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Semisimple Lie Groups and Root Systems

Toshihiko Matsuki

Communicated by S. Gindikin

Abstract. Let g be a compact semisimple Lie algebra. Then we first classify
pairs of involutions (o,7) of g with respect to the corresponding double coset
decompositions H\G/L. (Note that we don’t assume o7 = 70.) In [4], we
defined a maximal torus A, a (restricted) root system ¥ and a “generalized”
Weyl group J and then we proved

J\A = H\G/L

when G is connected. In this paper, we also compute ¥ and J for some
representatives of all the pairs of involutions when G is simply connected. By
these data, we can compute X and J for “all” the pairs of involutions.

1. Introduction

Let G be a reductive Lie group with two involutions o and 7 (0? = 72 =

id.). Let H and L be subgroups of G such that
(G°)yCHCG’ and (G")gCLCG".

Here G* = {g € G | p(g) = ¢} for an automorphism p of G and Fj denote the
connected component of F' containing the identity e for a Lie group F. In [4], we
gave fundamental theorems on the structure of the double coset decompositions
H\G/L.

In this paper, we consider the case that G is compact. We also assume that
(G is connected and semisimple for the sake of simplicity.

Let = be an element of G and p an automorphism of G. Then the double
coset decompositions H\G/L and p(H)\G/zp(L)z™' are identified by the map
g+ p(g)z™" because

hgt = p(hgt)x™" = p(h)p(g)a™ zp(€)z™"

for h € H and ¢ € L ([4] Remark 2).

By this remark, we can define an equivalence of pairs of involutions on a
Lie algebra g as follows.
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Definition 1.1.  Let o0,0’,7 and 7’ be involutions on g. Then we write
(G, T) ~ (JI’ TI)

if and only if there exist an automorphism p and an inner automorphism py of g
such that
o =pop~t and that 7 = popTp oyt

The first aim of this paper is to classify pairs of involutions on g by this
equivalence relation. Precise results are written in Section 2. Typical representa-
tives will also be given for classical case. As a result, we can give the following
interesting remark.

Remark 1.2. (i) When g is of exceptional type, then we can take representa-
tives (o, 7) such that o7 = 70.

(ii) On the other hand, when g is classical, there are three types of equiv-
alence classes such that we can not take commuting pairs of involutions as rep-
resentatives. (DI-III, AIII-II (p: odd, p # m) and DI-I’ in Section 2. See also
Remark 1 in [4].)

(iii) When g is not simple, there are many examples as in Section 2 such
that we can not take commuting pairs of involutions as representatives.

Let g=g°®g 7 =g ©g " be the decompositions of the Lie algebra g of
G into the +1 and —1-eigenspaces for o and 7, respectively. Let a be a maximal
abelian subspace of g7 N g™ and put A = exp a. Define subgroups

Nis = {(h¢)€ HxL|hAl™ = A},
Zy = {(h,f) e HxL|hat ' =aforallac A}
of Hx L and put J = Na/Z4. Then the following theorem is proved in [4].

Theorem (Theorem 1in [4]). (i) G = HAL.
(ii) By the inclusion map, we have a bijection

J\A = H\G/L.

For a linear form « : a — iR (with values in pure imaginary numbers), we
define the “root space”

ge(a, ) ={X eg|[Y,X]=a(Y)X forallY € a}.
Put
¥ =X(gc,a) = {a€ia” — {0} | gc(a, @) # {0}}.
Then we have the root space decomposition
gc = @ gC(aa Oé).

aexu{0}

Since a C g, we also have the following eigenspace decomposition
gC(aa a) = @ g(C(a7 G, )‘)
IA=1

where gc(a, a, \) = {X € ge(a,a) | 07X = AX}. We proved the following in [4].
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Proposition (Proposition 1in [4]). X satisfies the aziom of the root systems.

Let (o',7') be another pair of involutions on g such that ¢’ = pop~' and
that 7/ = poprp~'py' with some automorphism p and inner automorphism pg of
g. ((o,7) ~ (¢',7") by Definition 1.) Since p~!pgp is an inner automorphism of g,
we can write p~'pgp = Ad(haf) with some h € H, a € A and £ € L by Theorem
(i). If we put p' = pAd(h), then we have

o' =pop " and 7 = pAd(hal)TAd(hal)'p" = prap

where 7, = Ad(a)TAd(a)™'. Hence (¢’,7') is Aut (g)-conjugate to (o,7,). Let X
be an element of gc¢(a, o, A). Then we have

07X = o7Ad(a) 72X = Aa”X = Ne 22X (1.1)
if a =expY. On the other hand, the map
(h,£) — (h,ala™)

gives a natural isomorphism of J onto the group for the pair (H,aLa™'). So
we have only to compute ¥, gc(a,«,A) and J for some representatives of the
equivalence classes of (o, 7).

The second aim of this paper is to compute %, dim g¢(a, o, A) and J (when
G is simply connected) for representatives (o, 7) given in Section 2.

In Section 3, we show that the group J is determined by

E={()) €T xU) | gela ) # {0}}

when G is simply connected (Proposition 3.1).

In Section 4, we give lists of 3, dimensions of g¢(a, o, A) and the groups J
when G is connected and simply connected. (When o7 = 70, the dimensions of
gc(a, o, \) are given in Table V of [5].)

Section 5 is an appendix for Section 3 and Section 4 to prove the following.

Corollary (of Proposition 5.2 and Proposition 5.3).  When G is simply connect-
ed, the lattice {Y € a|expY = e} in a is generated by the set

{Ya = (LZ—ZO;) a € E(gc,a)}.

Example 1.3. Let g = u(n,F) where F = R,C or H. Define involutions o
and 7 of g by
oX =1,,XI,, and 7X =1,,XI,,

for X € g, respectively, where n=p+q¢=7r-+s, r>p>q>s and

I 0
Ip,q: (()p _Iq>-

Then we can take a maximal abelian subspace a of g7 Ng~
0 d(bq,...,0s)

a={Y(0,...,0,) = 0 0r,...,0,€R
—d(6,,...,0,) 0

7 of the form
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where

Define e; € ta* by
€;: Y(@l, R ,05) — ’1,0]

Then it is wellknown that dimensions of gc(a, ) are as follows.

o +e; e +e; +2e;
dim g¢(a, @) c c(r —s) c—1
Here j # k and
1 (F=R)
c=4¢2 (F=C)
4 (F =H).

Since (07)? = id., we have A = +1. Since g°" = u(p + s,F) ® u(q — s,F) and
g°Ng” =u(p,F) du(qg—s,F) ®u(s,F), we can easily compute dim gc(a, o, A) as
follows.

o} +e; = ey *e; +2e;
A=1 c c(p—s) c—1
A=-1 0 c(qg—s) 0

Y = Y(g,... ,g,O,... ,0). (There are s; §’s and s 0's. 51+ 83 = 5.)

Put
0 0 I, 0
0 L., 0 0
a=expY = L. 0 0 0 e U(n,T).
o 0 0 I,

Then we have

where

Since

a2ej — eer(Y) — -1 (] < 81)
1 (] > 81),

we can get by (1.1) the list of dim gc(a, o, A) for the pair (o,7,) of involutions as
follows.
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:|:€j + (&7 :|:€j + (&7 j:ej + (&3> iej iej
Q . . . . . +2e;
U k<s1)|(Gk>s1)|(<s1<k)|(G<s1)|([>s)
A=1 c c 0 clg—s)|elp—s)|c—1
A=-1 0 0 c cp—s)|clg—s)| O
Remark 1.4. In this example, we choose a € A so that o7, = 7,0. For such

pairs of involutions, dimensions of gc(a, a, A) (A = £1) are computed in [5] Table
V. In the same way, we can reproduce all the data on dim gc(a, o, \) given in [5]
from the results in Section 4.

The author is grateful to T.Oshima because the classification for exceptional
case was obtained by his suggestion.

2. Classification of pairs of involutions

Let g be a compact semisimple Lie algebra. Let G = Aut (g) be the group
of automorphisms of g. Then Gy = Int (g) is the subgroup of G consisting of

inner automorphisms of g. Classification of GG-conjugacy classes of involutions on
g is well-known since it corresponds to the classification of symmetric pairs (g, b).
As in Section 1, we define an equivalence of pairs of involutions on g as follows.

Definition 1.1.  Let o0,0’,7 and 7’ be involutions on g. Then we write
(o,7) ~ (o', 7)
if and only if there exist a p € G and Po € Gy such that
o =pop~t and that 7 = poptp oyt
Fix a pair of involutions (o, 7) on g. We have only to study the equivalence
in the set
S={(c",7)| o =popt, 7= prp " for some p,p € G}.
Since every equivalence class in S contains an element of
So = {(0,7") | 7' = p'rp'"" for some p' € G},
we have only to study the equivalence of elements in Sy. If (o,7') ~ (0,7"), then
pop~t =0 and popr'p oyt = 7"
for some p € G and py € Go. Write 7 = p/rp' ' with a o € G. Then
" = (popp' )T (popp’) -

There exists a natural identification between Sy and G / G by the map

(0,079 ") = PG
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By this identification, (o, 7") corresponds to pypp'G™. Hence the equivalence class
in Sy containing 7’ is identified with the subset

GoG7p'G™
of G. Let 7 be the projection
m:G — G/Gh.
Then every equivalence class in Sy corresponds to a double coset
(G°)rm (o) (G7)

in 7(G) with some p/ € G. Hence we have only to consider the double coset
decomposition

(GO\m(G)/m(G7).
Suppose that g is simple. Then it is wellknown that
Zy if g = su(n) (n > 3),0(2m) (m > 5) or Eg
7(G)2{S;, ifg=o(8) (2.1)
{e} otherwise.

Moreover the group 7(G°) is computed in [3] p.156 for every symmetric pair
(g,987). As a result, we have 7(G?) = 7(G) unless

(8,87) = (0(4m),u(2m)) with m >3 (n(G) = Zy, 7(G°) = {e})
(g,9%) 2 (0(8),0(8 — q) ®o(q)) with ¢ =1,2,3 (7(G) = Ss, 7(G°) = Zy).

Suppose that g is classical. Then it is known that every involution ¢ of g
is G'-conjugate to one of the following involutions.

type g o(X) h=g°

Al su(n) X o(n

AIl su(2m) I X J 1 u(m, H)
AIII su(n) L,,XI,, (u(p) ® u(q)) N su(n)
BDI o(n) I, X1y, o(p) @ o(q)
DITT 0(2m) Jn X J 1 u(m

CI u(n, H) (i1 1) X (i1 1,) 1 u(n)

CII u(n, H) I,,XI,, u(p, H) & u(q, H)

Here p+q=n,
I, 0 g ! 0 1
I,,= (6’ —Iq> : I = where J; = (_1 0)
0 Jq

and the field H of quarternions is defined as

H= {a0+a1i1 +a2i2+a3i3 | g, ... ,03 € R}
where ’L% = Z% = Z% = —1, ilig = —ig’h = ig, igig = —ig’iz = il and igil = —i1i3 =
l2.
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Proposition 2.1.  Let (o,7) be a pair of involutions on a classical simple com-
pact Lie algebra g. Then (o,7) or (1,0) is equivalent to one of the following pairs
if o and T are not Gy-conjugate.

type g (ig D <?)
BDI — I o(n) qugpq ) (Z% S EZ;)
ATIT — 111 su(n) G” qu q) (Eﬁ% g Eg; pw EEEZD
CII-T | u(n,H) (?’qﬁ“) (ﬁ((g g; g Eg Eg)
ATl —TII su(n) [p,g Im) ((u(p) @ ;((;))) N su(n))
CI—1I u(n, H) ((iIIJ)X)?le{q) 1) (u(p, H)ué;% )u(q,H))
- o(2m) ( pa jiq) (o(pl)l (Efn t)’(q)>
J_— su(2m) ( P jzi ) ((u(p) Gi ’(177(1(1’)11)%1;? su(n))
Al —1I su(2m) ( T X! ) (u?fi?fa)n)
DIII — 111 o(4m) ( J‘,]”;fj,]?"il) ( I4m1,lﬁg$§14ml,l)
@ SDiI I;r 3) 0(8) <,§1(I[I:qsf(l)p8[m)> (m(oo(fg)%oo(gg)D

Here n=p+qg=r+s, r>p>q2>s,

B = (P )

and k is an outer automorphism of 0(8) of order 3. ( In BDI-I, AIII-III and
CII-II type, we have q > s since we assume that o and T are not Gy-conjugate.)

Proof.  The assertion is clear from the preceding argument except when g =
0(8). Suppose that g = 0(8). Then ¢ and 7 are G-conjugate to Ad(I,,) and
Ad(I, ), respectively, with some ¢,s = 1,2,3,4. If ¢ =4 or s = 4, then ﬁ(é")
or 7(G7) equals 7(G) and therefore we have (0,7) ~ (Ad(L,,), Ad(l,,)) (BDI-
I type). So we may assume that ¢,s = 1,2,3. Note that we have a set of
representatives {e,7(x)} (x is an outer automorphism of g of order 3) of the
double coset decomposition

m(G7)\m(G)/m(G")

since 7(G) & 83 and 7(G°) = 7(G7) X Zy. If ¢ = 2 or s = 2, then (o,7) or
(1,0) is equivalent to BDI-I type or DI-III type because Ad(ls2) and Ad(Jy) are
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conjugate by an outer automorphism of g of order 3. If ¢,s =1 or 3, then (o, 7)
is equivalent to BDI-I type or DI-I" type. [ ]

Next suppose that g is exceptional. Since m(G°) = 7(G) for every (g,0),
we have only to consider all the combinations of two G -conjugacy classes of involu-
tions. In Table V of [5] (c.f. Tableau II of [1]), commuting pairs of involutions are
classified. But we can see that there appear “all” the combinations of involutions
in that table. Thus we can take representatives (o, 7) of pairs of involutions so
that o7 = 70 for exceptional case. (See the table in Section 4, B.)

Finally, suppose that g is not simple and that g is irreducible under the
action of the pair (o,7), which means that there is no non-trivial ideal gy of g
such that ogg = 799 = go. Write

g:gl@"'@gk

with simple Lie algebras g;, j = 1,...,k. By the (o, 7)-irreducibility of g, og;
or 7g; equals g; with some j # 1. Exchanging the roles of o and 7, if necessary,
and transposing g; with g if j # 2, we may assume that

Tg1 = go-

If k=2, then ogs = gy or go. If £ > 3, then we have

g2 = @

with some j > 3 by the (o, 7)-irreducibility of g. Transposing g; with g3 if j # 3,
we may assume that
0g2 = @3-

Repeating this argument, we may assume that
0g2j = 92j+1 if 2j+1<k

and that

7—92j—1 = ggj if 2] S k.
Suppose that k is even. Then ogr must equal g; or gr. If ogr = gr, then we
have clearly og; = g;. On the other hand, if £ is odd, then we have 7g, = g, and

0g1 = g1- Thus we have obtained the following classification of (g,o,7) when g
is not simple.

Proposition 2.2.  Suppose that g is compact semisimple and that g 1is irre-
ducible under the action of the pair (o,7). Then g is the direct sum of k-copies
of a simple Lie algebra g, with some k > 1 and the pair (o,7) (or (1,0)) is
Aut (g) -conjugate to one of the following three types.

(I) k is even and

o(X1, Xo, o, X1, Xi) = (01(Xi), X3, X, oo, X1, Xppo, 07 (X1))
T(Xl,XQ,... ;Xk—ngk) = (XQ,Xl,... 7Xk:7ch—1)

with some automorphism py of g1.
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(IT) k is even and

o(Xy, Xy, X1, Xg) = (01(X1), X3, Xoy o oo, X1, X2, 11 (Xk))
T(XlaXQa"' anfl,Xk) = (X27X1a"' an:kal)

with some involutions o1 and 7 of g .
(III) k is odd and

O'(Xl,XQ,... ,Xk—lan) = (01(X1),X3,X2,... ;ch;ch—l)
T(Xl,XQ,... ,Xk—lan) = (XQ,Xl,... ,Xk_l,Xk_Q,Tl(Xk))

with some tnvolutions o1 and 7 of g .

Remark 2.3.  Suppose that (g,0,7) is type (I).
(i) Let po be an inner automorphism of g; and put

po = (po,id., ... ,id.) € Int (g).

Then we have

3o (X X0) = ool (X0), Ko Xo)
= po(p1(Xk), X3, Xy, X1, Xp—2, p1 05 (X1))
= (pop1(Xk), X3, X2y, Xp—1, X2, (pop1) " (X1))-

So we may replace p; € Aut (g1) by any element pgp; of Int (g1)p; since (o,7) ~
(poopy ', 7) by the definition of equivalence.
(ii) The space g=? N g~" is written as

g °Ng T ={X®|Xeg}

where X®) = (X, -X,...,X,~X). Hence a maximal abelian subspace a of
g ?Ng 7" is of the form
{X(k) | X e U1}

where u; is a maximal abelian subalgebra of g*.

(iii) Let G1 be a connected Lie group with Lie algebra g; and G the direct
product of k-copies of G;. Suppose that p; lifts to an automorphism of GG;. Then
o and 7 lift to automorphisms of G'. Suppose that H = G° and L = G7. Let

(x1,-..,2k) be an element of G. Then we have
H(zi,...,2¢)L = H(z1,...,%%)(e, ..., e,z 25 )L
= H(xy,...,T g,xk 17 e) L
= He,...,e,257,_ l,ack:ck L) Ty, T 9, Tk 1T, )L
= H(xl, o Th—3, Ty ' T o,e,€)L
= H(xla:; cexp Ty e, ... e)L.

Hence it is clear that the double coset decomposition H\G/L can be identified
with the set

{{pi(z)ya" [z € Gi} |y e Gi}
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of p;-twisted conjugacy classes in (G; by the map
G 3 (T1,... ,Tk) = 12y - T 1T, € Gh.

By Theorem 1 of [4], we have
G=HAL
where A = exp a. Hence we have

G1 = U ,01($)U1£E_1

z€Gy

where U; = expu;. Let G1 be a Lie group such that (51)0 = (G4 and that

pi(9) =y "9y (g€ Gr)

with some y € G:. Then we have

yG, = U ypi(z) Uiz~ = U oyl

zeGy T€G

(c.f. [7] Chap.Il Theorem). Thus we can say that Theorem 1 of [4] includes [7]
Chap.II Theorem.

Remark 2.4.  Suppose that (g,0,7) is type (II) or (IIT). Then the space g=? N
g~ " is written as

g—o- m g_T = {X(k) | X € gl_o'l ﬂ gl_Tl}
where
x k) — (X,—-X,...,X,—X) if kis even
) (X, =X, ..., =X, X) ifkis odd.

Hence a maximal abelian subspace a of g7 N g™ is of the form

{X(k) | X e al}

where a; is a maximal abelian subspace of g;* Ng; ™.

Let G, be a connected Lie group with Lie algebra g, and G the direct
product of k-copies of G;. Suppose that o; and 7 lift to automorphisms of G .
Then o and 7 lift to G. By the same argument as in Remark 2.3 (iii), we have

G\G/G" = GY"\G41/GT!

by the map

xlazgl .- -xk_lxgl if k is even
(‘Z‘la axk) =

xlxgl . -x,:ilxk if k£ is odd.
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3. Structure of J when G is simply connected

In this section, we assume that G is simply connected. Then it is known
that
G” is connected

for any automorphism p of G' ([2] 3.4.Theorem). As in Section 5, we also have
{YealexpY =e} =T,

where ', is the lattice in a generated by the set

i
{Ya: o aEE(gC,a)}.

(o, @)

As in [4] Remark 3, the group J is identified with the subgroup of
Wy(A) < A (semidirect product of Wy (A) and A) given by

{(w,a) € Wy (A) < A | w = Ad(h)|, and a = h¢ "' for some h € Ny(A) and £ € L}
where Wg(A) = Ns(A)/Zs(A) for a subgroup S of G.

Let J be the group of affine transformations on a defined by
J={(w,Y) | w=Ad(h)|s and expY = hl~" for some h € Ny(a) and £ € L}
where (w,Y)X = wX +Y for X € a. Then it is clear that
J=J/T,

by the exponential map.
Let (o, e*) (u € iR) be an element of

5 = {(a)) € Z(gc, a) x U(1) | gela, a, A) # {0}}.

Let X, be a nonzero element of gc(a,a,e?) such that 0X, = X, (Lemma
2 of [4]) and Y an element of a such that a(Y) = p. Put ¢ = expY and
7o = Ad(a)7Ad(a) ' = 7Ad(a) ?. Then we have

07, X = 07Ad(a) *X, = X,.
Hence
Mo = expk(X, +0X,) € HNaLa™!
defines the reflection w, = Ad(mg)|s for some k£ € R. Put h = m, € H and
¢ =a"'mya € L. Then
he 't =mga 'mta = exp(Y — w,Y) = exp(a(Y)a") = exp pa”

where a¥ = 2a/(w, ) € ia is the co-root of a. Hence we have

(Wa, pa¥') € J.

Since
(Way pa¥) X = wo X + pa’ = X — a(X)a" + pa’

for X € a, (wq,pa”) is the reflection in a with respect to the hyperplane
a(X) = p.
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Proposition 3.1. (i) J is generated by
{(wa, pa”) | (a,€™) € T}
(ii) J is generated by
{(wa, exp pa) | (a, ) € T}.
(iii) If Wynz(a) = W(E) (£ = S(gc, a)), then
J=W(E) < Jy
where Jy is the subgroup of A generated by
{exp pa” | (o, ) € 3}

Proof. (i) Let Gis = {x € G | g77 N g~ ™ is abelian} be the set of regular
elements in G defined in [4]. Then it is clear that

BGregl ™ = Greg
for any h € H and ¢ € L. Hence we have
hAregl ' = Apeg
for any (h,£) € N, if we put
Areg = AN Grg={a € A|a® # X forall (o, ) € S
Consider
g = {Y €a|expY € Ag} = {V € a| 2 £ X for all (o, \) € B}
Then we have
JOreg = Oreg (3.1)

for any j € J.
Let 7 be an element of J and A a connected component of ay,. Then

by (3.1), jA is a connected component of a,.,. Let J denote the subgroup of J
generated by

{(wa, pa¥) | (@, ™) € 5.

Since (wq, pa) is the reflection with respect to the hyperplane {Y € a | a(Y) =
w1} and since

a— g = |J {Veala)=n},

(a,e2r)ES

it is clear that there exists a j, € j,« such that

JrJA = A.
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Put jo = 5,7 = (wo, Z). Then we have only to show that j, = id. Let N be a
positive integer such that w{’ =id. Since

](])V = (w(]]\/’ ZI) = (id,, ZI)
with some Z' € a and since A is bounded, we have Z’ = 0 and therefore 5§ = id.

Let X be an element of A and put

%:%@+MM+m+ﬁ%my

Then jo(Xo) = Xo and Xy € A because A is convex. Put zo = exp Xj.
Let (h,?) be an element of N4 such that Ad(h)|, = wo and that hf{~ =
exp 4. Then we have
hxol ! = .

Hence
h = zolzy' € G NG™0 C GT™o.

By [2] 3.4.Theorem, G°™o is connected. Since zq is regular, we have
g7 C 3q(a).
Hence we have h € G0 C Zg(a) and therefore
wy = Ad(h)|, = id.

which implies N =1 and j, = id.
The assertions (ii) and (iii) are clear from (i). m

4. Lists of X(gc,a), dimge(a,a,A) and J when G is simply connected

A. Classical case

We can give as follows the list of ¥ = X(gc,a), dimge(a,a,A) and J for all
(g,0,7) given in Proposition 2.1.

type o(X) - a € Jo
o <7-(X) by dim g¢(a, a, A) c —
BDI -1
o(n) B, 1 (4.2)
_ L, XI c c(p—s) c—1
AIIT — 111 p.a<*1pg BC, (p—s) 9 a2 =e
su(n) I..XI,, 0 c(g—s) O
CII —1I 2 _
u(n, H) BC, 4 “=e
Al — 111 X | |t =e(p>q)
su(n) LX1,, BC ¢c cp—q) c—1 (4.3) (p=4q)
CI—TI | [(311,)X (i11,,) ™" “"N\e ep—q ¢ 9 e e
u(n, H) Ip g X1,
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DI — 111 (Ip,qXIP,q) 2 clp—q) 2c—1\ |{|a' =¢€(e,=1)
ATIIL - 11 I, X1, a 0 2 0 ) A
su(2m) T X J 1 (¢ =1[q/2], gg=19-2¢) -
Al —1I X 2 4
su(2m) <JmYJT;1) Am-1 (2) @ =
DIIT — 11T Jom X Iy 4 4 1 5
o(4m) (J;mXJsm—l B 040 ©or
I, X1
. b,q p,q
DOI(S)I (Kl( _Im;g(X)Ir,s)) (41) G é) (4.5)
(g,s =1 or 3)

Here the notations and assumptions for ¢ and 7 are as in Section 2. But we

choose an outer automorphism & of 0(8) of order 3 so that xAd(Iy4)

= Ad(I474)K,

and that Ad(I7,)xAd(I;,) = k=" where I} | = I;4I53 (c.f. [3] p.106, p.155). The

root system X for DI-I’ type is

Go
¢

|

ifg=s5=3

otherwise.

(4.1)

Matrices for dim g¢(a, o, A) imply the following for each type of 3. Here we write

d(a, \)
if 3 is BC, or B,-type.

= dim g¢(a, o, A) and take a standard orthogonal basis {e, ...,

e.} of ia*

d(te; £eg, 1)  d(Ee;,1)  d(E2e,1)
BC, or B d(te; £eg,—1) d(xej,—1) d(£2e;,—1)
(d(+e; + e, 1) d(Lej, £i) d(+2e;, £1))
d(a, 1)
A, <d(a, _1)) forall € X
« : short roots
Go <g((g’i)) gég’:}%) B : long roots
’ ’ = (—1+£+/3i)/2

Since G is simply connected, we can compute the group J by Proposition
3.1 if we know ¥ = {(a, \) € £ x U(1) | dim gc(a, o, A) > 0}. We have

except for AI-III type (p =

J=W(E) < Jg

the form {a € A | a* = e} with k=2 or 4.

q). The group Jy (or J) is as follows when it is not of
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The group Jy for BDI-I type is given by
Jo = {exp %Z ane}/ n; € Z}
j=1
1 S
= epoanY;j n; € Z
j=1

={acA|a®eZ} (4.2)

where Z is the center of G = Spin(n). (Note that |[ANZ| =2.)
The group J for AI-III type (p = ¢) is given by

J=JOyJgu (4.3)

where J© = {(w,a) | w e WO, a € JV}, W(T) = WOUW® (WO is D,-type)

and
1 ji:
Jés): {expZ E nj}/er njez, n]€2z+5}

=1 =1

The group Jy for DI-III type (g, = 0) is given by

1 q q
Jo = {eXp Z an}/éej | n; € Z, Z?’Lj € QZ} (44)
j=1 j=1
The group Jy for DI-I” type (¢ = s = 3) is generated by

1
{exp EYQ | « : short roots}. (4.5)

(Note that Jo/{a € A|a*=e} X Z3=27/3Z.)

For each type of (g,0,7), we compute g’", choose a maximal abelian
subspace a of g2 N g 7 and then we find ¥ and dimgc(a, o, ) as follows.
(The group J is determined by dim g¢(a, @, A) as in Section 3 since G is simply
connected.) If g = su(n), then we may consider g = u(n) because the center has
no effect on the problems for Lie algebras.

Remark 4.1. (i) If (g,0,7) is not of type DI-III, AIII-IT (g: odd) or DI-I’,
then we have chosen ¢ and 7 in Proposition 1 so that

oT =T0.

Hence we have (07)? = id. and therefore A = +1 for such cases. Although
dimensions of gc(a, a, A) are given in Table V of [5] in these cases, we will give an
explicit computation for the sake of convenience.

(ii) As is remarked in Section 1, we can easily get all the data on root
multiplicities given in Table V of [5] from our two lists for classical case and
exceptional case.

(iii) Type (¢.) in [5] corresponds to the case when o and 7 are G-
conjugate.
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BDI-I, AIII-IIT and CII-IT type: For these cases, dimensions of gc¢(a, o, A)
are already computed in Example 1.3. We can compute J by Proposition 3.1 if
we note that )

Y, = M _y0,... 4x.. . 0)
(ej,€5)
where 47 is in the j-th component.
AI-TIT and CI-IT type: Put

(R,C,3,1)  (AI-III type)

FF . pc)=
( ¢ {(C; H,ip,2) (CI-I type).

We have g° Ng” = u(p,F) & u(q,F) and g°" = u(n,F) because o7 is Aut(g)-

conjugate to
0
oTAd
77[11) < ut q)
~1
0
Ad
)i ) (i)
0
oAd
7714) ( I
I, 0 I, 0
(0 _77]q> Ad (0 77]>

(Note that o is defined by an automorphism of F' which maps n to —n.) We can
take a of the form

>
Q.
o

I
>
o

I
>
Q.
ol e — _—
O S

o

A

l
9

= 0.

0 nd(bs,...,0,)
a=<Y(b,...,0,) = 0 br,...,0,€R

nd(01, ce ,Hq) 0

Let e; be an element of a* defined by
€; : Y(gl, ce ,gq) — 20]

Then it is clear that
dimgc(a, +e; + ex) =2¢, dimge(a, +ej) =2¢(p—¢q), dimge(a,+2e;) =2c—1
and that gc(a, ) = {0} for other a € ia* — {0}. On the other hand, we have

dimgc(a, +e; + e, 1) = ¢, dimge(a,+ej, 1) = ¢(p — ¢) and dimge(a, £2e;,1) =c—1

since g7 /g” N g" = u(n,F) /u(p,F) ® u(q, F).
DI-IIT and AIII-II type: Put

(FF,c) = (R,C,1) (DI-III type)
(C,H,2) (AIIIL-II type).
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First suppose that ¢ is even. Then g’ Ng™ = u(p,F) & u(¢,F) (p' =
p/2, ¢ = q/2) and g°" = ¢g" = u(m,F') because I,,J,, is O(2m)-conjugate to
Jm - We can take a maximal abelian subspace a in g7 N g~" of the form a =

0 A1}, ... ,0,1))
Y(Ol,...,ﬁq:): 0 01,...,0qI€R
—d(61 15, ... ,0.1}) 0
(4.6), where
Ay 0
, 01
L, = (1 0) and d(A,...,Ay) = .
0 Ay
for matrices A;,...,Ay. Let e; be an element of ia* defined by
€5 Y(01, R ,qu) — ’Loj
Take an abelian subspace
0 d'(p1,...,0q)
b: Z(ng,...,QOq): 0 Q01,...,Q0q€R
—td' (o1, .. ,pq) 0

of g containing a, where d'(¢1,...,¢9,) = d(¢1,--.,9q)d(L5, ... ,I5). Define
f; € ib* by
it Z(p1,--.,0q) — ;.
Then we have
foj-1la = foila =€

for j=1,...,¢. So we have

dim g@(a, :|:6j + ek) = dim g(j([‘l, :i:fgj,l + fgkfl) + dim g(c(b, :|:f2j,1 + fgk)
+ dim g (b, £fa; £ for1) + dimge(b, £f25 + for)

= ¢,
dimgc(a, +e;) = dimge(b, & /1) + dim ge(b, £+ /2)
= 2¢c(p—q),

dimgc(a, £2e;) = dimge(b, £2f5;-1) + dimge(b, £2f5;)
+ dim gc (b, £(f25-1 + f25))
2(c—1)+c¢c
3c — 2.

On the other hand, we have
dim gc(a, £e; £ ex, 1) = 2¢, dimge(a, +ej, 1) = ¢(p — ¢) and dimge(a, £2¢;,1) =2¢—1

since g7 /g° Ng” 2 u(m,F)/u(p/,F) du(¢,F).
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Next suppose that ¢ is odd. Then we have
g = y(2m — 2, F) @ u(2,F)

because (07)*(X) = (Ip,¢Jm)’ X (IpqJm) ? and
2
Jp/ 0 _I2p’ 0
(Ip,qu)Z = Ié == I2
0 —Jql 0 _IZq’

where p' = [p/2]. Moreover we have

8" N g = u(2p,F) & u(2¢,F) & u(l,F) & u(l,F)

and
87" N7 = u(m— 1LF) @ u(L,F)

Since a C g="Ng™" C g°" C g¢?” and since u(2,F) = (u(1, F)@u(1,F))+u(1,F),
we can choose a of the same form as (4.6). So we can compute dim gc(a, «) and
dim gc(a, o, £1) for all € 3 by the results when ¢ is even. Especially we have

dim g((c”)2(a, +e;) = 2¢(2p' - 2¢),
dim gc(a, £e;) = 2¢(2m —4q¢') = 2¢(2p’ — 2¢' + 2)

and dim g((cm)2(a, a) = dim gc(a, @) if o # +e;. Hence we have

2¢ if o = *e;

dim g(C(a7 a, :l:l) = {0 otherwise

AI-II type: Since o7(X) = J,, X J,' and since J,, is U(2m)-conjugate to

Iy 0
0 —i,)’

we have g?” = u(m) @ u(m). On the other hand, we have g° Ng™ = {X € o(2m) |
InXJ 1= X} = u(m). We can take a maximal abelian subspace a in g7 Ng "
of the form

a={Y(0,...,0,) =d(i01L,... ,i0,1) | 61,...,0, € R}
Let e; be an element of ia* defined by
ej Y (by,...,0p,)— i0;.
Take an abelian subspace
b={Z(p1,...,pom) = d(ip1,...,10am) | ©1,--.,0om € R}
of g containing a and define f; € ib* by

[i i Z(p1,--. ,@q) — ip;.
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Then we have
f2j71|a = f2j|a =€y

for j=1,...,m. So we have

dimgc(a,e; —ex) = dimge(b, faj—1 — fae—1) +dimge(b, foj_1 — for)
+ dim g (b, fo; — for—1) + dimge(b, fo; — for)
= 4

and gc(a,«) = {0} for other o € ia* — {0}. On the other hand, we have
dimgc(a, ej — e, 1) = 2 since g°"/g” Ng" Z u(m) @ u(m)/{(X,X) | X € u(m)}.

DIILIIT type: We have go" 2 o(4m —2) ®0(2) and g° Ng” = u(2m—1) &
u(1). We can take a maximal abelian subspace a in g=? N g " consisting of the
elements

0 A1y, ... ,O0n-113)

0
Y(Gl, e ,Om_l) - —d(01fé, . e agm—llé) 0 0
0 0 0

where 6;,...,0, 1 € R. Let e; be an element of ¢a* defined by
€; : Y(gl, C agm—l) — ’LHJ

Since the symmetric pair (g7, g’ Ng") is DIII-type, we have dim g¢(a, +e;,1) =
dimgc(a, £e; + e, 1) =4 and dim gc(a, £2e;,1) = 1. We also have easily that

{4 if o = +e;

dim gc(a, o, —1) =
gc( ) 0 otherwise.

(We may take an abelian subspace b of g as in DI-IIT and AIII-IT type.)

DI-I’ type: Remark that G = HL if and only if G = H'L' with some
Int (g)-conjugates H' and L' of H and L, respectively.

First we consider the case ¢ = s = 1 and show that G = HL. Put
o' = Ad(I},) and 7' = kAd(J} )k '. Then we have only to show that G = G” G™
by the above remark. We have

1 1

o =dk o'k =kKk?=K

and therefore g”” = g* is Go-type. Since k and o' generate a subgroup of
Aut (g) isomorphic to S3, it is known that

g"Cg”.
Hence we have g’ C g° and therefore
g7Ng " =g""Ng " ={0},

which implies G = G G™ .
Next we consider the case (¢,s) = (3,1) and show that G = HL. Put
7' = k7'Ad(I},)k. Then we have only to show that

g°ng” = {0}
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as in the case of ¢ = s = 1. Since I53 = I;417,, we have
or' = Ad(I44)Ad(I} )k~ Ad(] )k = Ad(Iy )k

and (07')? = k72 = k because kAd(I4) = Ad(I44)k. Hence g’ C g(”')2 =g"C
g” and therefore

g’ Ng " =g Ng™" ={0}.

Finally, consider the case ¢ = s = 3. We have

= Ad([5’3)l€71Ad(I5,3)K,
= Ad([4,4)Ad(I§,1)K)_lAd(I4,4)Ad(I§,1)KJ
Ad(lé,l)’filAd(Ié,l)"@

= /{,_1

aT

since KAd([y4) = Ad(Is4)k. Hence g°” = g* is Go-type and g°Ng” = g°Ng’" =
su(2) @ su(2) since (g°7,g° Ng") is a nontrivial symmetric pair. So we can choose
a two-dimensional maximal abelian subspace a of g7 N g™". It is clear that
dimensions of gc(a, «, A) are as in the list.

B. Exceptional case

When g is exceptional, we can give as follows the list of ¥, dim g¢(a, o, A) and
J for representatives of all the triples (g,o,7) such that o and 7 are not G-
conjugate. We may assume that o7 = 70 and that (g°",h N I[) are as follows
(c.f. Table V in [5]). Dimensions of gc(a,a, A) are given in Table V in [5]. (We
can easily compute them by the same arguments as in the classical cases.) By
Proposition 3.1, the group J is determined by 3.

type or . a € J
ygp ? f)gﬂ ( Y | dimge(a, o, A) — 0
EI —II sp(4) F, 11
Es su(6) dsu(2) | sp(3) ®sp(l) 10
EV — VI su(8) Es ® R . 2 1 (47
E; 0(12) ® su(2) | su(6) ®su2) R | ~* 2 0 '
EVIII — IX 0(16) E; @ su(2) 41
Esg E; & su(2) 0(12) ® o(4) 4 0
EV — VII su(8) 0(12) @ su(2) C 4 0 1 (4.4)
E; Es®@R |su(6)@sul2@eR| ° 400 '
EIl - III | su(6) @ su(2) o(10)®R 4 41
Es o(10)® R su(b) @ R? 2 40
BC, (4.4)
EVI — VII | 0(12) & su(2) Es ® R 6 8 1
E; Es & R 0(10) & R 2 8 0
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El }56111 o(fg)(zé)9 . 5p(25)pe(94s)p(2) BC, (g j (1)) at=e
LR e (@) |«
EHE—6 IV | su(6) E‘i su(2) 5p(3§pe(942p(1) BC, (g g) a e
EIIIE - v 0(1(;)4@ R 01(?3) BC, (g I) e
FI-I | o) @ap01) | 0 058D | e, (j Z) at=e

Here the matrices for dim g¢(a, o, A) are the same as in the classical case if
Y is Ay, BCy or Csz-type. If ¥ is Fy-type or BC;-type, then the matrix implies

dim g@(aa «, 1) dim g@(aa ﬂa 1)
dim gC(aa a, _1) dim gC(a: ﬁa _1)

for short roots a and long roots §. If X is F4-type, then J; is generated by

1
{exp ZYa | « : short roots}. (4.7)

(Note that Jo/{a € A|a®> =€} X Zy X Zy.)

C. The case g is not simple

Type I: Let (g,0,7) be as in Proposition 2.2 (I) and take a maximal abelian
subspace a of g7?Ng " as in Remark 2.3 (ii). Then the space gc(a, a, A) consists
of the elements

(Xl’ X2’ Aile’ /\X27 SR Aim‘lel; )\milXZ)

with X € (g1)c(u1, @1, A™) and Xy € (g1)c(u1, —aq, A™™). Here m = k/2, oy (Y)
=a(Y®) for Y € u; and (g1)c(uy, B, 1) = {X € (g1)c(us, B) | ;X = pX} for
(B, p) € iy x U(1).

Let G1,G, H, L, A and U, be as in Remark 2.3 (iii). Let (h,¢) be an element
of Ny. Write h = (hq,... ,hg) and £ = ({1,... , ) where hy, ... hg,ly,... b €
G,. Since h¢~! € A, we can write

(it il = et =a® = (a,07, .. a0
with some a € U;. Hence we have

by = Ly =ahy
hr—s = hg_1=a’hg

bz = ly_o=a’hy

pl(hk) = h1=akhk



62 MATSUKI

by the definition of H and L. Thus we can identify the group J with the group

{(Ad(g)|v,,b) € We, (Ur) < Uy | pr(g)g~" = b*}

by the map
(h, £) — (Ad(hg)|oy, @)

(Note that A is identified with U; by a®) - a.)
Define subgroups

N ={g€Gi|p(9Uig ' =0}, Zi={g9€G,|p(g)ag *=aforallacU}

of Gy and put J; = Ny/Z;. Then by the same argument as in [4] Remark 3, we
can identify J; with the group

{(Ad(g) v, b) € We, (Ur) < Uy | pi(9)g~" = b}.

Comparing J and J;, we can see that the map A4 3 a® — a* € U; induces a
bijection

J\A 2 J\U,.

Summarizing the above arguments, we have the following natural commut-
ing diagram of bijections.

JNA  — J\Ui

| |

H\G/L — G/pi-twisted con].

Here the vertical arrows are given by the inclusions and the horizontal ones are
given by the map

1 1
(T1y ey Tg) > T1Ty + o T Ty

Note that the restriction of this map to A is a® — a*.

If p; is an inner automorphism, then we may assume that p; = id. by
Remark 2.3 (i). If G; is simply connected, then it is known that J; = Wg, (Uh).
Hence

J2We, (U) < {a €U | a* =e}.

Of course, this follows also from Proposition 3.1.
On the other hand, if p; is an outer automorphism, then we may assume
that (g1, g7") is one of the following five types by Remark 2.3 (i) and (2.1).
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g1 gl Y((g1)c,w) | dim(gy)c(w, o, A) | Jo (or J) when k =2
su@m) | sp(m) Cn G 8 é) (4.4)
su(2m+1) | o(2m + 1) BC,, G i (1]> (4.3)
o(2m) |om—1)| B (é } g) (4.2)
Fq F, F, G (1)) (4.7)

Here the matrices for dim(g1)c(u1, @, A) are as in the simple cases. If k = 2,
then we can see that every ¥ = {(a, \) € ia* x U(1) | gc(a, a, A) # {0}} is equal
to one of the classical cases. So the group J is the same by Proposition 3.1.

Type (II) and (III): Let (g,0,7) be as in Proposition 2.2 (II) and (III). Take a
maximal abelian subspace a of g7 N g™ as in Remark 2.4. If k£ = 2m is even,
then the space gc(a, @, \) consists of the elements

(XA XTI AT X AT AT X AT AT X)

with X € (91)((3(&1,041, )\k) Here Ojl(Y) = O,/(Y(k)) for Y € a; and (91)@(a1, ,B, /,L) =
{(X € (g1)c(a1,8) | o1 X = pX} for (B, ) € ia; xU(1). Similarly, if £ = 2m+1
is odd, then the space gc(a,a, \) consists of the elements

(X, A2 XA LX, A2 X ™ 2 X, AT A e XY

with X € (gl)c(al, Qaq, )\k) .

Let G1,G,A and A; be as in Remark 2.4. Let J; be the group for
(G1,G7',GT'). Then by a similar argument as in type I case, we have the following
natural commuting diagram of bijections.

J\A — Jl\Al

N

G°\G/G"™ — G{'\G:/GT

Here the vertical arrows are given by the inclusions and the horizontal ones are
given by the map

if £ is odd.

xlxgl .- -xk_lx,zl if k is even
(xla 73716) = 1 1
T1Ty T 1Tk

Note that the restriction of this map to A is a®) — aF.
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5. Appendix

Let p be an automorphism of g. Take a maximal abelian subalgebra u of
g’ and let t denote the centralizer of u in g. Then the following lemma seems to
be known. For the sake of completeness, we will give a proof by the same argument
as in the proof of [2] 3.4.Theorem.

Lemma 5.1. t 1s abelian.

Proof.  Let 3 be the center of t and s = [t, t| the semisimple part of t. Then
t=3Ds.

Suppose that s # {0}. Then we will get a contradiction.

Since u is p-stable, s is also p-stable. By [7] Chap.II Section 2, we have
s” # {0} and therefore s” contains a nontrivial abelian subalgebra u;. Thus we
get an abelian subalgebra u @ u, of g”. But this contradicts to the assumption
that u is maximal abelian in g*. ]

Let ', (x =t or u) denote the lattices in * generated by the set

{Ya - (Tj) | oe Soc, *)} | (5.1)

Let G be the connected simply connected Lie group with Lie algebra g. Then it
is known that
{Yet|expY =e} =T,

So the following proposition implies that

{Yeu|expY =e} =T,
Proposition 5.2. ry=T{Nu.

Proof. Since g is semisimple, g is written as a direct sum

0=01D - Dok

of simple Lie algebras gi,...,gx. Considering each irreducible component of the
p-action on g, we may assume that g; = go = --- = g and that

:O(Xla"' :Xk) = (pl(Xk):Xla' - :kal)

with some automorphism p; of g;. Let X = (X,...,X,) be an element of g°.
Then we have
(p1(Xk), X, oo, Xpo1) = (X, -0, X)

and therefore p;(X;) = X; = Xy =--- = X € g/". Hence we have shown that

o ={X,...,. X)eg| X egl'} =gl
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Thus the space u is of the form
u={(X,...,X)eg| X ew}

where 1, is a maximal abelian subalgebra of g/*. So we have only to consider the
case that g is simple in the following.

Let W(x) = W (x)><T, be the group of affine transformations on the
spaces * = t or u generated by reflections

2a
(o, )

with respect to the hyperplanes {Y € x | a(Y) = 2min} for a € 3(x) and n € Z.
We can define the set C(x) of “Weyl chambers” in * = t, u consisting of connected
components of the set

Wap Y = we(Y)+nY, =Y —a(Y) +nY,

{Y € x| a(Y) # 2min for all o € X(x) and n € Z}.

Then it is known that W(*) acts simply transitively on C(x). Note that every
A, € C(u) can be written as
Au = A{ nu

with a unique A € C(t) because there is no root a € ¥(t) such that «|, = 0 by
Lemma 5.1. -
Put W(t), = {w € W(t) | w(u) = u}|,. Then we have only to show that

—_~ —_~

W(t)y = W(u) (5.2)
because the subgroups consisting of parallel translations in W (t), and W (u) are
{e} < (unTy) and {e}ro<T,,

respectively.
We will prove (5.2) by applying the wellknown argument due to I.Satake
([6] Appendix). If u = t, then the assertion is clear. So we may assume that

p is an outer automorphism of g. First we will show that W(u) C W(t),. We

have only to show that w,, € W(t), for every o € ¥(u) and n by case-by-case
checking. Let S be a root in X(t) such that o = §|,. Note that (8, p(5)) <0
if p(B) # B because § — p(B) ¢ X(t) by Lemma 5.1. Let ¢ be the least positive
integer such that

p¢ € Int (g).

Then ¢ = 2 or 3 since g is simple (c.f. (2.1)). Extend u to a maximal abelian
subalgebra t' of g”°. Then t is maximal abelian in g since p° is an inner
automorphism. Hence t' = t. Thus we have proved that

,Oc‘t: id.
First suppose that ¢ = 2. Then we have |3|/|a| =1, V2 or 2.

If [8]/|a| =1, then way = wgalu € W(H),.
If |3|/|a| = v/2, then Wan = W nWy(a)n|u € W(t)y since (B, p(8)) = 0.
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If |B|/|e] =2, then v = 4 p(B) € 3(t) and therefore wg, = Wy |y €
W (t).
Next consider the case that ¢ = 3. If p(8) = S, then wan = waply €
W(t)u. On the other hand, if p(8) # 3, then ZB0p(B) = 7/2, 2w/3 or 7 since

(8,p(B)) < 0.

If Z80p(B) = 7, then p(B) = —fB. Since p?| = id., we have 8 = p*(8) =
—[f, a contradiction.

If Z80p(B) = 2n/3, then we have

Zp(B)0p*(B) = £p*(B)OB =

2T
3

Hence we have
B+pB)+p°(8)=0

which implies a = B[, = (1/3)(8 + p(8) + p*(B))|u = 0, a contradiction.
So we have ZB0p(8) = ZLp(B)Op*(B) = £p*(B)OB = 7/2. Then it is clear
that

Wa,n = WEaWp(8)nWe2(8)mlu € W (t)u-

Conversely, we will show that W(t), C W(u). Let w be an element of
WE* = {w e W) | w(u) = u} and A, = A,Nu an element of C(u) (A, €
C(t)). Then wA, = wA Nu € C(u) and there exists a wy € W(u) such that
wy'wA, = A,. Since W(u) C W(t)., we can choose @y € W(t)* such that
Wolw = wo. Then we have @O_lwAu = A, and therefore fbo_lwAt = A¢. This
implies w = wy. Hence

Wy = Wolu = wo € W (u). n

Let g,0,7 and a be as in Section 1. Let u be a maximal abelian subalgebra
of g°7 containing a. Then I’y is also defined by (5.1) for x = a.

Proposition 5.3. Iy=ryNa.

Proof. As in the proof of Proposition 5.2, we can also define
Wi(a) =W(a)>< T,
and C(a) in the same way. Note that for every A, € C(a), we can write

A=A, Na

with some A, € C(u).
Put W(u), = {w € W(u) | w(a) = a}|,. Then we have only to show that

as in the proof of Proposition 5.2.
The following lemma will be proved later.
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Lemma 5.4.  Let a be a root in 3(u) such that o(a) # —«. Then (a,o(a)) >
0.

Let o € ¥(a) and let 8 be a root in 3(u) such that 5|, = a. Then by

Lemma 5.4, we have |8|/|a| = 1, v/2 or 2. Hence we can prove W(a) C W(u),
by the same argument as in the proof of (5.2).

Next we will show that W(u)s C W(a). Let w be an element of W (u)® =

{w e W(u) | wa) =a}. Let A, be an element of C(a) and A, an element of
C'(u) such that -
Ag=AyNa.

Then we have wA, = wA,Na and there exists a wy € W(a) such that w, 'wA, =
A,. Since W(a) C W(u),, we can choose wy € W(u)* such that wy|, = wg. Let
Y be an element of A,. Then we have

wy'w(Y) =Y

since A, is a complete set of representatives of W(u) -orbits on u. Hence we have
wy 'w|, = id. and therefore

wla = Wola = wo € W(a). n

Proof of Lemma 5.4. Let a be a root in 3(u) such that o(a) # —a and X,
a nonzero element of gc(u, ) such that

07X, = AX,
with some X\ € U(1). Suppose that (a,o(a)) < 0. Then

X = [Xa,0Xq]
is a nonzero element of gc(u, ) where 8 = a + o(a) # 0. We have

0X = [0Xa, Xo] = —[Xa,0Xa] = —X

and
o7(0X,) = o(o7) X, = A 1o X,.

Hence we have
X ege(w,B)Ngc’ Nge” = ge(u, ) Nge’ Nge’

On the other hand, we have [X,a] = {0} since 8|, = 0. Thus we have a
contradiction to the assumption that a is maximal abelian in g7 N g™". |

As a corollary of Proposition 5.2 and Proposition 5.3, we have:

Corollary .  If G is simply connected, then

{Yea|expY =e} =T,.
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