(u,v)p = u*cy ~1n 0 cv, u,v e C™
0o 1,

we see that

Sy = {n-planes pw : (-, )o|p, > 0}

= (Wi = W) = Wi'Wiy =W Wy — iWhy
= {W € Symn(C) : ( _WQQth + ith 1— W;2W22 >0;.
(11)

The domains S, are type III Siegel domains [17, 19]. In particular, the domain S
is the Siegel upper half-space:
S={W e€p, = Sym,(C) : Im(W) > 0}.

We will need the following easy observation:

Lemma 6.1. Let W = (tVVIf}lg %;) €S8,. Then ImWiy; > 0.

Proof.  Taking the b x b principal submatrix of the hermitian matrix in (11)
defining S, gives

— (Wi = W) = Wi'Wip > 0= 2Im Wy > Wip'Wie > 0.

We will also need formulas for the inverse Cayley transforms. For W € S,
we have ¢, ' - exp(W) € P, KcP_, and we obtain

¢, (W) = (Wi — i) (=W + 1) V2(=iWis +1)" Wi
b V2IWio(—iWi +1)70 Wag + i 'Wia(—iWiy + 1) 7 Wiy

with factor of automorphy

o1 o V2A=iWn 4+t 0
ie s W) = (itW12(—iW11+1)1 oo/
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7. Partial Bargmann Transforms

We begin by introducing the Schrodinger model for irreducible unitary represen-
tations of the Heisenberg group. Let M = M, ;(R) with real inner product
(z|yy = Tr(z - 'y). We have a real symplectic form on My, (R) = M x M given

by:
((:?j) ’ @:)) - (‘] <z> (7 ty')) = (gly) — @la).  (12)

In this section only, we let ‘H denote the Heisenberg group H = M x M xR
with group law

1
(z,y;) (2", s t) = (@ + 2y + 95t + ' + §(<$|y’) — (ylz")))-

The group H is of course isomorphic to the Heisenberg group H = M xR,
M = M, ;(C), which we used for the Fock model. We express this isomorphism in

terms of the full Cayley transform c as follows. For w € M, identify w < < u.)w

Define a map M x M — M sending (g) — w where <_1;)w> =c! <z) Sw=

7@ —iy).

Lemma 7.1.  The map H — H defined by (z,y;t) — (
homomorphism.

(x —iy);t) is a group

&

2

Proof. The result follows from the fact that

Tr (J (;) - (*a ty')) =Tr <c*Jc<_t;Jw> - (w"™ m’*)) =2 Im(wlw'). =

We define an irreducible unitary representation p of H on L?(M) with
central character x(t) = e~ ™ by

P, yo; t) f (x) = e e 0D W00 f (g — ).

The representation (p, L2(M)) of H is called the Schrodinger model. We now
wish to establish the connection between the representation p of 4 and the Fock
model py of H.

Following [6], define the Fourier-Wigner transform V : L?(M) x L*(M) —
L®(M x M) by

V(f,9)(p,q) = (pp; 0) f, 9)r2(m)

for (p,q) € M x M. We think of V(f,g) as a matrix coefficient for p where the
dependence on the variable ¢ is being ignored. One can easily verify:

V(p(z,9)f, 9)(p,q) = e FC-WDV (£ 0)(p+ 2, g+ y). (13)
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Now we let ¢g(z) = e~ 212} € L2(M) and calculate:

(f7 QSO) D, q f|p )¢O>
/ f(z e~ mip—iglz) . 3 (p—iglp—iq) o — 5 (PIP)+(dlD) o — 5 (2lZ)

= e 52" . g5l / f(z)emV2e) o= 5 elo) gy
M

where we have made the change of variables z = —% (p —iq) and we write |z|?
for Tr(z - 2*).

Definition 7.2.  The (full) Bargmann transform Bf of a function f € L?(M)
is given by

Bf(z) = e§|z|2v(f, 60)(p, q) = eg(zlz)/ f(x)ewiﬁ(zlw)efg(wlw)dx
M
1

where z = ——% (p — ig).
Calculations as in [6] show:

Lemma 7.3. The Bargmann transform f — Bf is an isometry from L*(M)
to F(M).
By property (13) of the Fourier-Wigner transform, we obtain:

Lemma 7.4. Let (z,y) € M x M, f € L*(M). Then if we take w =
% (x —1y), we obtain:

po(w)Bf(z) = (Bp(z,y)f)(2)-

We will also need the formula for the inverse Bargmann transform [6].

Lemma 7.5.  The (full) inverse Bargmann transform B~': F(M) — L?*(M)
1S given by

Blg(z) = e~ 3l / —riVB(ele) g FE12) 7lel g ()
M

for g € F(M), provided this integral converges absolutely.

Now fix b € {0...n} and define the mixed polarization model of the
Heisenberg group as Hy = My X M, X M, x R, where M, = Myy,(R) and
M,y = M(n_p)xx(C), with group multiplication

(@, w, y; t) (2", w', 5 t') =

(z+2,w+uw,y+y;t+t +1((x|y) (y|2")) + Im(ww")).

x

If we make the identification (z,w,y) € My X My_p X My <> v = ( Y ) then
—iw

we get a real symplectic form on My x M,,_, x M, via

(7, 7) = Tr (g Jeyy =) = (zly’) = (yl2’) + 2 Im(w|w’). (14)
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We let L?(My, F) be the space of L? functions on M, with values in
F(M, ). Alternatively, L?(M,, F) is the Hilbert space of classes of measurable
functions f on My x M,,_, such that

/ / f(@,v)e” ™ dydz < oo
My J My,

and such that v — f(z,v) is a holomorphic function on M, ;.
We obtain an irreducible unitary representation p of H, on L?*(M,, F)
with central character x(t) = e™™ by

,O(x07 Wo, Yo, t)f(‘r’ U) =
efm'tew(v\wo)e*%(w0|w0)e*m(w0|w>@%i<w°‘y°)f(l’ — Yo,V — wO)-

The case b = n gives the Schrodinger model of p as above, b = 0 gives the Fock
model, and the values 0 < b < n correspond to mixed models [11].

Definition 7.6. For z € M, write z = (?) where z; € M, and 29 € M, 4.
2

The partial Bargmann transform Byf of a function f € L?(M,, F) is given by
Bbf Z1 — e%(zl\zl) f(.T, 22)€7ri\/§(zl|ac)e—%(z|z)dx‘
Z9 My

The following Lemmas follow immediately from Lemmas 7.3, 7.4 and 7.5:

Lemma 7.7. The partial Bargmann transform f — Byf s an isometry from

L*(M,, F) to F(M).

Lemma 7.8. Let (z,y) € My x My, f € L*(My, F). Then if we take
wy = % (x — 1y), we obtain:

Po (Z;) Byf (2) = (Byp(x, wa, y) f) (2) :

Lemma 7.9. The inverse partial Bargmann transform B, Y mapping F (M) to
L?(My, F) is given by

2o M, 22

for g € F(M), provided that this integral converges absolutely.

8. Intertwining Maps for Mixed Models

We have set up our partial Bargmann transform so that

po(w) By f (z) = (Byp(ca(w)) f)(2) (15)
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where we are identifying ¢,(w) = cb(_sz> = ( v > < (z,ws,y). Under this
identification, the group G = chcb_1 acts on My x M,_, x M, by matrix
multiplication. We define @ : G% — U(L*(My,F))/Zy by w(csge;') = Byt o

w(g) o By for g € G and by (15), @ will satisfy
w(g)p(z,w,y) = plg' - (z,w,y))@(g"), where g' = cogc;".

We define the double cover G of G to be the set {(g’,d%(g',W))}, g €

G, where now we take W € &, so d(¢',W) = det(j(¢',W)) is a function
d:G® x Sy — C — {0}. Here we can identify a choice of branch of det(j(¢', W))
with its value at W = e, = ¢,(0) = (Z'é” ono_,, ).

We lift the functions j(cp,-) : D — K¢ and j(c;',+) : S, — K¢, now
b

choosing d%(cb_l,eb) = (%)5 to be positive. Thus we obtain a map G 25 Gov

by (g,t) 2 (g',t'"), where g = cgey”' and t' = sytsy with s1,5, defined by

jle;ten) = ((c, ', es), 51) and j(cs, g(0)) = (j(cs, 9(0)), s2). Then we get:

w(g',t') = B, ' ow(g,t) o By

Remark 8.1.  'When b = n, this realization of w gives the Schrodinger model
of the oscillator representation of GG¢, while the cases 0 < b < n correspond to
mixed models. For explicit formulas for the action of w in these models for a
generating set of elements of G, see [15] or [16].

Finally, we lift j : G% x S, — K¢ to obtain:

(g, 1), W) = j(co, 9(T))3((9,): )i (€, ", eo(T))

for T € D, ¢(T) € Sp.

—

For A € O(k), we let L*(M,,F;)\) be the subspace of functions f in
L?(My, F) @ Vy satisfying f(zc,vc) = M)~ f(z,v) for all ¢ € O(k). The partial
Bargmann transform B, maps L?(M,, F;\) — F(M;)), so once again we can
replace w with w, in the above discussion.

We will now construct a G® intertwining map between L2(M,, F; \) and
a space of V,-valued functions on S, where V, = H(M; \) as before.

The idea is to apply the partial inverse Bargmann transform to the equation:

w,\(g,t)th = qg(T)J((gat): T)*ilha (g: t) € éa h e H(Ma )‘) (16)

to obtain a similar expression for G, from which we can determine the intertwin-
ing map.

Let W = (tVVII/}; ‘;‘V,;z ) € S, with block decomposition as defined in Section 6.

Proposition 8.2.  For W € §,, define a function on My x M, 4, by

q{/V(-,E, ’U) — e*%i TI‘(tSUWuw)eW TI‘(t.’EWm’U)e%i ’I‘I‘(t'UWQQ'U).

Then ¢y, € L*(My, F).
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Proof. Let T =c,' (W) € D. We will show that ¢}, = aB; 'qr, a a constant.
Since g € F(M) and |qp(z)| < €€l = Cnz1l’+122") | the integral defining
B, Ygr converges absolutely and gives a function in L2(M,, F).

We will need the following Lemma on Gaussian integrals [6, Appendix A]:

Lemma 8.3.  Let A,D € Sym,(C) with ||A|| <1, ||D]| £ 1, and ||A]|||D|| <
1. Then for any u,v € My x(C)

/ e Tr(twAw)eg Tr(*w Dw) em Tr(tu'w)eﬂ' Tr(w) e—7r(w|w)dw
My x(C)

_ det—g(l_AD)egTr(tuD(kAD)—lu)ewTr(tv(kAD)—lu)egTr(f«uA(kDA)—lv)'

. T T
Now write T = (t 1 12) and calculate:
T2 The

_ z
B, Yqr <22)

67% Tr(t;c;v)e%i Tr(%2T2222) |

. btz o) T ot ) T Tyt s T  Ty(ty: T _
/ e WZ\/ETI‘( Z1$)62 TI‘( lel)e TI‘( 21T11Z1)67I'ZT1‘( lelng)e W(zl‘zl)dzl
M,

— «a e—g Tr(tww)e%i T‘I‘(tZ2T2222)67T Tr(tz(—iTu)(l—iTu)_lw)eﬂ'\/iTI‘(t;C(l—iTu)_ITmzz) .

-3 Tr(tz2tT12(1—iT11) " 'T1222)

e , & a constant, by the Lemma

— o e—%i Tr(thuw) eﬂ' TI‘(t;Uszz)e%i T‘I‘(t22w22zz)

T11 T12) — ( W11 Wia

6Ty Ton Wy W22) found in Section 6.

where we are using the formulas for ¢, (

Theorem 8.4. Let h € H(M;)). Then for T € D, ¢(T) € S, the function
f(x,22) = @, (T, 22)h(2,i22) € L*(My, F; N). We have:

(Bof)(2) = Cqr(2)(J(cy, T)*h)(iz), C a constant
Proof.  We will need the mean value theorem for harmonic polynomials:

Lemma 8.5.  Let h be a harmonic polynomial on RY extended holomorphically
to CN. Then:

/ e~ 2i0510) ¢ ~(51) y () dp = 73 eV (i)
This leads to the following (adapted from [14]):

Lemma 8.6. Let Z € Symy(C), Im(Z) > 0, and h a polynomial on My
extended holomorphically to My such that © — h(gz) is harmonic for any g €
GL(N,R). Then:

k

/ 62m($\y)€m<zw|w>h($)d$ = (det g)_ e”“’z_ly'y)h(—Z’ly).
M 7

=

Z
Here, choose the branch of the square root function so that (det —,) 18 positive
1

when Z =1-1x.
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Proof. Both sides are holomorphic in Z, so by analytic continuation, it suffices
to prove the result for Z = ia?, where « is a real positive definite symmetric
matrix. Then

/ eZm’(z\y)e—ﬂ(az\am)h(x)d:ﬂ — (det O!)k/ e?ﬂ'(z\a’
M M

Wm0 (o x)da

MES

—1, . —1 A . 1
= (det o) e ™Y p (0 ia ty)) = (det 7) M ZT Y p(— 2 y)

by the mean value theorem for harmonic polynomials. ]

Now we notice:

Lemma 8.7.  Let h € H(M;\) and write (x,v) for coordinates on Myx M, _4.
Then the function h, : z +— h(z,v) is a polynomial on M, such that x +— h,(gx)
is harmonic for any g € GL(b,R).

Proof. By Corollary 5.1, h € H(M) < A;;jh(z) =0, 1 < i < j < n, where
A = Zle azi,?;zj,,' But then A;;h(z) =0 for 1 <4 < j <b. Thus writing

z = (21, 29) € MyXx M, , the polynomial z; +— h(z1, 29) is in H(M,). The Lemma
follows. u

This observation will allow us to use Lemma 8.6 to calculate B,f. Letting
W =c(T) €Sy, f(x,20) = gy (2, 22)h(x,i22), and recalling that Im Wi, > 0 by
Lemma 6.1, we obtain

<1
By f
<2
™ t i t Qo T i t 7. 74 ; t v a .
= e2 TI‘( lel)e 5 TI‘( Z2W22Z2) / e Tr $(Z Wll)aJeWZTI‘ m(\/ﬁzl ZW12Z2)h(x’ 222)d‘,1;

My
_k
2

e (1S () ()
= Cqr (2) (J(c; ", W)*""h) (22)

where C is a constant, using the expression for J (cb_l, W) from Section 6. Now
the relation J(c, ', W)™t = J(cy, T) for T = c; ' (W) gives the result. n

Let Ry : H(M;)\) — L?*(M,, F; \) be the map given by Ryh(z,v) = h(z,iv)
for (z,v) € My x M,,_,. By the Theorem, we see that applying the partial inverse
Bargmann transform B, to equation (16) and canceling constants on both sides
gives:

7 (0 )ty BT (€ T 1) = 01 o oy Bl (0, 9(T)) ™ T ((,8), ) B)
& wald )y Ro(h) = ey Bl T e, 9(T))* ™ T ((9,1), T)* " T(es, T)° )

We abuse notation and write q; 7y © Ry to denote the map H(M;\) —
L?(My, F; \) given by h — qé(T)Rb(h). Let hi,hy € H(M;)\) and S, T € D, so
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c(S),c(T) € Sp. Then by the Theorem:

<QQb(T) o Ry(h1) Iqu(S) © Rb(h2)>L2(Mb,}";)\)
= [|B8I1*{grJ (cs, T)*h1|gsJ (cb, S)*ha) 7(ar;n), B & constant
= [1BIP(J (b, S)QS, T)J (b, T)* P [h2)au(arin)
Now define Q'(c3(S), c(T)) = ||8I1>J (cp, S)Q(S, T)J (¢, T)*, so that Q' : Sy xSy —
Aut(V;). @' will be a positive definite kernel function because () is positive

definite, and so by [13], @" will be the kernel function for a space H(Sy,7) of
V,-valued functions on S,. For (¢',t') € G® we obtain:

J((d', 1), e(9))Q (es(S), (1)) I ((g', 1), es(T))"
= Q'(9'(cs(95)), 9'(c(T))) (17)
where we can express J((g', 1), c(S)) = J(cy, g(S))J((g,t),S)J(cy, S) ! for (g,t) €
G such that (g,t) 2 (¢, t).
It follows that G acts on H (S, ) by
T(g', ) f(W) = (g #) ", W) (g™ (W) (18)

for W € &, and that T defines a strongly continuous unitary representation of
G . Finally, the map

@oyry B (h) = Q'(, eo(T))

extends to an intertwining map Z, between (wy, L?(My, F;A)) and (T, H(S,, V;))

which can be expressed globally by (Zxf(W)|h)umrny = (flawRe(h )) 2(My, FiA) -
This map can be written as follows:

Theorem 8.8.  Let f € L*(M,, F; ) and let (z,v) — Iy(x,v) be the polyno-
mial function on My X M, _y, with values in Hom(V,,V)) defined by I (x,v)h =
h(z,iv) for h € V; = H(M;X). Then:

Exf(W / / (z,v)* f(z,v)e "M dy da
My J My

The proof is as in Proposition 5.7.

Remark 8.9. When b = n, the intertwining map given above is exactly the
one found in [14].

9. The Fock Model for U(p,q)

~1, 0

For p > ¢ > 0, define Ip,q=< 0 1
q

> , and let

G=Up,q) ={9€GL(p+q,C) : gL, ,9" =1,,}.
Then G is a real form of G¢ = GL(p + q,C). We write elements g € G¢ in
block form g = (é g) where A € M, ,(C),D € M, ,(C). We take the maximal
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compact subgroup to be K = GNU(p+q) = U(p) x U(g), and we obtain the
decomposition gc = p, + €c +p_, where

p-={(0 7):ze Mm@},

te=1(% 0) . x egp,0), X, € al(q,0) L,
0 X,

b= {(3 8) Y € MM(C)} .

We identify K¢ with GL(p,C) x GL(q,C), and for (g, Z) € G¢ X p4 such
that g - exp(Z) € Q = P, KcP_, we write the automorphy factor

j(9,2) = k(g -exp(Z)) = (ji(9, Z), j2(g, Z))

with ji(g,Z) € GL(p,C) and j2(g,Z) € GL(q,C). The action of g on p, defined
by exp(g(Z)) = (9 - exp(Z))+ is given by

9(Z) = (AZ + B)(CZ + D)™\

Here, the image of the Harish-Chandra embedding G/K — D C p, is given
by the generalized unit disk

D = {g-planes l; : (,-)1, >0} ={Z € M, 4,(C) : 1,— Z*Z > 0}.

We now follow the exposition in [1] to establish formulas for the Fock model of the
oscillator representation of G = U(p, q)-

Let Myiq = Mpy,qx(C) and define a hermitian inner product hy on M,,
by ho(u,u') = Tr(I, ;uu™). We get an associated Heisenberg group Hy = M,;, xR
with group multiplication

(u;t) (v ') = (u+u'5t +t' — Im ho(u, u')).

Write u € My, as u = (31) with uy € M, ,(C) and uy € M, x(C). As
2

before write (u|u') = Tr(uu'™), |u|?> = (u|u). Let F,, be the Hilbert space of func-
tions f on M, , such that u; — f (Zl> is holomorphic, us — f (Zl> is antiholo-
2 2

morphic, and f is square-integrable with respect to the Gaussian measure du(u) =
e~ dy. Our convention for Lebesgue measure is that du = d(Reu)d(Imu).
The reproducing kernel K for F, , is given by K(z,w) = e™1lw)em(@2122) " that is,

f(z) = /M K(z, w)f(w)e_"(""w)dw

p+q

for f e F,, and 2z € M,y,.
We obtain an irreducible unitary representation py of Hy on F,, with
central character x(t) = e ™ by

po(w;t) f(2) = eT™ K (z,w)e” 3 f (2 — w)
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for (w;t) € Hy and f € F,,.
Identify p; with M, ,(C) as above. For T' € p, we can define a function

on My, by

w(z1|T22) Tr(z125T™)

gr(z) =e =e" )

Clearly gr is holomorphic in z; and antiholomorphic in z,. Moreover, we have
from [1, Proposition 1.4]:

Lemma 9.1. The function qr lies in Fp,q4 if and only if T € D.

Since the left action of G = U(p,q) on M,, preserves the form hg, the
action (w;t) — (g-w;t), where (w;t) € Hy and g € G, is an automorphism of H
which fixes the center of Hy. By the Stone-von Neumann theorem, we obtain a
projective unitary representation w of G defined by w(g)po(w;t) = po(g-w;t)w(g).
In fact, we can choose the operators w(g) such that w becomes a representation
of G as in [1, Theorem 1.12]:

Theorem 9.2.  For g = (A B

o D) € G, define the operator w(g) on F,, by

)= [ Ky(ew) e, (19)

Kyl ) = (det* A)aso (I ( (12 ) 0) 7 am(w)

Then w: G — U(F,,) is a continuous unitary representation.

10. The Dual Pair (U(p,q),U(k))
Let G' = U(k) act on F,, by right multiplication:

)1

for ¢ € U(k) and f € F,,. The action of G' commutes with w, and in
fact (U(p,q),U(k)) is a dual pair inside Sp(M,,) = Sp(2(p + q)k,R), where
(M, 4,Im hy) is regarded as a real symplectic vector space.

As in Section 5 and [2, Chapter 7], we define a map

0: Myrg— 9y, 0() =224

Let P be the dense subspace of polynomial functions in F = F,,, Z the ideal
in P generated by the matrix entries of z — 6(z), and H be the orthogonal
complement of Z. We call H = H,, the space of harmonic polynomials.

Now as in [2, Chapter 7]:
Proposition 10.1.  Let h € P. Then the following are equivalent:

(i) heHpy,
(13) g(0)h =0 for all matriz entries g of z — 6(2)
k 52
(ii)) DNjh(z) =0,1<i<p, 1<j<qwhereA;;= ; T

One can calculate directly the action of K = U(p) x U(q) on F,,:
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Lemma 10.2.  Let f € F and (¢1,92) € K. Then

w(g1, g2) f(2) = (det g.) " f <91_1z1) '

*
go %2

—_—

Let U(k) denote the unitary dual of U(k), and write A for a representation

—_—

in U(k), X' for its contragredient. As in [14, Section 6], we get:

Theorem 10.3. The space H is K x G' invariant and decomposes as a mul-
tiplicity free orthogonal direct sum of unitary K x G' representations 7(A) @ X'.

—_—

For (A, V3) in U(k), let F,,(A) be the subspace of functions in F,, ® V)
satisfying (¢ f)(z) = M(c¢)~!f(z) for all ¢ € U(k). Let wy denote the representation
of G on F,,(\). Then we have

}-p,q = @)\eﬁ@)}—p,q()‘) ® V,\I

as a representation of G x G' and

Hpq = @)\eUf(k\)%p,q()‘) ® Vy
as a representation of K x G'.
Finally, analogous to Proposition 5.4, we have:

—_—

Proposition 10.4.  Let A € U(k) be such that F,4(A) # 0. Then Fp,q4(N) is
an irreducible G representation.

—_——

For A € U(k) such that the space H,,(A) is non-zero, we construct a G-
intertwining map between (w,F,,()A)) and sections of the homogeneous vector
bundle over D associated to the K-module #,,()). The intertwining maps for
this example were fully worked out in [1] and are similar to the example in Section
5. Here, we merely give an outline and refer to [1] and our previous work for
proofs.

We write 7 = 7(A) for the K representation given by w,|x acting on
Hpqa(A). We extend 7 to a holomorphic representation of K¢ = GL(p,C) x
GL(q,C) as follows. Let 75 be the holomorphic representation of K¢ on Hy,(A)
given by

(T0(91, 92)h) (21, 22) = h(g7 21, g322)

for h € Hpq(A), (91,92) € GL(p,C) x GL(q,C), and (z1,22) € Mpx(C) x Mg (C).
Then 7(g1, g2) = (det g1) *70(g1, g2) for (g1, 92) € Kc.

We write J(g,Z) = 7(j(g,Z)) for (g9,Z) € G¢ x p, such that j(g,72) is
defined. Using the formula (19) for w and the orthogonality between #,, and
the ideal Z generated by the non-constant U(k)-invariants, we prove just as in
Lemma 5.5 [1, Proposition 2.2]:

Lemma 10.5.  Let h € H,4(N). Then wi(g)h(z) = qg(o)(z)(J(g,O)*_lh)(z) for
geq@.
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Corollary 10.6. Let T € D and h € H,4(A). Then:

wr(9)arh = gyr) I (9,T)" " .

Thus we can use the construction outlined in Section 3. Let V, = H,,(\), and
take v,w € V.. We obtain a positive definite operator-valued kernel function
Q : D xD — Aut(V;) by (grv|gsw) = (Q(S, T)v|w) and calculate that Q(S,T) =
7(q(S,T)). @ gives the reproducing kernel for a space of V,-valued holomorphic
functions on D, denoted by H(D, 7), on which G acts by translation 7, where

T(g)F(T) = J(g~", T)""F(g~"(T))

forge G, Te€D,and F € HD,T).

The intertwining map =y : F,4(A) = H(D, 7) is given on a dense subset of
Fpq(A) by grv — Q(-,T)v and is globally defined by =,f(S) = ¢5f for f € F,,,
regarding gs as an operator Hp,(A) — Fp4(A) given by multiplication by the
function ¢g.

Finally, another form of the intertwining map is given by:

Proposition 10.7.  Let f € F,4(\) and let w — I \(w) be the Hom(V;,V))-
valued polynomial function on M defined by I\(w)h = h(w) for h € V; =H, 4(N).
Then:

E,\f(T):/MqT(w)I,\(w)*f(w)e”(“"w)dw.

11. Cayley Transforms for U(p,q)

Retain the notation from Section 6. One can define a maximal set of strongly
orthogonal noncompact roots ¥ = {1y, ..., 9,} such that hy, = E;;—E,1; ,1+; € it,
€y, = _iEi,p—ki € g%, €y, = iEp—}—i,i € g(Ewl and [61/,2.,6,%] = hwi fori=1...q.
Then as before z,, = ey, +e_y, and yy,, =i(ey, —e_y,) in p, and for b=1...¢,
define Ty = {¢1,..., ¢} C VU, zp, = >, Ty, and yp = D yp, Yy € p. The
matrices for z, and y, are exactly the same are those given in Section 6. Finally,
the 0™ partial Cayley transform ¢, = cr, = [[,er, exp(5yy) is also identical to
the one in Section 6.

For T = <T11 T12

T T22) € D, we have

1) = (T + DT+ D V2T + 1) T
b \/iTQl(iTll + 1)_1 T22 - iTQl (iTll + 1)_1T12

with the factor of automorphy

(0 T) = (( V2(iTu+1)7" 0 )’(%(ml +1) %Tu)).

—i Ty (1T +1)7" 1y 0 1y

Write Sy = ¢,(D) C p, for the unbounded realizations of G/K obtained as
above, ¢ = ¢, for the full Cayley transform and & = ¢(D) C p,. As G* preserves
the form

(u,v)p = u*eplpgciv, u,v € CPTI
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we see that

Sy = {g-planes ly : (-, )p|1,, > 0}
—i(Why — W) — Wi Way  — Wy Was — z’WlQ) }
=<WeM,,C: . 1 . >0,.
(20)

For W € §, we can write W = (%;) with Wy € M, ,(C), Wy € M,_,,(C).

Then S is the type II Siegel domain [17]:

S:{@l) €p+:W1=X+iY,X:X*,Y:Y*,Y—W22W2 >>0}'
2

The domains Sp,b # ¢ have the structure of type III Siegel domains [17]. We
observe:

Lemma 11.1.  Let W = (i 112) € S,. Write Wi = X +4Y with X,Y €
Hermy(C). Then Y > 0.

Proof.  Taking the b x b principal submatrix of the hermitian matrix in (20)
defining S, gives

—i(Wll — Wl*l) — W2*1W21 >0=2Y > W;1W21 > 0. [ |
For the inverse Cayley transforms, taking W € S, we obtain:

¢, (W) = (Wi —4)(=iWn + 1)1 V2(=iWi + 1) Wiy ) (21)
b V2 Woi (—iWhy +1)7Y Wy + 4 Woy (—iWyy + 1) 7 Wiy

with factor of automorphy

= (0 0 ()
1 W21(—’LW11 + 1)_ ]-p—b 0 1q—b

12. Generalized Partial Bargmann Transforms

We now define mixed polarization models of the complex Heisenberg group and
corresponding models for its irreducible unitary representations.

Fix b € {0...¢q} and define a hermitian inner product h, on M,, =
My1q1(C) by
hy(u,u') = Tr(cplp gciun’™) = ho(c, tu, ¢ 'u').

We get an associated Heisenberg group H, = M,., x R with group multiplication
(u;t)(u'; ) = (w+u'st + ' — Tm hy(u,u)).

The following Lemma is clear from our choice of group law:
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Lemma 12.1.  The map Hy — H, defined by (w;t) — (cp(w);t) is a group
homomorphism.

We let L?(M,,F) = L?*(My, Fp_p4-5) be the space of L? functions on
M, with values in F,_, . Then L?*(M,,F) is the Hilbert space of classes of
measurable functions f on M, x M,_, x M,_; such that

a
_ 2
/ / flz e ™ dzda < 0
My J Mp_pyq—b 29

a
and such that (?) — f| 21 | is holomorphic in z; and antiholomorphic in z,.
2
29

Write Hy, = Myx My, , x Myx M, xR and (u;t) € Hy as u = ((Z’;) ,t)-

w2
We obtain an irreducible unitary representation p, of H, on L?*(M,, F) with
central character x(t) = e ™ by

Pb a2 3 f <1 -
wa %

a — a1
it — ; ; ™ 2
e~ Tite 2771Re(a1|a)emRe(a1|a2)e7r(zl|w1)e7r(w2\z2)e2\w| ]c 2 —wi |. (22)
Z2 — W2

Let H; = M, x M, x R be the subgroup of H, consisting of elements

ai
((Zl> ,t) > ((a02> ,t), and let p, = pb|H£. As in Section 7, we define a
2 0
Fourier-Wigner transform V;, : L?(M,) x L*(M,) — L*®(M, x M,) by

V(f,9) (Z;) = (P (Z;) f: 9) ).

Now we let ¢g(a) = e~ 2% € L?(M,) and calculate:

a —a
Vit () = ok (Z02) o0
2 a2
e Bale Fal . gl [ f(g)enivae o) Vi) e g

My

where we have made the change of variables
(Zl) _ C/—l <_a1) - L ( Iy - 1b>.
29 b —Q9 ’ b \/5 1- 1b 11,
Define a map Bj : L*(M,) — Fyp by

B{J(Z) = eV (£, o) (cz (:2))

where we write |22 = |21]2+|2|?. Then by calculations similar to those in Lemmas
7.3 and 7.4, we obtain:
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Proposition 12.2. The transform B} is an isometry between L*(M,) and Fyy
which satisfies

o 0 [W1 A1) _ =T w]? w(zi|wi) jm(ws|22) Rr ALY _ (W1 / 21

(4 ()) 1 (5) =it () = () s ()
w1

here iy (1) =po (3, ) -

Where Py <w2) Po ( o2

Definition 12.3.  The generalized partial Bargmann transform B, f of a func-
tion f € L?(M,, F) is given by

mr(i) = (ms(2)) ()

a
— efm'(z1|zz) / f v em'\/i(zl\a) e7r\/§(a|22)677r(a|a) da.
M, vy

Corollary 12.4. The transform By is an isometry between LQ(Mb,Fp_b,q_b)
and Fp, which satisfies

Bbe(% (;’,;))f: Po <3)12> Byf.
V2 Vo

By a calculation similar to Lemma 7.5, we obtain the inverse partial
Bargmann transforms B, oF

Lemma 12.5. The generalized partial inverse Bargmann transform B, ' map-
ping Fpq to L2(My, Fp pq-0) is given by

a z
B[;lg v | = efg(a|a) / em’(zQ|z1)ef\/§7ri(a|zl)e\/ivr(zﬂa)g ( gi ) e—7r|z|2dz
Vo M vz

for g€ F,,, dz = dzy dzo, provided that this integral converges absolutely.
pq

13. U(p,q)-Intertwining Maps for Mixed Models

As in Section 8, we have an action of the group G = chcb_1 on My x My_p X
My x M, by matrix multiplication and hence an action on H,. We can define a
representation w : G% — U(L?(My, F)) by w(cpge, ') = By 'ow(g)o By for g € G.
By Corollary 12.4 and the relation w(g)po(u;t) = po(g - u;t)w(g) for g € G and
(u;t) € Hy, we have

w(g)pp(w;t) = p(g" - w; t)w(g')

for ¢’ = cpgc;, ' and (w,t) € Hp.
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Remark 13.1.  This realization of w acting on L?(My, F) is a mixed model of
the oscillator representation of G . For explicit formulas giving the action of w
for a generating set of elements of G in this model, see [15] or [16].

For \ € (7(?) , let L?(M,, F; ) be the subspace of functions f from
a a
My x My_p X My_p, to V) satisfying v | = (f [ v1 | ,9) € L*(Ms, F) for every
Vo Vo
ac a
¢ € V) and flvic| =Xc)'f|v]| forall ¢ € U(k). The partial Bargmann
VaC (%)

transform B, maps L*(My, F;\) — F(Mpiq; A), so we can replace w with wy
above.

We now construct a G intertwining map between L?(M;, F;)) and a
space of V;-valued functions on S;, where V; = H, ,(A).

Let W = (1 ) € 5.
Proposition 13.2.  For W € S, define a function on My x M,_y X M,y by

a
I —_—
qwiv1 ] =€
V2

Then ¢y, € L*(My, F).

—mi Tr(aa* Wi ) ,—7i Tr(avi Wiy,) 7 Tr(via* Wz*l)eﬂ' Tr(vivi Wsy)

€ €

Proof. By a calculation similar to the one found in the proof of Proposition
8.2, one can show that ¢, = aB, 'gr, where T = ¢, (W) € D and « a constant.

Here we note that

zZ1
qr ( s ) ‘ < eC“(|z|2H”‘2), C a constant, so the integral defining

v2

B; 'qr converges absolutely and gives a function in L2(M,, F). [

Theorem 13.3. Let h € H,,(\). Then for T € D, W = ¢(T) € S,

a a

the function fwlvi | =qjy |vi | h ((“Cj ) , (3)) € L*(My, Fp_pg-p; \). We
Uy Vo 1 2

have:

(Bofw) (i) =Cqr (ﬁ) (J(co, T)*h) <<221> : <Z2>>, C a constant.
v2 v2 101 (%)

Proof. It will be convenient to work with holomorphic harmonic polynomials,
that is, holomorphic V)-valued polynomials P on M, ;(C) such that
k 52

Aijh(z)=0,1<7<p, 1<j<qwhereA;;= —_—
%] ( ) %] ;8251’,/82]',/

We will call the space of all such polynomials H,.,(A). Note that we have a map
Hp,q()‘) - Hp+q()‘)a h = Py

given by Py(z1, 22) = h(21,%2), 21 € M, ;(C), 22 € My, (C). The representation
of GL(p,C) x GL(q,C) on H,,()) corresponds to a representation on H, 4()),
which we also call 7y, given by 7o(g1, g2) P(21, 22) = P(g7 '21,'g222). The following
Lemma is adapted from [14, Lemma 4.2]:
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Lemma 13.4. Let Z = X +iY € My,(C) with X = X*, Y = Y*, ¥ > 0.
Let P € Hyiq(N), and a, a1, a9 € My i(C). Then:

—_ > * — N * — N * * a/ a
e wiIra ale mTraa26 i Traa™Z P ) - da
M, A% Vo

— (i)bkewiTI‘a1a;Z*71 det(_z*)—k .

(D)0 ) ()

Proof. As both sides are holomorphic functions of Z*, it is enough to verify
the equation for Z = 142, where A is a positive definite hermitian matrix. By the
change of variables a — A 'a and the relation

P(()- () == (o D06 1) () ()

it is enough to prove the result for Z = 7. Thus we need to prove:

/ e—wiTra*ale—m' Traa} e—ﬂ'Traa*P ( ( .a ) s (—a ) ) da (23)
My 1U1 V2
_ —7n'Traia} i 0 — 0 = g2

We think of M,;(C) as a real vector space embedded in its complexification
My (C) x Myx(C) by a — (a,a). Then it follows from the mean value theorem
for harmonic polynomials (Lemma 8.5) that

() (e e
o, 1 V2

_. ! —._I
el ()

1 (%]

Here we are using the fact that a — P ( (25 ) , (Ea )) is a harmonic polynomial
1 2
on M, (C) (viewed as a real vector space).
Now we view (24) as an equation between real analytic functions of a'. By

analytic continuation, it follows that for any (ai,as) € Mk (C) x Myx(C), we

have:
/ e—wiTra*ale—niTraa;e—wTraa*P(('a ) ’ (f’))da (25)
M, 101 Vo
- () ()
(2%] Vo
We observe that (25) is equivalent to (23), which proves the Lemma. u

Returning to the theorem, we have

Z1

— 'T\r * VI\r * * N * * — *

(BbfW) 1Z11 —e i Tr 21 25 e7r vivs W emx/ﬁTrzm en\/iTrazZe wTraa*

2
v2 My

e T Tr(aa* W1*1)€*7ri Tr(av} W1*2)e7r ’I‘r(vla*Wg*l)Ph ( (ZZ ) , (; ) ) da
1 2
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By Lemma 11.1, we have Wy, = X +4Y, with X, Y € Herm,(C) with Y > 0,
and thus the previous Lemma applies. Taking a; = —v22 + WWaivy, ay =
V225 + Wy, Z* = W}, — i, the Lemma gives:

21

(BbfW) (Zz) — e—wiTrz1Z’2* €7r'I‘r111'u’2"W2*2 . (i)bke”i“alagZ*_l det(_Z*)_k
—7Z* 0 _Z*—l 0 . ay s
70 0 1 ) 0 1 h ivl , 62

miTraja3 Z*~ 1

where we calculate

—miTr 2125 e7r Trvivy Wy,

€ - €

= " Traz (=)W —i)" (W1*1+i)e7rﬁvlzg(—ﬁi)(wl*l_ier;l.

e’ Trzlv;(—\/ﬁi)Wﬁ(Wl*l _i)_leﬁ Troivy (Wi —Wih (Wi _i)_1W2*1)

T T
21 11 ~21
FIi(Ul)(zg 11;)( * * > 51
= e Iy 15 ) — qr | =

v2

with (70 72) = ¢, (2 112) given by formula (21) and

a5 (5 9)n((0) - (2)
. ((é;l D) 0 D)
) (v

= ()" det(=W;, +1)
h(( V2(1+iWy) 1 —(Wll—z)_ W2 ( 2(1—iW11) "1 Wi —(W11+z) 1W12> (a ))
0 0 Vg

- Cllg ,W>*1h((§3) < >)

where C is a constant. As J(c;', W)™ = J(cy, T) for T = ¢;*(W), this proves
the theorem. ]

Now we can proceed exactly as in the (Sp(n,R), O(k)) example in Section
8. First note that the irreducibility of 7 and hence of 75 implies that h(iw;, ws) =
b1 h(wy, wy), (wy,ws) € M, (C) x M, ,(C), for some constant ;. Let I, denote
the map from #, ,(\) to the space of harmonic polynomials in L?(My, Fp_pg—p; )

given by
@ a a
wnlo ) =a(()- (2)
101 Vo
Vg

for h € H,4()\). By the Theorem, applying the inverse Bargmann transform to
(10.6) and canceling constants on both sides leads to:

N9ty T (h) = @ypms oy Io(T (e, 9(T))* T (9, T)* ™" T (e, T) ")
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for TeD, ge, ¢ = cbgcb_1 € G%. Then for hy,hy € Hy4(A) and S, T € D,
we have

(az,(r) © I (h1) a5 © Io(ho)) L2(an,, )
= |181*(J (cs, S)Q(S, T)J (cs, T)* hu| ha)3, 45y, B @ constant

and we can define a positive definite kernel function @' : S, x S, — Aut(V;)
by Q'(cp(S), co(T)) = ||8)>J (cv, S)Q(S, T)J (cy, T)* which satisfies (17). It follows
that G acts on H(S,,7) by the strongly continuous unitary representation 7
defined by (18). Finally, the map ¢, Io(h) — Q'(-;cs(T))h extends to an
intertwining map =, between (wy, L?(M,, F;))) and (T, H(S,,V;)) such that
CaAf W) W2, .00 = (flawIs(R)) L2(a,, 750 - This map can be written as follows:

a a
Theorem 13.5.  Let f € L*(M,, F; ) and let [ vy | — Iy | v1 | be the poly-
() V2

nomial function on My x M, , x M, with values in Hom(V;,V)) defined by

e r=n(() ()

for h e V. =M, (\). Then:

*

_fa a a
Exf(W) = / / gy || Dilvi] flwm e~ gy dy
My S Mp_pyq—b Vg Vg Uy

The proof is as in Proposition 5.7.

Remark 13.6. When b = ¢, the intertwining map given above is exactly the
one found in [14].
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