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Abstract. Let D be a symmetric left invariant differential operator on a
unimodular Lie group G of type I. Then we show that D is essentially self-
adjoint if and only if for almost all # € G, with respect to the Plancherel measure,
the operator 7(D) is essentially self-adjoint. This, in particular, allows one to
exhibit a left invariant symmetric differential operator on the Heisenberg group,
which is not essentially self-adjoint.

Introduction

Let X = G/H be a homogeneous space, having an invariant measure. If D is
an invariant differential operator on X which is symmetric, it is often important
to know whether D, with domain the space of test functions D(X) = C°(X), is
essentially self-adjoint in L?*(X).

The simplest positive result in this regard, involving an individual operator,
is perhaps the following: if 7 is the quasi-regular representation of G on L%(X),
and D is a symmetric element in the centre of the universal enveloping algebra, the
operator 7(D) is an invariant differential operator on X, which, by a theorem of
L.E. Segal [16], is essentially self-adjoint, at least on the Garding domain. A result
of E. Nelson and W.F. Stinespring shows that 7(D) is also essentially self-adjoint
on the (smaller) domain D(X) (see [12] or the addendum to §1 below). In general
not all invariant differential operators on X are obtained in this way however.

Also, several types of homogeneous space are known with the property that
every symmetric invariant differential operator on it is essentially self-adjoint. For
instance, every compact homogeneous space (having an invariant measure) has this
property. As another example we mention the hyperbolic spaces U(p, ¢; F) /U (1; F)x
Up—1,¢;F),F =R C or H (cf. [6] and [17] theorem C, example b). In particular,
this justifies the assertion in Lemma 9 of [14]. E.P. van den Ban has shown that
for every semi-simple symmetric pair (G, o, H), G/H has this property [1]. This
also includes cases where (G, H) is not a generalised Gelfand pair [5].

Perhaps because of the abundance of these results no example was known
(to the author) of a homogeneous space and a symmetric invariant differential
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operator on it, which is not essentially self-adjoint. On the other hand, several
examples are known of a Lie group G, an irreducible representation 7 of G, and
a symmetric element D in the universal enveloping algebra, such that (D) is not
essentially self-adjoint. The best known example of this is probably the one due
to J. von Neumann (unpublished cf. [12]) where G is the Heisenberg group.

We have proved the following theorem (corollary to Theorem 1.7):

Selfadjointness Theorem Let G be a unimodular Lie group of type I. Let
D be a symmetric element of the universal enveloping algebra. Then D, viewed
as a left invariant differential operator on G, with domain D(G), is essentially
self-adjoint if and only if (D) is essentially self-adjoint for almost all irreducible
7, with respect to the Plancherel measure.

This then allows one to convert von Neumann’s example into an example
of a symmetric left invariant differential operator on the Heisenberg group, which
is not essentially self-adjoint.

We have taken the opportunity to state some related results, such as The-
orem 1.8, which connects strong commutation of two operators D; and D, with
strong commutation of the operators 7(D;) and 7(D;), but the reader mainly
interested in the counter—example could read as far as half way through the proof
of proposition 1.4, and then turn directly to the third example in paragraph 2.

In the addendum to paragraph 1 we show that, for an arbitrary unitary
representation U, the operator U(D), on the C*—vectors, and its restriction to
the space of analytic vectors, always have the same closure.

1. Generalities

Let G be a unimodular Lie group which eventually we shall assume to be of type
I. We denote D(G) the space of C* functions with compact support, and D'(G)
the space of distributions on G. Having chosen a Haar measure on G we identify
the locally integrable functions with distributions as usual. Thus we have the
inclusions:

D(G) . L(G) ¢y D(G)
More generally, let
H ., D'(G)
J

be any Hilbert subspace of D'(G), i.e. a linear subspace equipped with a Hilbert
space inner—product, such that the inclusion map, j, is continuous. For any

f € D'(G) and ¢ € D(G) we use the notation (f,d) = f(¢). Let j* : D — H
be the adjoint of j defined by the equation:

(f,5°0) = (if. 9) (1)

where the left-hand side stands for the inner product in H. (Note that in this
equation j is usually omitted from the expression on the right—hand side).

The reproducing operator for H, analogous to the orthogonal projection on
a closed subspace of a Hilbert space, is by definition the operator H = jj*. It is a
continuous linear operator from D to D’ which completely characterises H. (see
[15] or the summary in [17]).
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Every Hilbert subspace ‘H C_ D' possesses a privileged dense subspace,
namely j*(D), or, somewhat incorrectly, H(D). We shall denote it by Hy. (In
the particular case where H is a dense subspace of D', j* is injective, and one
obtains a Gelfand triplet).

Let R denote the right regular representation in D'(G). A Hilbert subspace
H is said to be right invariant if R(g)H = H and the restriction of each operator
R(g) to H is unitary. This happens if and only if R(g9)H = HR(g) for all g,
i.e. H intertwines the regular representations on D and D’. Equivalently, H is a

convolution operator:

H(¢) = K *¢ (2)

where K is some positive definite distribution on G. Let us denote R the
restriction of R to the space H. It is a continuous unitary representation in .
To verify the continuity it is sufficient to check weak continuity on Hy. We have in
fact: (j*¢, R™(9)7*Y) = (5*¢,7*R(g)v) = (H¢, R(g)1)) which is continuous with
respect to g. Let us note also that the subspace H,, which is invariant under R,
is composed of regular distributions, in fact of functions of class C*°. This is a
consequence of formula (2).

Similar considerations apply to left invariant spaces. A space which is both
left and right invariant will be called bi-invariant. In the particular case where
H = L?(G), we have H(¢) = ¢, and everything we have said is most familiar.

Let g denote the Lie algebra of G, and U the universal enveloping algebra
of its complexification. We identify U/ with the algebra of left invariant differential
operators on G (U, if any confusion should arise).

These differential operators are viewed as acting on D(G), on £(G), the
space of all functions of class C*, and on D'(G). If D* denotes the formal adjoint
of D, we have, G being unimodular,

(D*f,¢) = (f, D¢) (3)

for all ¢ € D(G) and f € D'(G).
If U is any unitary representation of G, we denote U, (D) the operator
corresponding to D € U, acting on the space of C'®°—vectors for U. If H is a right

invariant Hilbert subspace of D'(G), we denote H,, the space of C*—vectors for
R*%.

Proposition 1.1.  Let ‘H be a right invariant Hilbert subspace of D'(G), and
let D €U be a left invariant differential operator.

a. Ry(D) is the restriction to Hoo of the operator D : D'(G) — D'(G), i.e.:
RY(D)f = Df Vf € Hy

b. Ho C Heo- If RI(D) denotes the restriction of R*™(D) to Hy the operators
R¥(D) and R™(D) have the same closure.

c. Let T denote either R (D) or R¥(D). Then the domain of T* is
dom(T*) = {f € H: D*f € H}
and T*f = D*f for all f in this domain.
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Proof. a. It is sufficient to prove this for X € g, an arbitrary D € U being
a linear combination of products of such elements. Now we have R (X)f =
L R(exptX)fu—o in the space H, and so a fortiori in D'(G). But G being
unimodular, we have X* = —X, and so it is easy to see by transposition, that the
above expression yields X f.

b. Since the reproducing operator intertwines the regular representations
in D and D', we have R*(g)j*¢ = j*R(g)¢. On the other hand, the map
j* : D — H is a continuous linear operator and ¢ is a C'*°-vector for the regular
representation in D. Thus j*¢ is a C®-vector for R*. Next we need to show
that for any f € H, there exists f, € Ho with f, — f and Df, — Df in
H. (The fact that R¥ (D) actually has a closure is well known, and besides an
immediate consequence of a). Now it is known that H is in fact equal to the
Garding domain, i.e. the linear span of the elements of the form R*(¢)h, with
h € H and ¢ € D(G) ([3] Theorem 3.3). Thus we may assume f = R*(¢)h. Let
h, € Hoy tend to h in the space H. Then f, = R*(¢)h, = h, * ¢ belongs to H,,
fn converges to f, and Df, = R*(D@)h, converges to R*(Dp)h = Df.

c. To prove this it will be useful to first note the following

R¥(D)j*¢=j"D¢ V¢ € D(G) (4)
or equivalently
DH(¢) = H(Dg) V¢ € D(G) ()

which is proved, as before, first for D = X by differentiation. Now, if f = j*¢, h
belongs to H, and T denotes R}(D), we have:

(h, Tf) = (h,Df) = (h,j*(D¢)) = (h, D) = (D*h, ¢)
If D*h belongs to H, this equals (D*h,j*¢), and so we have

(h, Tf) = (D"h, f)

for all f € Hy, which implies h € dom(T*), and T*h = D*h. Conversely, if h
belongs to the domain of 7™, the above equalities show that there exists a constant
M such that,

(D*h, ¢)| < M|[5"¢|| V¢ € D(G)

Thus, by the Riesz—Fréchet representation theorem, there exists an element f € H,
such that (D*h,¢) = (f,7%¢) = (f, ¢) for all ¢ € D(G), which implies D*h = f €
#H. Since by b. R¥ (D) and R}f(D) have the same adjoint, the proof is complete.

[ |

A particular consequence of proposition 1.1 is that, when D = D*, the
operator R}(D) is essentially self-adjoint, i.e. has self-adjoint closure, if and only
if R¥™(D) is essentially self-adjoint. From now on we shall describe the essential
self-adjointness of these operators simply by saying that R*(D) is essentially
self-adjoint. Similarly, if U is a unitary representation of G we say that U(D) is
essentially self-adjoint if the operator Uy (D), with domain the C°—vectors has
this property. If 7 is the equivalence class of U we also describe this by saying
that (D) is essentially self-adjoint. Similarly 7(¢#) stands for U(¢), etc.
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Now let @1 denote the set of equivalence classes 7 of irreducible unitary
representations of GG, such that, for each ¢ € D(G), 7(¢) is an operator of trace
class. Then, if for 7 € G, we put x(¢) = trace w(¢), xr is a central positive
definite distribution which determines 7, the character of 7. If we now put

HW(QS):XW*¢:¢*XW (6)

H, is the reproducing operator of a minimal bi-invariant Hilbert subspace of
D'(G), with the property that R*~ is the d(m)—fold repetition of 7, d() being the
degree of 7. If we topologize @1 by making the map m — X, a homeomorphism,
(1 becomes a Suslin space whose Borel sets are Borel sets of G' in the sense of
Mackey [10]. Moreover, if G is a group of type I, which we shall assume from now
on, the map m — ¥, is an admissible section for the set of extreme generators
of the cone of central positive definite distributions on G, which is a lattice cone.
Thus, there exists a unique measure dm on G, the Plancherel measure, such that:

5=/de7r (7)

Equivalently, (see [17] Theorem A), one has the direct integral decomposition:

®
L*(G)= | Hdr (8)
G
More generally, if # is any bi-invariant Hilbert subspace of D'(G), there exists a
unique measure m on G such that

H= AGB H.dm(m) 9)

(for details regarding this approach to Plancherel measure see [10] and [17].)

Proposition 1.2.  Let D = D* be a symmetric element in U, and let m belong
to G1. Then w(D) is essentially self-adjoint if and only if R*~(D) is essentially
self-adjoint.

Proof. Recall that a densely defined symmetric operator T fails to be essen-
tially self-adjoint if and only if at least one of the equations 7™ f = +if admits
a solution f # 0. First assume that 7(D) is not essentially self-adjoint. Let K
be a closed minimal right invariant subspace of H, (which exists because R"~ is
a factor representation of type I). Then R represents 7, and so, by proposition
1.1, there exists a non zero solution of the equation Df =if (say) in the space K.
But then f belongs to H, and so for the same reason R*~(D) is not essentially
self-adjoint. Conversely, assume R*~(D) = T is not essentially self-adjoint. Then
there exists an element f € H, such that, for instance T*f = if, f # 0. Also,
‘H,. being the orthogonal direct sum of minimal right invariant closed sub-spaces,
there exists such a space, IC, such that the orthogonal projection Pcf of f on K
is not zero. We shall prove that the orthogonal projection operator P commutes
with 7. Then it will follow that 7™ Pcf = iPxf, and so, by proposition 1.1, the
equation Dk = ik has a non—zero solution in K. Thus R*(D) is not essentially
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self-adjoint, which means that 7 (D) is not essentially self-adjoint. To prove that
T* commutes with Py, note that 7" commutes with the operators of left trans-
lation in H,. Thus the bounded operators B = (I + T**T*)~' and C = T*B
commute with the left translations. Therefore, by the Godement-Segal commu-
tativity theorem ([8], [10]) the operators B and C belong to the Von Neumann
algebra R generated by the operators R*~(g). On the other hand, P¢ commutes
with right translations, and so belongs to the commutant of R. Thus Px com-
mutes with B and C', and so also with the operator 7™, which can be recovered
from B and C, i.e. we have PcT* C T*Pc. Thus if T*f = if, k = Pcf belongs
to the domain of 7%, and T*k = ik as was to be shown. [ ]

Remark 1.3. We have obuviously proved something slightly more precise than
the statement of Proposition 1.2, namely, that the operators (D) and R*~(D)
have positive (resp. negative) deficiency indices differing from zero, simultaneously.

Proposition 1.4.  Let ‘H be any bi—invariant Hilbert subspace of D'(G), and
let D € U be any left invariant differential operator. Let K ={f € H: Df = 0}
and let Ky ={f € H, : Df =0}. Then

K= / ’ Kxdm(r) (10)

(m being the measure defined by equation (9))

The proof depends on the following lemma which will be proved, on another
occasion.

Lemma 1.5. Let E be a locally convexr Hausdorff space such that its dual
contains a countable subset separating the points of E. Let F be a closed linear
subspace of E. Let A be a topological Hausdorff space equipped with a Radon
measure m, and let (Hy)aen be an m-measurable family of Hilbert subspace of E .
Also, let IC\, = Hy N F, with the Hilbert space structure induced from H,. Then
(Ka)xea is a m—measurable family of Hilbert subspaces of E .

If we apply this lemma with F = D'(G) and F = {f € D'(G) : Df = 0},
we see that the family (KCr), s, is m—measurable. Thus the integral on the right—
hand side of (10) exists as Hilbert subspace of D'(G), and it is a closed subspace
of ‘H, which we denote as W. Every element f € W has an expansion in D'(G):

f= /fﬁdm(W) (11)

where (fr)..z, is a square integrable field such that f, € K. Now, since
D : D'(G) — D'(G) is a continuous linear operator equation (11) yields
Df = [Dfzdm(r) = 0, which proves the inclusion W C K. (This will be
sufficient for the construction below of a non essentially self-adjoint left invariant
differential operator).

To prove the opposite inclusion we need some further notations. By equa-
tion (9) every f € H has a unique expansion as in (11), with a square integrable
field (f;) where f, € H,. If M C G, is a Borel subset, we put:

Puf = [ fdm(z) (12)
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Also, let £ (resp. R) denote the Von Neumann algebra of operators in #
generated by the left (resp. right) translations. Then it is known that LN R,
which by the Godement-Segal commutativity theorem is the centre of £ and of
R, is generated by the projections P, in fact (9) is the central decomposition
of H. Actually, we shall only need the fact that the projections P,; commute
with the operators R¥(g), which may be easily verified as follows: R(g) being
continuous in D'(G) we have from (11): R(g)f = [ R(g) frdm(r), which may also
be written:

R*(9)f = / R (g) fodm(m) (13)

Now, since R*7(g) preserves the norm in H,, the right-hand side of (13) is the
integral of a square integrable field, and so equation (13) is the decomposition of
R (g)f corresponding to (9). Thus we have, by definition of Py,

PuRMg)f = /M RY=(g) fydm(r) = B¥(g) Pyt f

which shows that P, commutes with the right translations in 4, and so belongs
to R/, the commutant of R.
Now let T = R}(D*). Then by Proposition 1.1, we have

K={fe€dom(T*) : T*f =0} = Ker(T™)

As in the proof of the previous proposition, we see that, since 7% commutes with
left translations, the corresponding operators B and C belong to £’ = R, and
so commute with P,;, which implies that 7% commutes with P,;, i.e. we have
PyT* C T*Pys. Thus, in particular, if f belongs to K = Ker(7T™), Py, f belongs
to K. Therefore we have:

DPyf = / Dfpdm(r) = 0
M

for all Borel sets M C él. This implies Df, = 0 m-almost everywhere, i.e.
fr € K m—almost everywhere, which means that f belongs to WW. The proof is
complete.

Now for any bi-invariant Hilbert subspace H of D'(G) and left differential
operator D, let us put:

HE={f€H:Df =+if}

Then we have the following corollary of proposition 1.4:
Corollary 1.6. Under the same hypotheses as in proposition 1.4 we have:
HE = /’Hfdm(w) (14)

m being the measure defined by equation (9).
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Theorem 1.7.  Let H be a bi—invariant Hilbert subspace of D'(G) and let m
be the measure on @1 defined by equation (9). Then, if D is a symmetric left
invariant differential operator on G, R*(D) is essentially self-adjoint if and only
if m(D) is essentially self-adjoint for m—almost all ™ € G, .

This is entirely clear from the preceding result once it is recognized that
a. the space H* in (14) is equal to the space (0) if and only if almost each space
HZE equals (0), and b. 7(D) fails to be essentially self-adjoint on a set of positive
measure if and only if either H; # (0) on a set of positive measure, or H_ # (0)
on a set of positive measure.

If we let # = L?(G), so that m is the Plancherel measure and Hy = D(G),
we obtain the theorem stated in the introduction.

Let us mention some related results with only summary indication of proof.

Theorem 1.8. Under the same precondition as in Theorem 1.7, let D1 and Dy
be left invariant symmetric differential operators such that R*(D;) and R™(D,)
are essentially self-adjoint. Then R™(D;) and RM(Dy) strongly commute if and
only if m(Dy) and w(Dy) strongly commute for m—almost all m € Gy

This will be a consequence of the following two propositions:

Proposition 1.9.  Let D be a symmetric left invariant differential operator
such that R™(D) is essentially self-adjoint. Let My be the set of elements m €
@1 such that w(D) is essentially self-adjoint. Let E be the spectral measure
corresponding to the self-adjoint closure of R*(D), and for @ € My let E, be
the spectral measure belonging to the closure of R*~(D). Then we have:

BA)f = | Eu(A)fadm(r) (15)

My

for every Borel subset A CR and f € H.

Proof. Let T be the closure of R”(D) and E its spectral measure. Then, since
T commutes with the projections Py, the E(A) also commutes with the Py, .
Hence there exist spectral measures F, in the spaces H, such that formula (15)
is valid (M, = {7 : HE = (0)} is a measurable subset of G whose complement
has measure 0 by Theorem 1.7). Let T = [ AE;(d\) be the corresponding self-
adjoint operator. It can then be proved that for almost all =, T} is equal to
the closure of R*~(D). We only indicate the principle of the proof. Let G, be
the graph of T, G, the graph of TPy, = PyT, and let G be the graph in
D'(G) x D'(GQ) of the operator D. Then we show that (Gr)ren, is a measurable
family of Hilbert subspaces of D' x D', and that Gy = [,, Grdm(r) for all M.
Now we know that G is contained in G, a closed subspace of D’ x D’; this implies
G, C G for almost all w. But for those 7, T, is a restriction of the adjoint, or
closure of R*~(D), and so being maximal symmetric, T}, equals this closure. ®

Remark 1.10.  The relation between the graphs mentioned above, by projec-

tion on the first space, gives the following relation between the domains of the

operator T" and T, viewed, with their graph norms, as Hilbert subspaces of D'(G):
®

Dy = Dr_dm(r) (16)

Mo
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Next consider some abstract Hilbert space KC; in which the representation
7, or rather a member of 7, takes place, and let K, and 7 denote respectively
the conjugate space and representation. Then there exists an isomorphism:

(O} Kwézlcw — /)LLW

which transforms 7 ® 7 into the double representation L% R7r .

Proposition 1.11. With the same conventions as in proposition 1.9, let, for
T € My, Fy be the spectral measure in Kr corresponding to the closure of 7(D),
and let I, be the identity in K. Then we have:

Er(A) = 0(I, @ Fr(A))d™ (17)

for all Borel sets A C R.

Proof.  Choose an orthonormal basis in the space K. Then the tensor product
becomes a direct sum of copies of K, which is transformed by & into a direct

sum:
— ©qk
=2

k

such that each space #* is minimal right invariant with R** € 7. Let F* denote
the spectral measure in H¥ corresponding to F. Then we should show that
E.(A)f =Y FF(A) fi, fr being the orthogonal projection of f on the space HE.

k

We shall do this, and simplify the notation by dropping the index 7 throughout

the remainder of the proof. Let E'(A)f = Y. F¥(A)fi. Then E' is a spectral
k

measure in the space H = H,. Let T = [AE'(d\) and let T, = [AFF(d)).
Then T} is equal to the closure of R*= (D). The domain Dy of T is composed
of the elements f € H, such that for all £, f; belongs to the domain of 7}, and
Z | T% fx]|> < +00. Moreover, we then have Tf= Zkak Let j and j; denote

the inclusions of H, respectively H¥, in D'(G). Then if f = j*¢ belongs to Hy,
fv = ji¢ € HY C Dyp,, and Tyfy = j;D¢ is the projection of j*D¢ onto HF.
Thus f belongs to the domain of 7" and T'f = j*D¢ = D f. This means that T is
an extension of the operator R*(D), and so T equals the closure of this operator
and E' = E, as was to be shown. n

Addendum to §1

The argument in the proof of 1.1, part b, only made use of the fact that H,
is invariant under the operators R*(¢). In particular, it can be applied to the
analytic vectors. Let us state and prove the result explicitly in this case:

Theorem 1.12.  Let U be a unitary representation of G. Let D € U, and let
Uy(D) be the restriction of Uy (D) to the space of analytic vectors for U. Then
Uy(D) and Uy (D) have the same closure.
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Proof. Let H,H, and H, be the representation space and the subspaces
of analytic and C®-vectors respectively. If f € H, and v(z) = U(x)f is the
corresponding analytic function, we have U(g)U(¢)f = [ ¢(x)v(gz)dz, which is
an analytic function of g by direct integration of the power series, at least if ¢ has
its support in a sufficiently small coordinate patch. Thus H, is invariant under
the operators U(¢). Now let f € H.,. By the theorem of Dixmier and Malliavin
([3] Theorem 3.3) we may assume f = U(¢)h for some h € H, and ¢ € D(G).
Let h, € H, tend to h (Nelson’s theorem [7]). Then f, = U(4)h, belongs to
H,, tends to f, and U,(D)f, = U(D¢)h, tends to U(D@)h = Us(D)f. Thus
the closure of U, (D) extends Uy (D), and so these two operators have the same
closure. [ ]

An analogous assertion and argument is obviously valid for any subspace #, of
M which is dense in A and invariant under the operators U(¢), ¢ € D(G). For
example, if, as in the introduction, U = 7 is the quasi-regular representation in
L?*(X), we may take Ho = D(X).

Thus the theorem of Dixmier and Malliavin according to which the Garding
domain actually coincides with the space of C'®°-vectors, entails some simplification
in the situation as described by Nelson and Stinespring ([12] §1).

2. Examples on the Heisenberg group
Let G now be the group of upper-triangular matrices

Y Y

— 8

Y Y

O O =
jaw]
—

Y Y

abbreviated (z,y,z). The Lie algebra
upper triangular matrices, and we put:

is identified as usual with the strictly

©

Y ? Y

0
Y=o,
0

Y

Y Y

0
Z=|o,
0

Y

, 1
, 0
0

I

X = ,

’ Y

o O O
S O =
o O O
o O O
o = O
o O O

Y ’ Y

Let U be the unitary representation on L?*(R) defined by

[U"(@,y,2)f ] (t) = exp ir (z + ty) f(t + z)

Then, to summarise the relevant facts, U" is irreducible for every r € R, =
R\ {0}, G = G, the map r — ¥, which associates with r € R, the character
of U", is a homeomorphism of R, onto its image in D'(G), and one has the

formula:
0= / Xr|r|dr

Thus R, may be identified with a (Borel) subset of G, and |r|dr with the
Plancherel measure [2], [9]. It is known moreover, that the space of C'*-vectors
for U™ is precisely the Schwartz space S(R) ([2] (1.4)). Since we have:

d

ULlX) =2, UL(Y)=irt , UL(2)=ir
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we see that, as D describes U, UL (D) describes precisely the set of linear dif-
ferential operators with polynomial coefficients. Now D(R) being dense in S(R)
for the topology of S(R), the closure of any operator Ul (D) is equal to the clo-
sure of its restriction to D(R). In particular, UL (D) and its restriction to D(R)
are simultaneously essentially self-adjoint. This self-adjointness will henceforth be
described by saying that U™(D) is essentially self-adjoint.

Let us now consider three examples:

Example 2.1. D =—-X?+Y*. Then U"(D) = —(£)?+r*t*. It is well known
that this operator is essentially self-adjoint for all » € R (see [4] XIII.6.15 or [13]
X.28). Thus, by Theorem 1.7, D, with domain D(G), is essentially self-adjoint in
L3(Q).

Example 2.2.  (Harmonic oscillator). D = —X?—Y?. Then U"(D) = —(&£)*+
r?t?. Here again, U"(D) is essentially self-adjoint for all 7 € R, and so D is

essentially self-adjoint.

We mention this example because of the (rather farfetched) possibility to
draw the inverse conclusion. For instance, Z being central, D commutes with the
elliptic operator X2+Y?24 72 and so D is essentially self-adjoint by the theorem
of Nelson and Stinespring ([12] 2.4). By Theorem 1.7 it follows that U"(D) is
essentially self-adjoint for almost all . The fact that there are no exceptions can
be seen directly as follows: For 7 # 0, let 7, be the unitary operator in L?(R)
defined by [T, f] (t) = |r|1f(|r|2t). Then we have:

U (D) = |r|T,U (D) (18)

i.e. up to a factor, the various operators U"(D) are unitarily equivalent. Thus, if
one is essentially self-adjoint, so are the others.

Remark The operator D = —X? —Y? has an absolutely continuous spectrum, in
spite of the fact that for each r € R, , U"(D) has a purely discrete spectrum.

Although this is probably known a proof is included to keep this paper self-
contained (an alternative suggested by the referee is to use [13] Thm XIII 85 and
86 and the method of [11]).

First note that, U"(D) being strictly positive, its spectral measure, which
we denote F,, is concentrated on R = (0,+o00). Therefore, by Propositions 1.4
and 1.9, the spectral measure F of D is also concentrated on R (this can of
course also be seen by checking that D = X*X + Y*Y is strictly positive, i.e.
positive and injective). Now let A be a subset of R} which has Lebesque measure
equal to 0. Then, to show that E(A) = 0, it is sufficient, by proposition 1.4 and
1.9, to show that the set S of all » € R, such that F,.(A) # 0 is negligible with
respect to the Plancherel measure, i.e. a set of Lebesque measure zero. But by
(18) we have

F(A) = TTFl(%A)TT‘l (19)

and so S = {r e R, : Fl(ﬁA) # 0}. Now let p be a positive bounded measure
on R having the same sets of measure zero as F, and let p be a strictly positive



256 THOMAS

function on R}, regarded as group, integrable with respect to the Haar measure
‘i—’. Then the convolution product p * u on R} is absolutely continuous, and so
we have 0 = p* pu(A) = [ p(r)u(*A)% . Hence p(+A) = 0 almost everywhere on
R . Consequently, S is negligible as asserted.

A similar remark and argument applies to the operator in example 2.1.

Example 2.3. D = —X?—-Y* Then U"(D) = —(4)? — r*t*. The operator
U"(D) is not essentially self-adjoint for any r # 0. In fact ‘both’ solutions of the
equation U"(D)f =if belong to L?(R).

This is a consequence of Wintner’s theorem ([13] X.9 or [4] XIIL.6.20) and of
Kodaira’s theorem relating the defect indices of the operator on [0, +00), (—o0, 0]
and (—oo0,+00) (see [4] XII1.2.26). Thus, by Theorem 1.7, the operator D,
with domain D(G), is not essentially self-adjoint in L?(G). With respect to the
coordinates (x,y,z), —D has the expression:

(3o + G+ 50" (20)

By exchanging X and Y, or on the line J; and ir¢, one obtains a slightly simpler
example of a left invariant differential operator on the Heisenberg group, which is
not essentially self-adjoint, namely:

0 4 0 [
= 2 tr 21
o)+ G g (21)
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